线性代数试题4
(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。
矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。
[考研类试卷]考研数学一(线性代数)模拟试卷4.doc
![[考研类试卷]考研数学一(线性代数)模拟试卷4.doc](https://img.taocdn.com/s3/m/9cbebc6fcfc789eb162dc806.png)
(1)是否有AB~BA;
(2)若A有特征值1,2,…,n,证明:AB~BA.
24设α为n维非零列向量, (1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
25
26设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
(D)存在可逆矩阵P,Q,使得.PAQ=B
2 n阶实对称矩阵A正定的充分必要条件是( ).
(A)A无负特征值
(B)A是满秩矩阵
(C)A的每个特征值都是单值
(D)A*是正定矩阵
3下列说法正确的是( ).
(A)任一个二次型的标准形是唯一的
(B)若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同
[考研类试卷]考研数学一(线性代数)模拟试卷4
一、选择题
下列每题给出的四个选项中,只有一个选项符合题目要求。
1设A,B为n阶可逆矩阵,则( ).
(A)存在可逆矩阵P1,P2,使得P1-1AP1,P2-1BP2为对角矩阵
(B)存在正交矩阵Q1,Q1,使得Q1TAQ1,Q2TBQ2为对角矩阵
(C)存在可逆矩阵P,使得p-1(A+B)P为对角矩阵
43设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
44设A为n阶实对称可逆矩阵, (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
(A)可逆矩阵
(B)实对称矩阵(C)正定矩阵Fra bibliotek(D)正交矩阵
(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数试卷4

线性代数试卷(4)一. 填空题(每小题3分,满分30分)1. 设B A ,都是5阶矩阵,且2,31=-=-B A ,则=A B2. 已知0222=++I A A ,则=+-1)(I A (其中I 是n 阶单位阵)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=12241031.3x A 设,已知矩阵A 的秩r(A)=2,则=x()8143701222226321.444-==⨯ij a A 设,又ij A 是ij a的代数余子式,则=+++44434241A A A A5.若一向量组只有唯一的极大无关组,则该向量组6.设3221232221321222),,(x tx x x x x x x x x f ++++=是正定二次型, 则t 的取值区间为7.设A 是n 阶正交矩阵,1-=A ,则()=*TA8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=20002121x A 相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--211,则=x9.设非齐次线性方程组b AX =的两个解为)(,,2121ξξξξ≠A 的秩为1-n ,则b AX =的一般解=ξ . [][][]1,4,2,1,0,,0,2,1,1,2,1.10321--==-=αααt 已知向量组 的秩为2,则=t .二. (8分)计算n 阶行列式b a a a a b a a a a b a D n n n n ---=212121三.(8分)求矩阵X 满足⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡1041120112201117241X四.(10分)设[][][][]10,2,1,2,4,1,5,1,3,6,3,11,5,5,10,2,3,2,1,24321-==-=-=αααα求向量组的秩及其一个极大无关组.五. (12分)问常数b a ,各取何值时, 方程组()()⎪⎪⎩⎪⎪⎨⎧=+++++=++++=+-=+++,5853,34232,12,1432143214324321x a x x x b x x a x x x x x x x x x无解,有唯一解,或有无穷多解,并在有无穷多解时写出其一般解.六. (16分)求正交变换PY X =,将二次型 ()323121232221321222222,,x x x x x x x x x x x x f ---++=化为标准形,并写出其标准形.七. (8分)设向量432,,,1αααα线性无关,且43214432134321243211,,,ββββαββββαββββαββββα+---=-+--=--+-=---=证明向量组4321,,,ββββ线性无关.八. (8分)A 为n 阶方阵,且A 与())1,,2,1(1-=-+n i iI A i均不可逆.试讨论A是否相似于对角阵,并说明理由.。
线性代数练习4(答案)

习题4 逆矩阵 (答案)一、单项选择题1.设方阵A 、B 、C 满足AB=AC,当A 满足( b )时,B=C 。
(a) AB =BA (b) 0≠A (c) 方程组AX=0有非零解 (d) B 、C 可逆2.设A ,B 为n 阶可逆矩阵,下面各式恒正确的是( b )。
(a) 111)(---+=+B A B A (b) B A AB T =)( (c) B A B A T +=+--11)( (d) 111)(---+=+B A B A3.设A 为n 阶方阵,*A 为A 的伴随矩阵,则( d )。
(a) (a) 1*-=A A (b) A A =* (c) 1*+=n A A (d) 1*-=n A A 4.A 为3阶方阵,行列式1=A ,*A 为A 的伴随矩阵,则行列=--*12)2(A A (a )。
(a) 827- (b) 278- (c) 827 (d) 278 5.设A 为n 阶可逆矩阵,则下面各式恒正确的是( d )。
(a )T A A 22= (b) 112)2(--=A A(c) 111])[(])[(---=T T T A A (d) T T T T A A ])[(])[(11--=6.设,,,A B C E 为同阶方阵,E 为单位矩阵,若ABC E =,则( b )。
