八年级数学轴对称图形单元测试卷

合集下载

数学八年级上册《轴对称》单元检测(含答案)

数学八年级上册《轴对称》单元检测(含答案)
[点睛]本题考查了轴对称和轴对称图形的性质,难度适中.
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.

八年级上册数学《轴对称》单元测试卷附答案

八年级上册数学《轴对称》单元测试卷附答案
(2)如图4,若∠A C D=α,则∠AFB=(用含α的式子表示);
(3)将图4中的△A C D绕点C顺时针旋转任意角度(交点F至少在B D、AE中的一条线段上),变成如图5所示的情形,若∠A C D=α,则∠AFB与α的有何数量关系?并给予证明.
24.如图,在平面直角坐标系中,一次函数y=x的图象为直线l.
(B类)已知如图,四边形A B C D中,A B=B C,∠A=∠C,求证:A D=C D.
23.已知点C为线段A B上一点,分别以A C、B C为边在线段A B同侧作△A C D和△B CE,且C A=C D,C B=CE,∠A C D=∠B CE,直线AE与B D交于点F,
(1)如图1,若∠A C D=60°,则∠AFB=;如图2,若∠A C D=90°,则∠AFB=;如图3,若∠A C D=120°,则∠AFB=;
[答案]A
[解析]
[分析]
根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
[详解]由图分析可得题中所给的”20∶15”与”21∶05”成轴对称,这时的时间应是21∶05,故答案选A.
[点睛]本题主要考查了镜面反射的原理与性质,解本题的要点在于应认真观察,注意技巧.
9.如图,△A B C与△A D C关于A C所在的直线对称,∠B C A=35°,∠D=80°,则∠B A D的度数为( )
2.关于”线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为( )
A.2B.3C.4D.5
[答案]C
[解析]
[分析]
根据轴对称图形的概念即可解答.
[详解]线段、角、正方形、圆是轴对称图形,共4个.
故选C.
[点睛]本题考查了轴对称图形的概念,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。

数学八年级上册《轴对称》单元检测题附答案

数学八年级上册《轴对称》单元检测题附答案
4.如图,直线m∥n,点A在直线m上,点B、C在直线n上,A B=C B,∠1=70°,则∠B A C等于( )
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,

∵A B=B C,

故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )

人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)

人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)

