第四章飞机的平衡稳定性操纵性

合集下载

飞机的机动性、稳定性、操纵性

飞机的机动性、稳定性、操纵性

飞机的操纵性
一、飞机的纵向(俯仰)操纵
飞机的纵向(俯仰)操纵是指飞行员前后推拉 驾驶盘偏转升降舵后,飞机绕横轴转动而改变其迎 角等飞行状态。 横轴
下俯
全动式高低平尾升降舵
平尾大致分为普通平尾和全动平尾两大类: 1.普通平尾:升降舵可偏转,安定面不可偏转; 2.全动平尾:整个水平尾翼均可偏转。
2.机翼后掠角: 飞机受干扰右倾斜 → 升力随其倾斜 → 而后 掠角→流过右翼的垂直分速大于左翼→V右>V左 → Y右> Y左 → 产生向左的反力矩 → 恢复横向
稳定。 (见图2—46)
3.垂 直 尾 翼:
飞机受干扰右倾斜 →垂尾右侧受空气动力 →产生左滚力矩→恢复横向稳定。 (见图2—47)
§2-8
平衡,而在扰动消失后又自 动恢复原平衡状态的特性。
附加升力对重心形成力矩
1.△Y: 迎角变化时,机 翼、平尾上附加 升力的和。 2.△M: △Y对飞机的重 心形成稳定与不 稳定力矩。
△Y
飞机纵向静稳定性的条件:焦点在重心之后
只有焦点的位置在飞机的重心之后飞机才具有俯 仰稳定性,焦点距离重心越远,俯仰稳定性越强。
低平尾升降舵
全动式平尾 高平尾升降舵
二、飞机的横侧操纵
飞机的横侧操纵是指飞行员左右压驾驶盘操纵副翼 以后,飞机绕纵轴横滚的飞行状态。
三 、 飞机的方向操纵
飞机的方向操纵是指飞行员前后蹬脚蹬操纵方向舵 以后,飞机绕立轴偏转而改变其侧滑角等飞行状态的 特性。
§2-6、7、8作业
1.什么是飞机的盘旋、筋斗和横滚? 2. 飞机的稳定性包括哪三方面? 3.飞机的纵向稳定中,为什么焦点要在重心之后? 4.什么是侧滑?飞机是如何恢复方向平衡的? 5.飞机通过什么装置恢复其横侧平衡? 6.飞行员如何操纵飞机的俯仰、方向、横侧平衡?

飞机平衡控制—飞机的稳定性与操纵性

飞机平衡控制—飞机的稳定性与操纵性

稳定性
飞机的情况也是一样,也有 稳定、不稳定和中和稳定三 种情况。
稳定性
飞机纵向稳定性(俯仰稳定性)
ห้องสมุดไป่ตู้
稳定性
飞机方向稳定性
稳定性
飞机侧向稳定性 影响飞机侧向稳定性的因素主要是机翼的上反角和后掠角。
操纵性
飞机的操纵性是飞机跟随驾 驶员操纵驾驶杆、脚蹬动作 而改变其飞行状态的特征。 飞机通过主操纵面—升降舵、 方向舵和副翼对绕3个轴的 运动进行操纵。
操纵性
飞机重心位置的前后移动会影响飞机的纵向操纵性能。 重心前移,增大同样迎角,所需要的升降舵上偏角增大,重心前移越多, 上偏角越大,但升降舵上偏角是有一定限定的,重心前移过多,就可能 出现即使驾驶杆拉到底,飞机也不能增加到所需要的迎角,因此重心位 置应有个前限,称为重心前极限。
操纵性
俯仰稳定性强的飞机,俯仰操纵时比较迟钝;俯仰稳定性弱的飞机,俯 仰操纵时比较灵敏。

