2015届高考数学二轮专题检测:16 函数的极值与最值

合集下载

高考数学一轮复习课时过关检测(十六) 导数与函数的极值、最值

高考数学一轮复习课时过关检测(十六)  导数与函数的极值、最值

课时过关检测(十六) 导数与函数的极值、最值A 级——基础达标1.已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( ) A .-4 B .-2 C .4D .2解析:选D 由题意得f ′(x )=3x 2-12,由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.2.函数y =xex 在[0,2]上的最大值是( )A .1eB .2e2C .0D .12e解析:选A 易知y ′=1-xex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y =xex 在[0,1]上单调递增,在(1,2]上单调递减,所以y =xex 在[0,2]上的最大值是y |x =1=1e,故选A . 3.某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植是8万斤,每种植一斤藕,成本增加0.5元,销售额函数是f (x )=-18x 3+916ax 2+12x ,x 是莲藕种植量,单位:万斤;销售额的单位:万元,a 是常数,若种植2万斤,利润是2.5万元,则要使利润最大,每年种植莲藕( )A .8万斤B .6万斤C .3万斤D .5万斤解析:选B 设销售利润为g (x ),得g (x )=-18x 3+916ax 2+12x -1-12x =-18x 3+916ax 2-1,当x =2时,g (2)=-18×23+916a ×22-1=2.5,解得a =2.所以g (x )=-18x 3+98x 2-1, g ′(x )=-38x 2+94x =-38x (x -6),所以函数g (x )在(0,6)上单调递增,在(6,8)上单调递减. 所以当x =6时,函数g (x )取得极大值即最大值.4.已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 2等于( ) A .23B .43C .83D .163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 2=(x 1+x 2)2-2x1x 2=4-43=83.5.(多选)函数y =f (x )导函数的图象如图所示,则下列选项正确的有( )A .(-1,3)为函数y =f (x )的递增区间B .(3,5)为函数y =f (x )的递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选ABD 由函数y =f (x )导函数的图象可知,f (x )的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f (x )在x =-1,5取得极小值,在x =3取得极大值,C 错误.故选A 、B 、D.6.(多选)若函数f (x )=2x 3-ax 2(a <0)在⎝ ⎛⎭⎪⎫a 2,a +63上有最大值,则a 的取值可能为( ) A .-6 B .-5 C .-4D .-3解析:选ABC 令f ′(x )=2x (3x -a )=0, 得x 1=0,x 2=a 3(a <0),当a3<x <0时,f ′(x )<0;当x <a3或x >0时,f ′(x )>0,则f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞),减区间为⎝ ⎛⎭⎪⎫a 3,0,从而f (x )在x =a3处取得极大值f ⎝ ⎛⎭⎪⎫a 3=-a327,由f (x )=-a327,得⎝ ⎛⎭⎪⎫x -a 32⎝⎛⎭⎪⎫2x +a 3=0,解得x =a3或x =-a 6,又f (x )在⎝ ⎛⎭⎪⎫a 2,a +63上有最大值, 所以a 3<a +63≤-a6,即a ≤-4,故选A 、B 、C .7.函数f (x )=12x 2+x -2ln x 的最小值为 .解析:因为f ′(x )=x +1-2x =错误!(x >0),所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )min =f (1)=12+1=32.答案:328.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 . 解析:若函数f (x )=x 3-2cx 2+x 有极值点, 则f ′(x )=3x 2-4cx +1=0有两个不等实根, 故Δ=(-4c )2-12>0, 解得c >32或c <-32.所以实数c 的取值范围为⎝ ⎛⎭⎪⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎪⎫32,+∞.答案:⎝ ⎛⎭⎪⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎪⎫32,+∞ 9.函数f (x )=(x 2-x -1)e x (其e =2.718…是自然对数的底数)的极值点是 ;极大值为 .解析:由已知得f ′(x )=(x 2-x -1+2x -1)e x =(x 2+x -2)e x =(x +2)(x -1)e x , 因为e x >0,令f ′(x )=0,可得x =-2或x =1,当x <-2时,f ′(x )>0,即函数f (x )在(-∞,-2)上单调递增; 当-2<x <1时,f ′(x )<0,即函数f (x )在区间(-2,1)上单调递减; 当x >1时,f ′(x )>0,即函数f (x )在区间(1,+∞)上单调递增. 故f (x )的极值点为-2或1,且极大值为f (-2)=5e2.答案:1或-25e210.已知函数f (x )=13x 3+mx 2+nx +2,其导函数f ′(x )为偶函数,f (1)=-23,则函数g (x )=f ′(x )e x 在区间[0,2]上的最小值为 .解析:由题意可得f ′(x )=x 2+2mx +n , ∵f ′(x )为偶函数,∴m =0,故 f (x )=13x 3+nx +2,∵f (1)=13+n +2=-23,∴n =-3.∴f (x )=13x 3-3x +2,则f ′(x )=x 2-3.