人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,ABC 与A B C '''关于直线l 对称,若78A ∠=︒,48C '∠=︒则B ∠的度数为( )A .48︒B .54︒C .74︒D .78︒2.如图,ABC 中36A ∠=︒,AB=AC , BD 平分ABC ∠, DE BC ∥则图中等腰三角形有( )个A .4个B .5个C .6个D .7个3.如图,在ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .DB 平分CDE ∠ B .DE 平分ADB ∠C .AD BD BC == D .BD 平分ABC ∠ 4.已知ABC 中6BC AB =,、AC 的垂直平分线分别交边BC 于点M 、N ,若2MN =,则AMN 的周长是( )A .4B .6C .4或8D .6或105.如图AB AC BD CD ==,,若70B ∠=︒,则DAC ∠=( )A .15︒B .20︒C .25︒D .30︒6.若点A 和点B ()2,3-关于y 轴对称,则点A 与点B 的距离为( )A .4B .5C .6D .107.若等腰三角形一腰上的高与另一腰的夹角为20︒,则它的底角为( ) A .35︒ B .55︒ C .55︒或35︒ D .70︒或35︒ 8.下列说法错误的有( )个①三角形的高不在三角形内就在三角形外;①多边形的内角和必小于它的外角和; ①周长和面积相等的两个三角形全等;①周长相等的两个等边三角形全等; ①两边和一角分别对应相等的两个三角形全等;①等腰三角形顶角的外角平分线平行于这个等腰三角形的底A .2个B .3个C .4个D .5个二、填空题9.在ABC 中,AB=AC ,=60B ∠︒则A ∠的度数是 .10.在ABC 中,AB=AC ,DE 垂直平分AB ,若10cm 6cm AB AC BC ===,,则BCE 的周长是 .11.如图,在ABC 中90ACB ∠=︒与30B ∠=︒,CD 是AB 边上的中线,则ACD 是 三角形.12.如图ABC 中,AB AC DE AB D =⊥,,是AB 的中点,DE 交AC 于E 点,连接10BE BC =,,BEC 的周长是21,那么AB 的长是 .13.如图,ABC 中70C ∠=︒,AC 边上有一点D ,使得A ABD ∠=∠,将ABC 沿BD 翻折得A BD ',此时∥A D BC ',则ABC ∠= 度.14.点()1,5P -关于x 轴的对称点P '的坐标是 .15.把一张长方形纸条按如图所示的方式折叠,则1∠= .16.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分①ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是 .三、解答题17.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,连接DE .求证:DB DE =.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.(1)画出格点ABC (顶点均在格点上)关于直线l 对称的111A B C △;(2)在直线l 上画出点P ,使得PB PC +最短;19.若等腰三角形一腰上的中线分周长为9和12两部分,请你画出示意图,并结合图形,求这个等腰三角形的各边长20.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()144235A B C ,,,,,,请回答下列问题.(1)作ABC 的关于y 轴的对称图形, A 、B 、C 对应点坐标分别为A B C '''、、.(2)分别写出A B C '''的坐标:A ' ;B ' ;C ' ;(3)求ABC 的面积.21.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE=CF .(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .22.在ABC 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O .ADE 的周长为12cm =110BAC ∠︒(1)求BC 的长和DAE ∠的度数;(2)分别连接OA 、OB 、OC ,若OBC △的周长为29cm ,求OA 的长.23.如图,在ABC 中,AB AC AB =,的垂直平分线交AB 于M ,交AC 于N(1)若70ABC ∠=︒,求MNA ∠的度数.(2)连接NB ,若8AB cm BC =,的长6cm ,求NBC 的周长.24.如图,在等腰ABC 中CA CB =,点D 是AB 边上一点,连接DC ,且DA DC =.(1)如图1,CH AB ⊥若78ACB ∠=︒,求HCD ∠的度数.(2)如图2,若点E 在BC 边上且DE DB =,连接AE .点M 为线段CE 的中点,过M 点作MN DE ∥交AB 于点N ,求证:CD BN DN =+.第 1 页 共 7 页 参考答案: 1.B2.B3.A4.D5.B6.A7.C8.C9.60度10.16cm11.等边12.1113.82.514.()1,5--15.65︒16.4.819.这个等腰三角形的底为9或5,这个等腰三角形的腰为6或820. (2)()()()144235-,,-,,-,(3)7222.(1)12cm BC = 40︒(2)8.5cm OA =23.(1)50︒(2)14cm24.(1)12︒。