(a )ACB E = (b )CAB E = (c )CBA E = (d )BAC E =二、填空题1.设A 为n 阶方阵,E 为n 阶单位阵,且2A E =,则行列式=A 1或-12.设⎪⎪⎪⎭⎫ ⎝⎛=100020101A ,则行列式12(3)(9)A E A E -+-的值为-43.设⎪⎪⎪⎪⎭⎫⎝⎛-=21232321A ,则行列式=11A _1______ 4.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A 815.若)(ij a A =为15阶矩阵,则A A T的第4行第8列的元素是i8151i i4a a ∑=⋅ 三、计算题1. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (2)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. 2. 设A 为3阶矩阵, 21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.3. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而 ⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 4. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1 )21 ,1 ,21(diag 4-= =2diag(1, -2, 1).5. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 四、证明题1. 设A k =O (k 为某个正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 (E-A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E(E +A +A 2+⋅ ⋅ ⋅+A k -1)-A(E +A +A 2+⋅ ⋅ ⋅+A k -1) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)-(A +A 2+⋅ ⋅ ⋅+A k )=E-A k =E 所以:(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.2. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E , 或 E E A A =-⋅)(21, 所以A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得 A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E , 或 E A E E A =-⋅+)3(41)2(所以(A +2E)可逆, 且)3(41)2(1A E E A -=+-. 3. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*. 证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A .又111()*||A A A E ---=, 所以11()*||A A A --= 所以(A*)-1=(A -1)*.。
南京邮电大学《线性代数与解析几何》期末试卷4

0
−1 1 0 1 −1 0
1
0
当 = 2 时, A − E = 1 − 1 0 → 0 0 0 2 = 1 , 3 = 0 ,
0 0 0 0 0 0
=
25
,故所求平面方程为: 24x + 18 y + 25z − 7 = 0 .
8
五、证明: r ( B) min{ m, n} = n , 又 n = r ( I ) = r ( AB) r ( B) , 故有 r ( B) = n , 即矩阵 B 的
列向量组线性无关.
第 2 页 共 2 页
0 0 0 1
(3)当 = 1 时,同解方程组为 1 + 2 + 3 = 1 , 通解为:
X = (1, 0 , 0 )T + k1 (1, − 1, 0 )T + k2 (1, 0 , − 1)T , k1 , k2 R
1 − a 1 + a 0
4. 解:
(1)二次型的矩阵 A = 1 + a 1 − a 0 , r ( A) = 2 A = 0 a = 0 .
4 = −31 + 2 + 3 .
第 1 页 共 2 页
《线性代数与解析几何》练习册参考解答——期末试卷四
a 1 1
3. 解: A = 1 a 1 = (a + 2)(a − 1) 2 ,
1 1 a
(1)当 ≠ −2且 ≠ 1 时,方程组有唯一解;
1 1 −2 4
线性代数1-8试题2011.10.11

《线性代数》试题1一、单项选择题(本大题共6小题,每小题3分,共18分,每题只有一个正确答案,错选、多选或未选均不给分。
)1. 若1112132122233132332a a a a a a a a a =,则111211132122212331323133232323a a a a a a a a a a a a ++=+【 】 A .2 B. 4 C. 8 D.16 2.设A 是n 阶方阵,且3A =,则13A =【 】 A .113n -B .13n -C . 3nD .13.设a b A c d ⎛⎫= ⎪⎝⎭且,则A 的伴随矩阵A *=【 】 A .d b ca ⎛⎫⎪⎝⎭ B .a b c d -⎛⎫ ⎪-⎝⎭ C .d b c a -⎛⎫ ⎪-⎝⎭ D. a b c d -⎛⎫ ⎪-⎝⎭4.设给向量组 321,,:αααA ; :B 4321,,,αααα , 则下列命题中正确的是【 】A.若A 线性无关,则B 线性无关;B. 若B 线性无关,则A 线性无关;C.若A 线性无关,则B 线性相关;D. 若B 线性相关,则A 线性相关。
5.设21,ηη是非齐次线性方程组β=Ax 的解,则下列向量中齐次线性方程组0=Ax 的解的是【 】.A . 121233ηη+ B .12ηη+ C .12ηη-D . 122ηη-6.设λ是可逆阵A 的一个特征值,则23A -必有一个特征值是【 】A .23λB .32λC .13λD .23λ二、填空题(本大题共6小题,每小题3分,共18分)1.四阶行列式|a |D ij =中,含有因子1221a a 且带负号的项为 2.若方阵A 满足2230A A E +-=,则=-1A .3.设三阶方阵A 等价于122111231-⎛⎫⎪ ⎪⎪-⎝⎭,则()R A =____ _4.设101n A ⎛⎫= ⎪⎝⎭,则nA = 5.若2112A ⎛⎫= ⎪⎝⎭与00xB y ⎛⎫= ⎪⎝⎭相似,则x = ,y = 。
线性代数试题及答案。。

线性代数试题及答案。