第四章飞机的稳定性和操纵性空气动力学

第四章飞机的稳定性和操纵性空气动力学
扰动使飞机抬头,迎角增加,升力增量向 上,作用于全机焦点。
全机焦点如果在重心之后,升力增量对重 心产生低头力矩,飞机低头运动趋势,升 力增量产生的是恢复力矩,飞机具有纵向 静稳定性 ;
全机焦点如果在重心之前,升力增量对重 心产生抬头力矩,飞机更加偏离原飞行姿 态,升力增量产生的是偏离力矩,飞机具 有纵向静不稳定性 ;
飞机的操纵性分类
纵向操纵性:飞机按照驾驶员的操纵指令, 绕横轴转动,增大或减少迎角,改变原飞 行姿态的能力。
侧向操纵性:飞机按照驾驶员的操纵指令, 绕纵轴滚转,改变原飞行姿态的能力。
方向操纵性:飞机按照驾驶员的操纵指令, 绕立轴转动,向左或向右偏转,改变原飞 行姿态的能力。
飞机的纵向静稳定性
作用于飞机上的力矩
飞机纵向扰动运动过程中作用在飞机上的力矩:
静稳定力矩:由迎角增量产生的作用在焦点上的升
力增量对飞机横轴的转动力矩,企图使飞机恢复原
有姿态。也称为恢复力矩。
俯仰阻尼力矩:飞机在恢复摆动过程中,因绕重心
摆动角速度引起的与飞机摆动角速度方向相反的附
加力矩。对飞机绕重心的摆动起阻尼作用。主要由
4.1 飞机运动参数
飞机在空间的姿态:用机体坐标 系与地面坐标系之间的方向关系 来确定,并用姿态角表示出来
机体坐标系:与机体固定,原点 位于飞机重心处,坐标轴方向按 右手定则互相垂直。x轴方向指向 机头;y轴在飞机对称平面内。
地面坐标系:与地球表面固定, 原点位于地面上的任一选定点, 坐标轴方向按右手定则互相垂直。 x轴指向地球表面上某一选定方 向;x轴和z轴在水平面内;y轴铅垂 向上。
飞机的纵向力矩:使飞机绕横轴OZt 转动的俯
仰力矩,用Mz表示。规定使飞机抬头的Mz为正值, 否则为负值。 飞机是由机翼、机身、尾翼以及动力装置等部件 组成,每个部件上的气动力及发动机推力都对飞 机产生纵向力矩。 全机纵向力矩等于机翼、机身、尾翼等部件上的 气动力及发动机推力产生的纵向力矩之和。

飞行原理4

飞行原理4
第四章 飞机的平衡、稳定性和操纵性
一、几个基本概念 二、飞机的平衡 三、飞机的稳定性 四、飞机的操纵性
一、几个基本概念
(一)、飞机的重心
1、飞机重心的概念 飞机的各部件(机身、机翼、尾翼、发动机… 等)、燃料、乘员、货物等重力(重量)的合力叫做 飞机的重力。飞机重力的着力点叫做飞机的重心, 重力着力点的位置叫重心位置,用“ O ”表示。
(四)、飞机的焦点--空气动力中心
1、机翼的焦点 当机翼迎角改变时,机翼的升力也要变化。假定 机冀原来升力为Y0,迎角改变后的升力为Y,则升力 改变量(∆Y)为两者之差,即:∆ Y=Y—Y0,通常把因 迎角变化而引起的升力改变量(∆Y)叫做附加升力或升 力增量,
焦点就是当迎角改变时,机翼附加升力 (∆Y)的作用点,实验表明:在一定飞行M数下, 在小于临界迎角的范围内,不论迎角如何变化, 焦点位置基本不变。 对称形冀型,焦点位置与压力中心位置是 重合的。这是因为对称翼型当迎角α=0时,翼 型的升力Y=0,当α增大时,它所产生的总升 力就是附加升力,其作用点既是压力中心,又 是附加升力的作用点——焦点。 非对称翼型,其焦点和压力中心不重合, 焦点正常位于压力中心前面。
(一)、飞机的俯仰平衡
飞机俯仰平衡,是指飞机作等速直线运动,并且 不绕横轴转动的飞行状态。保持飞机俯仰平衡的条件 是作用于飞机的各俯仰力矩之和为零,飞机取得俯仰 平横后,不绕横轴转动,迎角保持不变。 飞机俯仰平衡 的主要是机翼俯仰力矩和水平尾 翼俯仰力矩。机翼俯仰力矩为:
水平尾翼俯仰力矩为:
俯仰力矩的平衡:
(二)、飞机的方向稳定性
飞机在飞行中,受扰动作用后会偏离方向 平横状态,绕立轴转动进入侧滑,在扰动消夫 后,飞机能自动恢复原来平衡状态的特性叫飞 机的方向稳定性。 对于具有方向稳定性的飞机来说,一旦出 现侧滑,就会产生方向稳定力矩,使飞机具有 自动消除侧滑的趋势,而且在消除侧滑的摆动 过程中,还会产生方向阻尼力矩,使方向摆动 逐濒减弱,直至消失为止。