八年级上《轴对称图形》单元测试含答案解析

八年级上《轴对称图形》单元测试含答案解析

八年级上《轴对称图形》单元测试含答案解析一、填空题1.角有条对称轴,其对称轴是.2.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于cm;若等腰三角形的一个角为70°,则它的另两个角是.3.如图,在△ABC中,AB=AC=30cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠BEC= ;(2)若BC=20cm,则△BCE的周长是cm.4.如图,在∠MON的两边上顺次取点,使 DE=CD=BC=AB=OA,若∠MON=20°,则∠NDE= .5.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB= .6.在等腰△ABC中,周长=8cm,AC=3cm,BC= .(2)等腰△ABC中,若∠A=40°,则底角= .7.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠An+1BnBn+1=θn,则(1)θ1= ;(2)θn= .二、选择题8.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B.C.D.9.和三角形三条边距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点10.如图,△ABC中BD是角平分线,∠A=∠CBD=36°,则图中等腰三角形有()A.3个B.2个C.1个D.0个11.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.412.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定13.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.10三、画图题14.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:15.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.16.已知右边方格纸中的每个小方格是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C,连接AB、AC、BC,使△ABC为等腰三角形且它的面积为4个平方单位.17.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.18.已知△ABC中,AB=AC,∠A=36°,仿照图①,请你再设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.四、解答题19.如图,D是△ABC中BC边上一点,AB=AC=BD,已知∠1=70°,求∠2的度数.20.如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.21.如图,四边形ABCD中,∠A=90°,∠C=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.《第2章轴对称图形》参考答案与试题解析一、填空题1.角有一条对称轴,其对称轴是角平分线所在直线.【考点】轴对称的性质.【分析】根据角和轴对称的定义和性质,即可得出答案.【解答】解:角是轴对称图形,有一条对称轴,它的平分线所在直线就是它的对称轴.故答案为:一,角平分线所在直线.【点评】本题考查轴对称图形的性质和定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.2.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于22 cm;若等腰三角形的一个角为70°,则它的另两个角是70°,40°或55°,55°.【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况①三角形三边为4cm,4cm,9cm,②三角形三边为4cm,9cm,9cm,看看是否符合三角形的三边关系定理,求出即可;分为两种情况:①当底角为70°时,②当顶角为70°时,根据三角形的内角和定理求出即可.【解答】解:∵等腰三角形的一边等于4cm,一边等于9cm,∴分为两种情况:①三角形三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况不行;②三角形三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,三角形的周长为4+9+9=22(cm);∵等腰三角形的一个角为70°,∴分为两种情况:①当底角为70°时,顶角为180°﹣70°﹣70°=40°;②当顶角为70°时,底角为×(180°﹣70°)=55°;即它的另两个角是70°,40°或55°,55°,故答案为:22,70°,40°或55°,55°.【点评】本题考查了等腰三角形的性质,三角形的三边关系定理,三角形内角和定理的应用,题目比较好,难度适中.3.如图,在△ABC中,AB=AC=30cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠BEC= 80°;(2)若BC=20cm,则△BCE的周长是50 cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)先根据等腰三角形的性质得出∠ABC的度数,再由三角形内角和定理求出∠A的度数,根据线段垂直平分线的性质求出AE=BE,故可得出∠ABE的度数,进而可得出结论;(2)根据AE=BD可知,BE+CE=AE+CE=AC,由此可得出结论.【解答】解:(1)∵在△ABC中,AB=AC=30cm,∠C=70°,∴∠ABC=∠C=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣70°=40°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC﹣∠ABE=70°﹣40°=30°,∴∠BEC=180°﹣∠C﹣∠EBC=180°﹣70°﹣30°=80°.故答案为:80°;(2)∵由(1)知AE=BE,∴BE+CE=AE+CE=AC=30cm,∵BC=20cm,∴△BCE的周长=AC+BC=30+20=50(cm).故答案为:50.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.4.如图,在∠MON的两边上顺次取点,使 DE=CD=BC=AB=OA,若∠MON=20°,则∠NDE= 100°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质求出∠ABO=∠MON=20°,∠BAC=∠ACB,∠CBD=∠CDB,∠DCE=∠DEC,根据三角形的外角性质逐个求出即可.【解答】解:∵DE=CD=BC=AB=OA,∠MON=20°,∴∠ABO=∠MON=20°,∴∠BAC=∠ACB=∠MON+∠ABO=20°+20°=40°,∴∠CBD=∠CDB=∠MON+∠BCA=20°+40°=60°,∴∠DCE=∠DEC=∠MON+∠CDB=20°+60°=80°,∴∠NDE=∠MON+∠DEC=20°+80°=100°,故答案为:100°.【点评】本题考查了等腰三角形的性质,三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和,等边对等角.5.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB= 30°.【考点】正方形的性质;等边三角形的性质.【分析】根据条件可以求出△ADE和△BCE为等腰三角形,就可以求出∠AED=∠BEC=15°,从而可以求出∠AEB的度数.【解答】解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠BCD=90°.∵△DCE是等边三角形,∴CD=DE=CE,∠CDE=∠DCE=60°.∴AD=ED,BC=CE,∠ADE=150°,∠BCE=150°.∴∠AED=∠BEC=15°,∴∠AEB=60°﹣15°﹣15°=30°.故答案为30°.【点评】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时求出∠AED和∠BEC的度数很关键.6.在等腰△ABC中,周长=8cm,AC=3cm,BC= 3cm或2cm或2.5cm .(2)等腰△ABC中,若∠A=40°,则底角= 70°或40°.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)由于已知周长和一边,边是腰长和底边没有明确,因此需要分两种情况讨论.(2)根据已知内角为顶角和底角,分类求解.【解答】解:(1)当腰长AC=BC=3cm时,底边为8﹣3﹣3=2(cm),而3,3,2能组成三角形,符合题意;当腰长AC=AB=3cm时,底边为BC=8﹣3﹣3=2(cm),而3,3,2能组成三角形,符合题意;当底边AC=3cm时,腰长BC=(8﹣3)÷2=2.5(cm),3,2.5,2.5能组成三角形,符合题意.故BC的长为3cm或2cm或2.5cm.(2)当∠A=40°为顶角时,底角=(180°﹣40°)÷2=70°;当∠A=40°为底角时,直接得出结论.故底角=70°或40°.故答案为:3cm或2cm或2.5cm;70°或40°.【点评】(1)考查了等腰三角形的性质与三角形三边关系,注意分类思想的运用.(2)考查了等腰三角形的性质.