【配套K12】[学习]2018年秋八年级数学上册 第15章 轴对称图形和等腰三角形 15.1 轴对称
配套K12八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第2课时等腰三角形的判定教案

第2课时等腰三角形的判定◇教学目标◇【知识与技能】1.掌握等腰三角形的判定及其两个推论;掌握直角三角形的性质定理;2.运用等腰三角形的判定及其推论进行有关计算和证明;3.运用直角三角形的性质定理进行有关计算和证明.【过程与方法】通过观察等腰三角形和等边三角形的判定定理,培养学生的观察、分析能力,发展学生的形象思维.【情感、态度与价值观】1.经历猜想、证明的过程,培养学生的逻辑推理能力;2.掌握归纳的思维方法,领会数学的转化思想.◇教学重难点◇【教学重点】等腰三角形的判定定理及其推论的应用;直角三角形的性质定理的应用.【教学难点】定理及其推论的导出.◇教学过程◇一、情境导入“等腰三角形的两底角相等”的逆命题是真命题吗?二、合作探究定理:有两个角相等的三角形是等腰三角形.简称“等角对等边”.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证明略.注意:这个定理叫做等腰三角形的判定定理,它是判断一个三角形是否为等腰三角形的重要依据.由上述定理可直接得到:推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.直角三角形的性质定理.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.根据题意画出图形,写出已知、求证,探索证题思路,完成命题的证明.已知:如图,在△ABC中,∠C=90°,∠A=30°,求证:BC=AB.证明:如图,延长BC到点D,使CD=BC.连接AD,则△ACD≌△ACB.(SAS)∴AD=AB,∠BAC=∠DAC=30°,∠BAD=60°.∴△ABD是等边三角形.(有一个角是60°的等腰三角形是等边三角形)∴BD=AB,∴BC=BD=AB.典例如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.[解析]∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形三、板书设计等腰三角形的判定1.定理:有两个角相等的三角形是等腰三角形.简称“等角对等边”.2.推论1:三个角都相等的三角形是等边三角形.3.推论2:有一个角是60°的等腰三角形是等边三角形.4.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.◇教学反思◇本节课先让学生说出“等腰三角形的两底角相等”的逆命题,由判断它的真假引出本节课,增强学生的好奇心和求知欲.在教法设计上,把重点放在了展示知识的形成过程上,由个别现象到抽象,体现出了学生从感性认识到理性认识发生、发展的认知过程.在教学过程中,注意引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论思想.。
2018年秋八年级数学上册第15章轴对称图形和等腰三角形15.1轴对称图形第2课时轴对称教案(新版)

第2课时轴对称◇教学目标◇【知识与技能】1.知道线段垂直平分线的概念;2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.通过丰富的实例认识成轴对称的两个图形,并能找出成轴对称的两个图形的对称轴;2.了解轴对称图形、两个图形关于某直线成轴对称这两个概念之间的联系和区别.【情感、态度与价值观】1.经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力;2.体验数学与生活的联系、发展审美观.◇教学重难点◇【教学重点】会利用轴对称的性质作对称点、轴对称图形等.【教学难点】轴对称图形与两个图形关于某直线成轴对称这两个概念之间的联系与区别.◇教学过程◇一、情境导入这几幅图是轴对称图形吗?每对图形有什么共同的特点?二、合作探究1.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?2.如图,图形M与图形M'关于直线l对称,点A',B',C'分别是点A,B,C的对称点.连接AA',设AA'与直线l交于点O1,BB'与直线l交于点O2,CC'与直线l交于点O3.(1)直线l与线段AA'有怎样的位置关系?(2)O1A与O1A'的长度有何关系,O2B与O2B',O3C与O3C'呢?说明:直线l垂直于线段AA',直线l平分线段AA'.O1A=O1A',O2B=O2B',O3C=O3C',即直线l 垂直平分线段AA';直线l垂直平分线段BB';直线l垂直平分线段CC'.结论:对称轴经过连接对应点的线段的中点,并且垂直于这条线段.经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线. 一般地,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.典例1 下列图形是部分汽车的标志,哪些是轴对称图形?[解析] 图①、图③和图④是轴对称图形.典例2 下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.典例3 在平面直角坐标系中点A 关于x 轴对称的点的坐标为(7x+6y-13,y+x-4),点A 关于y 轴对称的点的坐标为(4y-2x-2,-6x-4y+5),求点A 坐标.[解析] 由题意得解得所以点A 的坐标为(-8,3).三、板书设计轴对称1.线段的垂直平分线.2.一般地,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.◇教学反思◇本节课设计和实施时应体现以下三个方面:。
2018年秋八年级数学上册 第15章 轴对称图形和等腰三角形 15.3 等腰三角形