It was last revised on January 2, 2021第一部分 选择题 (共28分)一、 单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( ) A. m+n B. -(m+n) C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )A. –6B. 6C. 2D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0C. A ≠0时B =CD. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =07.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( )A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解C.η1-η2是Ax=0的一个解 η1-η2是Ax=b 的一个解 9.设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n -1 =0D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 =A T 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) 与B 相似B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数 》试卷A一.填空题(每小题4分,共20分)。
1.已知正交矩阵P 使得100010002T P AP ⎛⎫⎪=- ⎪⎪-⎝⎭,则2006()T P A E A P += 2.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( 2A )=3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=5.231511523()5495827x D x xx -=-,则0)(=x D 的全部根为:二.选择题(每小题4分,共20分)1.行列式001010100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( )。
A , 1,B ,-1C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次行变换相当于( )。
A , 左乘一个m 阶初等矩阵,B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}nM X AX X R ==∈。
则( )。
A ,M 是m 维向量空间,B , M 是n 维向量空间C ,M 是m-r 维向量空间,D ,M 是n-r 维向量空间4.若n 阶方阵A 满足,2A =0,则以下命题哪一个成立( )。
A , ()0r A =,B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( )。
A ,矩阵A T为正交矩阵, B ,矩阵1A -为正交矩阵C ,矩阵A 的行列式是±1,D ,矩阵A 的特征根是±1三,解答题(每小题6分,共30分)1.若A 为3阶正交矩阵,*A 为A 的伴随矩阵, 求det (*A )2.计算行列式111111111111a a a a。
3.设020200,001A AB A B ⎛⎫ ⎪==- ⎪ ⎪⎝⎭,求矩阵B 。
4、求向量组1234(1,2,1,2),(1,0,1,2),(1,1,0,0),(1,1,2,4)αααα====的一个最大无关组。
5.求向量ω=(1,2,1)在基)1,1,1(),1,1,0(),1,1,1(-===γβα下的坐标。
6、(12分)求方程组123451234512345223273251036x x x x x x x x x x x x x x x +-++=⎧⎪-+++=⎨⎪+--+=⎩ 的通解(用基础解系与特解表示)。
7、(12分)用正交变换化下列二次型为标准型,并写出正交变换矩阵22123122313(,,)22f x x x x x x x x x =++-四、证明题(6分) 设0β≠,12,,,r ξξξ是线性方程组AX β=对应的齐次线性方程组一个基础解系, η是线性方程组AX β=的一个解,求证ηηξηξηξ,,,,21+++r 线性无关。
《线性代数 》试卷A 参考答案一 填空题(1) 2-22006(2) λ12···λn 2 (3) r(A)=r(A,B)< n (4) t=-8 (5) 1,2,-3二 选择题(1) D (2) A (3) D (4) D (5) D三 解答题 (1) A ·A*=|A|·E, |A|·|A *|=|A 3||A *|=|A|2=|A ·A ’|=|A ·A -1|=1(2)3)1)(3(1010000101111)3(1111111111111)3(111111111111-+=---+=+=a a a a a a aa a a aa a a(3)由AB=A-B ,有A E A B A B E A 1)(,)(-+==+,111203312021()2100,330021002A E --⎛⎫- ⎪⎛⎫ ⎪ ⎪ ⎪+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭1242003333020212402000333300111000022B ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎪⎪ ⎪⎪ ⎪=-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛021*********012142110011210121214321αααα 而021120011101020011101121≠-=== 故{1α,2α,3α}为一个极大无关组(5)令ω=(1,2,1)=x α+y β+z γ, 则有:121=++=-+=+z y x z y x z x 解得: 21023-===z y xω的坐标为⎪⎭⎫ ⎝⎛-21,0,236 解:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----=0000001012102112114048404048402112116131051237213211221A 原方程组同解下面的方程组: 122243254321=--=++-+x x x x x x x x即: 432543212122x x x x x x x x ++=--+=+令0543===x x x ,求解得:(1,1,0,0,0)=η。
齐次方程组基础解系为:332211321),1,0,0,0,1(),0,1,0,1,2(),0,0,1,2,0(ηηηηηηηa a a +++-=-==通解为。