关键是根据已知角为顶角和底角,分类讨论.7.如图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律上去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则(1)θ1= ;(2)θn = .【考点】等腰三角形的性质.【专题】压轴题;规律型.【分析】设∠A 1B 1O=x ,根据等腰三角形性质和三角形内角和定理得α+2x=180°,x=180°﹣θ1,即可求得θ1=;同理求得θ2=;即可发现其中的规律,按照此规律即可求得答案.【解答】解:(1)设∠A 1B 1O=x ,则α+2x=180°,x=180°﹣θ1,∴θ1=;(2)设∠A 2B 2B 1=y ,则θ2+y=180°①,θ1+2y=180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2=; …θn =.故答案为:(1);(2)θn =.【点评】此题主要考查学生对等腰三角形性质和三角形内角和定理的理解和掌握,解答此题的关键是总结归纳出规律.二、选择题8.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B.C.D.【考点】镜面对称.【分析】根据镜面对称的性质求解.【解答】解:8点的时钟,在镜子里看起来应该是4点,所以最接近8点的时间在镜子里看起来就更接近4点,所以应该是图B所示,最接近8点时间.故选B.【点评】主要考查镜面对称的性质:在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.9.和三角形三条边距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【考点】角平分线的性质.【分析】题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.【解答】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B 错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选A.【点评】本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.10.如图,△ABC中BD是角平分线,∠A=∠CBD=36°,则图中等腰三角形有()A.3个B.2个C.1个D.0个【考点】等腰三角形的判定;三角形内角和定理;三角形的外角性质.【分析】根据已知可求得∠ABD与∠C的度数,从而可推出AD=DB,AB=AC,再根据三角形外角的性质可得到∠BDC的度数,从而可推出BD=DC,即不难求得图中等腰三角形的个数.【解答】解:∵△ABC中BD是角平分线,∠A=∠CBD=36°∴∠ABD=36°,∠C=72°∴AD=DB(△ADB是等腰三角形),∠ABC=72°∴AB=AC(△ABC是等腰三角形)∴∠BDC=72°∴BD=BC(△BDC是等腰三角形)故选A.【点评】此题主要考查等腰三角形的判定,三角形外角的性质及三角形内角和定理的综合运用.11.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.12.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.【解答】解:由BD平分∠ABC得,∠EBD=∠ABC,∵EF∥BC,∴∠AEF=∠ABC=2∠EBD,∠AEF=∠EBD+∠EDB,∴∠EBD=∠EDB,∴△BED是等腰三角形,∴ED=BE,同理可得,DF=FC,(△CFD是等腰三角形)∴EF=ED+EF=BE+FC,∴EF=BE+CF.故选B.【点评】本题综合考查了等腰三角形的性质及平行线的性质;一般是利用等腰(等边)三角形的性质得出相等的边,进而得出结果.进行等量代换是解答本题的关键.13.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.10【考点】等腰三角形的判定.【专题】网格型.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C 以点B为标准,AB为等腰三角形的一条边.【解答】解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选C.【点评】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.三、画图题14.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:【考点】作图-轴对称变换.【分析】从各点分别向直线引垂线并延长相同长度找到对应点,顺次连接即可.【解答】解:从三角形的三顶点分别向直线引垂线并延长相同长度找到对应点,顺次连接.【点评】本题主要考查了轴对称图形的性质.作轴对称变换找对应点是关键.15.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.16.已知右边方格纸中的每个小方格是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C,连接AB、AC、BC,使△ABC为等腰三角形且它的面积为4个平方单位.【考点】作图—应用与设计作图;等腰三角形的性质.【分析】可根据面积来确定高和底边,那么要确定的三角形的高和底边的长一个是4,一个是,2,我们发现可以用底4高2来确定三角形.【解答】解:作图如下:△ABC即为所求的等腰三角形且它的面积为4个平方单位的图形.【点评】考查了作图﹣应用与设计作图和等腰三角形的性质,解决此类方格内画三角形的题,主要是根据已知和所求先确定三角形的边的长.17.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.【解答】解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.【点评】本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.18.已知△ABC中,AB=AC,∠A=36°,仿照图①,请你再设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.【专题】作图题.【分析】利用三角形内角和定理和三角形外角性质以及提供的分法来作图.【解答】解:如图,.【点评】本题考查了等腰三角形的性质及三角形的内角和定理及三角形外角的性质;顶角为36°和108°的等腰三角形也是特殊的三角形,它可得到与它相似的三角形,主要是作底角的平分线.四、解答题19.如图,D是△ABC中BC边上一点,AB=AC=BD,已知∠1=70°,求∠2的度数.【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等可得∠1=∠BAD,再求出∠B,然后根据等腰三角形的性质求出∠BAC,再根据∠2=∠BAC﹣∠BAD计算即可得解.【解答】解:∵AB=BD,∠1=70°,∴∠1=∠BAD=70°,在△ABD中,∠B=180°﹣2×70°=40°,∵AB=AC,∴∠BAC=180°﹣2×40°=100°,∴∠2=∠BAC﹣∠BAD=100°﹣70°=30°.故∠2的度数是30°.【点评】本题考查了等腰三角形两底角相等的性质,等边对等角的性质,是基础题,准确识图是解题的关键.20.如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.【考点】等腰三角形的判定与性质;平行线的性质.【分析】DE=EF,首先根据角平分线定义得出∠DCE=∠ACB,∠ECF=∠ACG,从而得出∠DCF=90°;再由平行线的性质得出∠EDC=∠BCD,即可得ED=EC.【解答】答:DE=EF,理由如下:解:∵CD与CF分别是△ABC的内角、外角平分线,∴∠DCE=∠ACB,∠ECF=∠ACG,∵∠ACB+∠ACG=180°,∴∠DCE+∠ECF=90°,∴△DCF为直角三角形,∵DF∥BC,∴∠EDC=∠BCD,∵∠ECD=∠BCD,∴∠EDC=∠ECD,∴ED=EC,同理EF=EC,∴DE=EF.【点评】本题考查了等腰三角形的判定和性质以及平行线的性质,是基础知识比较简单.21.如图,四边形ABCD中,∠A=90°,∠C=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】连接AE、CE,根据直角三角形斜边上中线性质求出AE=CE,根据等腰三角形的性质得出即可.【解答】解:EF⊥AC,理由是:连接AE、CE,∵∠BAD=∠BCD=90°,E为BD中点,∴AE=BD,CE=BD,∴AE=CE,∵F为AC中点,∴EF⊥AC.【点评】本题考查了直角三角形斜边上中线性质,等腰三角形的性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】探究型.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED和Rt△AFD 全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.【解答】解:AD⊥EF.理由如下:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠EAF,∴AD⊥EF(等腰三角形三线合一).【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,熟记性质是解题的关键.第21页(共21页)。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