飞机的稳定性和操纵性汇总

飞机的稳定性和操纵性汇总

飞机重心范围的确定

飞机的重心前限

重心前移,飞机的纵向静稳定性提高,操纵性 能变坏,纵向平衡变差。 从飞机纵向平衡和纵向操纵性能的要求对飞机 重心最靠前的位置进行了限制。 重心后移,飞机的纵向稳定性减小,飞机对操 纵的反应变灵敏。 从飞机的纵向静稳定性和操纵灵敏度的要求对 飞机重心最靠后的位置进行了限制。
荷兰滚
飞机的横侧向扰动运动 及影响稳定性的因素


飞机的侧向静稳定性和方向静稳定性大小 比例搭配,对飞机横侧向动稳定性有着重 要的影响。 影响因素


侧向静稳定性——机翼上反角和后掠角。 方向静稳定性——垂尾面积及到飞机重心的力 臂。

偏航阻尼器——用在大型高速运输机上, 防止荷兰滚
4.7 飞机的横侧向操纵性
空气动力学基础(ME、AV)
第一章 第二章 第三章 第四章 大气物理学 空气动力学 飞行理论 飞机的稳定性和操纵性
第4章 飞机的稳定性和操纵性



4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
飞机运动参数 飞机稳定性和操纵性的基本概念 飞机的纵向稳定性 飞机的纵向操纵性 飞机的横侧向静稳定性 飞机的横侧向动稳定性 飞机的横侧向操纵性 飞机主操纵面上的附设装置

滚转角γ

空速向量相对机体的方位

速度轴系或风轴系OVXVYVZV XV沿飞行速度方向,气动阻力沿XV负向。YV在飞 机对称面内且与飞行速度垂直。
迎角和侧滑角

迎角α

空速向量在飞机对称面Oxtyt上的投影与机体 坐标系纵轴Oxt之间的夹角。规定投影线在Oxt 轴下方时为正。 空速向量与飞机对称面Oxtyt之间的夹角。规 定空速向量偏向右侧时为正(向右侧滑为正)。