7.解:1λ,2λ,1λ)1λ)(2λ)(1λ(1λ0101λ111λλ11011110Χ'Χ),,(321321===+====A EA A x x x f当11=λ时,由()03211=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫ ⎝⎛110当12λ=时,由()03212=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫ ⎝⎛-111当13-=λ时,由()03213=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫ ⎝⎛-112单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛616162,313131,21210 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=61312161312162310U ,则⎪⎪⎪⎭⎫⎝⎛-=100020001'AU U若,UY =X 则2322212'y y y A -+=X X 。
六,证明证:设0)()(11=+++⋅⋅⋅++ηηξηξb a a r r ,则0)(111=++⋅⋅⋅+++⋅⋅⋅+ηξξb a a a a r r r , 于是:0))((111=++⋅⋅⋅+++⋅⋅⋅+ηξξb a a a a A r r r , 即:0)(1=++⋅⋅⋅+ηA b a a r但0≠=βηA ,故 η)(1b a a r ++⋅⋅⋅+=0。
从而 r r a a ξξ+⋅⋅⋅+11=0。
但r ξξ,,⋅⋅⋅1线形无关,因此r a a ,,1⋅⋅⋅全为0,于是b=0,由此知: ηηξηξ,,,1+⋅⋅⋅+r 线形无关。
《线性代数 》试卷B一、填空题(每小题4分,共20分)。
1. 已知正交矩阵P 使得100010002T P AP ⎛⎫⎪=- ⎪⎪-⎝⎭,则20061()T P A A A P -+= 2.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( T A )=3.设A 是n m ⨯矩阵,则方程组B AX =对于任意的m 维列向量B 都有无数多个解的充分必要条件是:4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩不为3,则t=5.23151315227()5439583x D x xx =,则0)(=x D 的全部根为:二、选择题(每小题4分,共20分)1.n 阶行列式111110100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( )。
B , 1-, B ,(1)n -C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次列变换相当于( )。
B , 左乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}n M X AX X R ==∈。
则( )。
A ,M 是m 维向量空间, B , M 是n 维向量空间 C ,M 是m-r 维向量空间, D ,M 是n-r 维向量空间 4.若n 阶方阵A 满足,2A =E ,则以下命题哪一个成立( )。
A , ()r A n =, B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( )。
A ,矩阵-A T 为正交矩阵, B ,矩阵-1A -为正交矩阵 C ,矩阵A 的行列式是实数, D ,矩阵A 的特征根是实数三、解下列各题(每小题6分,共30分) 1.若A 为3阶正交矩阵, 求det (E-2A )2.计算行列式a b b b b a b b b b a b b b b a。
3.设020200,001A AB A B ⎛⎫ ⎪==- ⎪ ⎪⎝⎭,求矩阵A-B 。
4、求向量组1234(1,2,1,2),(1,0,1,2),(1,1,0,0),(1,1,2,4)αααα====的的秩。
5、向量ω在基)1,1,1(),1,1,0(),1,1,1(-===γβα下的坐标(4,2,-2),求ω在,,αββγγα+++下的坐标。
四、(12分)求方程组123451234512345223273251036x x x x x x x x x x x x x x x +-++=⎧⎪-+++=⎨⎪+--+=⎩ 的通解(用基础解系与特解表示)。
五、(12分)用正交变换化下列二次型为标准型,并写出正交变换矩阵2123123(,,)4f x x x x x x =+六、证明题(6分) 设0β≠,12,,,r ξξξ是线性方程组AX β=对应的齐次线性方程组一个基础解系, η是线性方程组AX β=的一个解,求证对于任意的常数a ,12,,,,r a a a ξηξηξηη+++线性无关。
《线性代数 》试卷B 参考答案一 填空题(1) 2-2-5*22005(2)λ1···λn(3)m=r(A)=r(A,B)< n (4)t=-8 (5))1,2,-3 二 选择题(1) D (2) D (3) D (4) A (5) D三 解答题(1) 3阶的正交矩阵必有一个实特征根,这个特征根为1或者-1, 所以 det (E-2A )= det (E-A )· det (E+A ) =0(2)311(3)111000(3)(3)()000a b b b b b b b a b b a b b a b b b a b b a b b b b a b b ab b ba b a b a b a b a b a b=+=-+=+---(3)由AB=A-B ,有A E A B A B E A 1)(,)(-+==+,111203312021()2100,330021002A E --⎛⎫- ⎪⎛⎫ ⎪ ⎪ ⎪+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭1242003333020212402000333300111000022B ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎪⎪ ⎪⎪ ⎪=-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4248003333020248420000333300111000022A B ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎪⎪ ⎪ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛021100110101012142110011210121214321αααα而021120011101020011101121≠-=== 故秩为3。