15.3等腰三角形第1课时等腰三角形的性质◇教学目标◇【知识与技能】1.经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力;2.掌握等腰三角形的性质1,2及其推论;3.运用等腰三角形的性质及其推论进行有关证明和计算.【过程与方法】在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.【情感、态度与价值观】经历探索等腰三角形的轴对称及相关性质的过程,进一步体会轴对称的特征,发展学生的空间意识.◇教学重难点◇【教学重点】等腰三角形的性质定理及其证明.【教学难点】等腰三角形性质的验证.◇教学过程◇一、情境导入活动1:请同学们把一张长方形的纸片对折,按如图2所示的方式剪去(或用刀子裁)一个角,再把它展开,得到的是什么样的三角形?结果:剪刀剪过的两条边是相等的;剪出的图形是等腰三角形.知识回顾:有两条边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.问题1:等腰三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想.结果:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴.说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴.二、合作探究活动2:出示刚才剪下的等腰三角形纸片,标上字母如图所示:把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?AD与BD垂直吗?为什么?结果:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,BD=CD,AB=AC,AD与BD垂直,理由略.活动3:由上面的性质我们可以得到等腰三角形有如下性质:定理1:等腰三角形的两底角相等,简称“等边对等角”.问题2:这个命题的题设是什么?结论是什么?结果:已知:在△ABC中,AB=AC.求证:∠B=∠C.转化为两个三角形?通过折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD.等腰三角形的性质定理1的几何符号语言的书写:在△ABC中,∵AB=AC(已知),∴∠B=∠C(等边对等角).问题3:等边三角形各内角有什么关系?各等于多少度?结果:(1)等腰三角形中顶角与底角的关系:顶角+2×底角=180°;(2)推论:等边三角形三个内角相等,每一个内角都等于60°.活动4:从性质1的证明过程可以知道,BD=CD,∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?结果:定理2:等腰三角形顶角的平分线垂直平分底边.即等腰三角形的顶角平分线、底边上的中线和底边上的高“三线合一”.典例如图,在△ABC中,AB=AC,∠BAC=120°,点D,E是底边上两点,且BD=AD,CE=AE,求∠DAE的度数.[解析]∵AB=AC,(已知)∴∠B=∠C.(等边对等角)∴∠B=∠C=错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时轴对称
知识要点基础练
知识点1轴对称的概念
1.下列图形中,△A'B'C'与△ABC成轴对称的是(B)
知识点2轴对称的性质
2.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是(A)
A.AB∥DF
B.∠B=∠E
C.AB=DE
D.AD的连线被MN垂直平分
3.(南充中考)如图,直线MN是四边形AMBN的对称轴,P是直线MN上的点,下列判断错误的是
(B)
B.AP=BN
C.∠MAP=∠MBP
D.∠ANM=∠BNM
4.如图,△ABC与△A1B1C1关于直线l对称.若∠B1=35°,∠A=40°,则∠C的度数为
105°.
知识点3轴对称作图
5.如图,已知△ABC与直线m.作△DEF,使△DEF与△ABC关于直线m对称.
解:如图所示.
综合能力提升练
6.如图,△ABC与△A'B'C'关于直线l成轴对称,且∠A=45°,∠C'=35°,则∠B的度数为
(A)
A.100°
B.90°
C.50°
D.30°
7.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是(D)
A.△ABD≌△ACD
B.AF垂直平分EG
D.DE=EG
8.如图,AD是△ABC的对称轴,点E,F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是3.
拓展探究突破练
9.如图,已知四边形ABCD与四边形EFGH关于直线MN对称,∠B=125°,∠A+∠D=155°,AB=3 cm,EH=4 cm.
(1)试写出EF,AD的长度.
(2)求∠G的度数.
(3)连接BF,线段BF与直线MN有什么关系?
解:(1)∵四边形ABCD与四边形EFGH关于直线MN对称,∠B=125°,∠A+∠D=155°,AB=3 cm,EH=4 cm.
∴EF=AB=3 cm,AD=EH=4 cm.
(2)∵∠B=125°,∠A+∠D=155°,
∴∠C=80°,
∴∠G=∠C=80°.
(3)∵对称轴垂直平分对称点的连线,
∴直线MN垂直平分BF.。