飞机的操控与稳定教案

飞机的操控与稳定教案

飞机的操控与稳定教案一、引言。

飞机的操控与稳定是飞行员必须掌握的基本技能之一。

在飞行中,飞机的操纵和稳定性直接影响到飞行的安全和顺利进行。

因此,飞行员需要通过系统的培训和实践来掌握飞机的操控和稳定技能。

本教案将从飞机的基本操控原理、飞机的稳定性原理、飞行中的操控技巧等方面进行详细介绍,帮助飞行员更好地理解和掌握飞机的操控与稳定技能。

二、飞机的基本操控原理。

1. 飞机的操控装置。

飞机的操控装置主要包括操纵杆、脚蹬和油门。

操纵杆用于控制飞机的俯仰和滚转,脚蹬用于控制飞机的偏航,油门用于控制发动机的推力。

飞行员通过操纵这些装置来控制飞机的姿态和飞行状态。

2. 飞机的基本操控原理。

飞机的操控原理主要包括三个方面,俯仰、滚转和偏航。

俯仰是飞机绕横轴旋转的运动,滚转是飞机绕纵轴旋转的运动,偏航是飞机绕垂直轴旋转的运动。

飞行员通过操纵杆、脚蹬和油门来控制飞机的俯仰、滚转和偏航运动,从而实现飞机的操纵。

三、飞机的稳定性原理。

1. 飞机的稳定性类型。

飞机的稳定性主要包括静稳定性、动稳定性和自动稳定性。

静稳定性是指飞机在受到外界干扰后能够自行回到平衡状态的能力,动稳定性是指飞机在飞行中能够保持稳定的能力,自动稳定性是指飞机通过自动控制系统来实现稳定。

2. 飞机的稳定性原理。

飞机的稳定性原理主要包括气动稳定性和动力稳定性。

气动稳定性是指飞机在飞行中受到气流的影响后能够保持稳定的能力,动力稳定性是指飞机在受到发动机推力和风阻的影响后能够保持稳定的能力。

飞机的稳定性原理是飞机设计和飞行中的重要考虑因素。

四、飞行中的操控技巧。

1. 起飞阶段的操控技巧。

起飞是飞行中的关键阶段,飞行员需要通过操纵飞机的操控装置来实现起飞。

在起飞阶段,飞行员需要注意控制飞机的俯仰和滚转,保持飞机的稳定状态,并适时调整油门来控制飞机的速度和爬升角度。

2. 空中飞行中的操控技巧。

在空中飞行中,飞行员需要通过操纵飞机的操控装置来实现飞机的转弯、爬升和下降等动作。

航空概论飞机的平衡安定性和操纵性

航空概论飞机的平衡安定性和操纵性

航空概论:飞机的平衡安定性和操纵性概述飞机的平衡安定性和操纵性是飞行器设计中最重要的问题之一。

正确的平衡和稳定性是确保飞机能够稳定飞行的关键,同时也保证了正确的操纵性,使飞机能够按照飞行员的意愿进行操作。

在本文中,我们将讨论什么是平衡和稳定性、如何设计一个平衡和稳定的飞机,以及如何操纵一个飞机。

飞机的平衡和稳定性飞机的重心和机翼的重心平衡是一架飞机在空中稳定飞行所需的基本条件之一。

为了保持平衡,飞机必须有一个正确的重心位置。

这个位置是在飞机中间的一个虚拟点,重力作用于这个点的位置使飞机保持平衡。

同时,飞机的机翼也有一个重心位置,这个重心位置是机翼所有部件的平均重心位置。

稳定性稳定性是指飞机在受到干扰之后能够自动回到原来的状态,从而保持飞行的状态。

稳定性是通过飞机的设计和材料选择来实现的。

飞机的稳定性可以分为静态稳定性和动态稳定性。

静态稳定性是指飞机在保持位置或姿态时的稳定性。

动态稳定性则指飞机对于干扰的快速反应能力。

设计一个平衡和稳定的飞机设计一个平衡和稳定的飞机需要考虑多个因素。

以下是一些参考:水平平衡设计者应该将水平平衡考虑在内,这样飞机才能在水平方向上保持平稳飞行。

水平平衡的几个主要元素包括下列部分:•重心:飞机的重心必须位于机翼重心的前方,这样才保证飞机保持稳定。

•机毂和发动机位置:机毂和发动机位置的不同会影响飞机的平衡。

•垂直尾翼:垂直尾翼能够帮助调整飞机的平衡。

垂直平衡设计者同样应该考虑垂直平衡的问题。

以下是设计者应该考虑的因素:•高度舵面:高度舵面能够帮助飞机在垂直方向上保持平稳飞行。

•垂直尾翼:与水平平衡类似,垂直尾翼也能够帮助调整飞机的平衡。

•重心:这里的重心是指沿着飞行器纵向的重量分布情况。

设计者必须考虑飞机的质心位置和操纵重心位置之间的关系。

机翼的大小和形状机翼的大小和形状会影响飞机的稳定性。

机翼面积越大,飞机的稳定性就越好,但是机翼越大,飞机的重量也会增加,从而影响飞机的性能。

航空概论飞机的平衡安定性和操纵性图文

航空概论飞机的平衡安定性和操纵性图文

航空概论:飞机的平衡安定性和操纵性飞机的平衡安定性和操纵性是航空学中极为重要的概念。

本文将介绍这两个概念的含义以及与之相关的基本法则和理论模型。

飞机的平衡静态平衡静态平衡是指在飞机静止时,重心与升力的作用线,以及扭矩的平衡关系。

如果这些关系得到满足,那么静态平衡就得以实现。

一般来说,飞机的重心应该位于飞机各个机身部件的重心重合点上方,在这种情况下,飞行员就可以轻松地控制飞机飞行。

当然,在设计飞机的过程中,设计师需要充分考虑飞机的重心位置,确保其能够实现最大程度的安全性和机动性。

动态平衡动态平衡是指在飞机运动时,飞机的各个部件始终处于平衡状态,以实现稳定的飞行。

动态平衡包括长周期运动和短周期运动,其中长周期运动指的是飞机在俯仰和纵倾方向上的运动,短周期运动则是飞机在横滚方向上的运动。

飞机的安定性飞机的安定性是指在特定的条件下,飞机能够以稳定的方式飞行。

稳定飞行有重要的应用,特别是在长时间的飞行或战斗操作中。

飞机的稳定性保证了飞行员和机组人员的安全。

飞机的操纵性飞机的操纵性是指飞行员控制飞机进行特定力学操作的能力。

操纵性与飞机的设计密切相关,因为可以进行不同的机构和材料选择,以改善或限制飞机和机组人员的响应速度。

飞机平衡安定性和操纵性的影响因素下面是一些影响飞机平衡安定性和操纵性的因素:1.机翼和无尾天线的尺寸和形状2.飞行员和机组人员的响应速度和技能水平3.飞机的机身重心位置和重量分布情况4.飞机的发动机和推进器的性能和效率5.飞行环境的风速、气压、湍流状况等飞机平衡安定性和操纵性在航空学中非常重要。

对于设计师和飞行员来说,了解这些基本原理和规律是至关重要的,这有助于他们更好地理解和应对不同的飞行条件和飞机应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档