人教版八年级上册数学《轴对称》单元测试题(附答案)

人教版八年级上册数学《轴对称》单元测试题(附答案)
14.如图,在△ABC中,∠ABC=∠ACB,点P为△ABC内 一点,且∠PBC=∠PCA,∠BPC=110°,则∠A=_____.
15.如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于_____.
三、解答题
16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
∴∠CBD=∠A+∠ACB=36°,
∵BC=CD,
∴∠CDB=∠CBD=36°,
∴∠DCE=∠A+∠CDA=18°+36°=54°,
∵CD=DE,
∴∠CED=∠DCE=54°,
∴∠EDF=∠A+∠AED=18°+54°=72°,
∵DE=EF,
∴∠EFD=ห้องสมุดไป่ตู้EDF=72°,
∴∠GEF=∠A+∠AFE=18°+72°=90°.
证明:(1)FC=AD;
(2)AB=BC+AD。
24.如图,在 中, 是 的中点,过点 的直线 交 于点 ,交 的平行线 于点 , 交 于点 ,连接 、 .
(1)求证: ;
(2)请你判断 与 的大小关系,并说明理由.
参考答案
一、选择题
1.下列图形中,不是轴对称图形的是( )
A. B. C. D.
【答案】A
A.10B.16C.8D.4
10.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为()
A. 4.5B. 5C. 5.5D. 6
11.如图,等边△ABC 边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学
(测试内容:第一章轴对称图形)
班别座号姓名成绩
说明:1.可以使用计算器,但未注明精确度的计算问题不得米取近似计算,建议根据题型特点把握好
使用计算器的时机.
2 .本试卷满分100分,在90分钟内完成.相信你一定会有出色的表现!
、填空题:本大题共10小题;每小题3分,共30分•请将答案填写在题中的横线上.
3 •到线段的两个端点的距离相等的点有__________ 个,一条线段的垂直平分线有 ___________ 条. 4•如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是________________ 5. 在等边三角形ABC中,AD是BC上的高,则/ BAD = _________________
A
6. ______________________________________________________ 等边三
角形的两条高线相交所成的钝角的度数是 ________________________ .
7•在镜中看到的一串数字是“780903”,则这串数字是___________
8. _______________________________________________________ 如
图,AB = AC,/ 1=Z 2, BD = 3cm,那么BC 的长为 ________________ c m.
9. 如图,等边三角形ABC的三条中线交于点O.则图中除厶ABC还
有________________________________________________ 是等腰三角形.
10. 如图,在等腰梯形ABCD中,对角线AC与BD交于点O,图中全
15. 16. (A ) 6
(B )
已知等腰三角形的一边等于
(A ) 12
(B ) 已知等腰三角形的周长为
(A ) x > 12
(B )
(C ) 10
3,一边等于6,那么它的周长等
12 或 15
(C ) 15
24,腰长为X ,则x 的取值范围是
(C ) 6v x v 12
17.如图,等边三角形 ABC 中,AD 是BC 上的高,取 AC 的中点
连结DE ,则图中与DE 相等的线段有 (A ) 1 条
(B ) 2 条
(D ) 12
(D ) 15 或 18
(D ) 0 v x v 12 ).
).
(C )
3 条 (D )
4 条
18.如图,在△ ABC 中,点0是/ ABC 的平分线与线段 BC 的垂直 平分
线的交点,则下列结论不一定 成立的是 (A ) OB = OC
(B ) OD = OF
(C ) OA = OB = OC (D ) BD = DC
12. 下列图形不一定是轴对称图形的是
13.正五角星的对称轴有
已知△ ABC 的周长为 24, AB = AC , AD 丄BC 于。

,若厶ABD 的周长为 20,则AD 的长
).
二、选择题:本大题共8小题;每小题3分,共24分. 项是正确的,请将正确答案前的字母填入题后的括号内. 选或多选均得零分.
在每小题给出的四个选项中,只有一 每
小题选对得
3分,选错,不
11. 下列是我国四大银行的商标,其中不是轴对称图形的是
).
(B )
(D )
).
(A )线段
(B )正方形
(C )半圆
(D )三角形
).
(A ) 1 条
(B ) 2 条 (C ) 5 条 (D ) 10 条
14.
).
).
平分线,并说明它们的交点与斜边
AB 的关系.
三、解答题:本大题共4小题,共46分•解答应写出文字说明或演算步骤.
佃.(10分)(1)请仔细观察图形(阴影部分),指出所给虚线中哪些是图形的对称轴?
(2)下列图形是轴对称图形吗?如果是,分别画出它们的对称轴
20 •( 12分)(1)在数学课上,老师提出了一个问题: “角是轴对称图形吗?如果是,那么它 的对称轴是什么?” 小明同学马上举手回答:“角是轴对称图形,角平分线就是它的对称轴. 同学们,小明同学的回答有正确吗?为什么?
(2)如图,在△ ABC 中,/ C = 90°,用刻度尺及量角器分别作出
AC 、
BC 边的垂直
21. (12分)(1)如图,已知AD是线段BC的垂直平分线,且BD = 3cm,A ABC的周长为
20cm,求AC的长.
(2)如图,在△ ABC 中,AB= AC, AD 丄BC, / BAD = 40°, AD = AE .求/ CDE 的度数.
22. (12分)已知:如图,在等腰梯形ABCD中,AD // BC, AC丄BD,垂足为O, AC = 8cm.
求梯形ABCD的面积.A
八年级数学参考答案
一、填空题:(每小题3分,共30分)
1 对称轴;2. B、C、E, CE = DE , CF = DF, AC= BD, AF = BF ; 3.无数,且只有1; 4. 20°;
5. 30 ° ;
6. 120°;
7. 309087;
8. 6;
9.A AOB、△ AOC>△BOC ; 10.A ABC◎△ DCB、
△ ABD也厶DCA、△ ABODCO .
三、解答题:
佃.解:(1)d; (2)都是轴对称图形,作图略 .
20. 解:(1)有错误的地方,错误出现在“角平分线就是角的对称轴”因为对称轴是一条直
线,而角平分线是一条射线•对称轴应该说是角平分线所在的直线;
(2)作图略,AC、BC边的垂直平分线的交点恰好是斜边AB的中点.
21. 解:(1) 7cm; ( 2) 20°.
2
22 .解:32cm •
提示:梯形ABCD的面积=△ ACD和面积+△ ACB的面积
1 1
=-X AC X OD + —X AC X OB
2 2
1
=1X AC X( OD + OB)
2
1 2
=-X AC X DB = 32cm2;
2
或将对角线AC平移到DE,交BC的延长线于E,于是得厶DCE BAD,所以△ BDE的
面积等于梯形ABCD的面积.。

相关文档
最新文档