故g (x )=e x (x 2-3),则g ′(x )=e x (x 2-3+2x )=e x (x -1)·(x +3),据此可知函数g (x )在区间[0,1)上单调递减,在区间(1,2]上单调递增,故函数g (x )的极小值,即最小值为g (1)=e 1·(12-3)=-2e.答案:-2e11.设函数f (x )=x 2+1-ln x . (1)求f (x )的单调区间;(2)求函数g (x )=f (x )-x 在区间⎣⎢⎡⎦⎥⎤12,2上的最小值.解:(1)易知f (x )的定义域为(0,+∞),f ′(x )=2x -1x ,由f ′(x )>0,得x >22,由f ′(x )<0,得0<x <22.∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎪⎫0,22,单调递增区间为⎝ ⎛⎭⎪⎪⎫22,+∞.(2)由题意知g (x )=x 2+1-ln x -x ,g ′(x )=2x -1x-1=错误!,由g ′(x )>0,得x >1,由g ′(x )≤0,得0<x ≤1,∴g (x )在⎣⎢⎡⎭⎪⎫12,1上单调递减,在(1,2]上单调递增,∴在⎣⎢⎡⎦⎥⎤12,2上,g (x )的最小值为g (1)=1.12.(2021·全国统一考试模拟演练)已知函数f (x )=e x -sin x -cos x ,g (x )=e x +sin x +cos x . (1)证明:当x >-5π4时,f (x )≥0;(2)若g (x )≥2+ax ,求a .解:(1)证明:∵f (x )=e x-sin x -cos x =e x-2sin ⎝ ⎛⎭⎪⎫x +π4,∴f ′(x )=e x-2cos ⎝ ⎛⎭⎪⎫x +π4(x ∈R ).画出y =e x和y =2cos ⎝ ⎛⎭⎪⎫x +π4的图象,由图可知,当x >-5π4时,存在-π2<x 1<-π4,使得f ′(x 1)=f ′(0)=0,∴当x ∈⎝ ⎛⎭⎪⎫-54π,x1时,f ′(x )>0,f (x )单调递增;当x ∈(x 1,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增;又∵f ⎝ ⎛⎭⎪⎫-54π=e -54π>0,f (0)=0,∴当x >-5π4时,f (x )min =f (0)=0.∴当x >-5π4时,f (x )≥0.(2)∵g (x )≥2+ax , ∴e x +sin x +cos x ≥2+ax , 即e x +sin x +cos x -2-ax ≥0.不妨设F (x )=e x +sin x +cos x -2-ax (x ∈R ),则F (x )≥0.求导可得F ′(x )=e x+2cos ⎝ ⎛⎭⎪⎫x +π4-a (x ∈R ).∵F (x )≥0,且F (0)=0,∴当x =0时,F (x )取最小值,F ′(x )取极小值. ∴F ′(0)=0,且当x >0时,F ′(x )>0, 当x <0时,F ′(x )<0,∴e 0+2cos π4-a =0,解得a =2.B 级——综合应用13.(多选)设函数f (x )=x +e|x|e|x|,则下列选项正确的是( )A .f (x )为奇函数B .f (x )的图象关于点(0,1)对称C .f (x )的最大值为1e +1D .f (x )的最小值为-1e+1解析:选BCD f (x )=xe|x|+1,不满足f (-x )=-f (x ),故A 项错误;令g (x )=xe|x|,则g (-x )=-xe|-x|=-xe|x|=-g (x ),所以g (x )为奇函数,则f (x )关于点(0,1)对称,B 项正确;设f (x )=xe|x|+1的最大值为M ,则g (x )的最大值为M -1,设f (x )=xe|x|+1的最小值为N ,则g (x )的最小值为N -1,当x >0时,g (x )=xex ,所以g ′(x )=1-xex ,当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以当0<x <1时,g (x )单调递增,当x >1时,g (x )单调递减,所以g (x )在x =1处取得最大值,最大值为g (1)=1e ,由于g (x )为奇函数,所以g (x )在x =-1处取得最小值,最小值为g (-1)=-1e ,所以f (x )的最大值为M =1e +1,最小值为N =-1e+1,故C 、D 项正确.故选B 、C 、D. 14.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值范围为 .解析:f ′(x )=3ax 2-3,当a ≤0时,对于x ∈[-1,1]总有f ′(x )<0,则f (x )在[-1,1]上为减函数, f (x )min =f (1)=a -2<0,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝ ⎛⎭⎪⎪⎫x +1a ⎝ ⎛⎭⎪⎪⎫x -1a , f (x )在[-1,1]上为减函数, f (x )min =f (1)=a -2<0,不合题意;当a >1时,f (x )在⎝ ⎛⎭⎪⎪⎫-1,-1a 和⎝ ⎛⎭⎪⎪⎫1a ,1上为增函数, 在⎝ ⎛⎭⎪⎪⎫-1a ,1a 上为减函数,所以有f (-1)=-a +4≥0,且f ⎝ ⎛⎭⎪⎪⎫1a =-2a +1≥0,解得a =4.综上所述,a =4. 答案:{4}15.已知函数f (x )=ax2+bx +c ex (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=错误! =错误!.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点, 所以有错误!解得a =1,b =5,c =5,所以f (x )=x2+5x +5ex .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.C 级——迁移创新16.若函数f (x )与g (x )满足:存在实数t ,使得f (t )=g ′(t ),则称函数g (x )为f (x )的“友导”函数.已知函数g (x )=-13x 3-3x +1为函数f (x )=2x ln x -ax 的“友导”函数,求a 的取值范围.解:由题意,得g ′(x )=-x 2-3.又由题意知g (x )=-13x 3-3x +1为函数f (x )=2x ln x -ax 的“友导”函数,所以方程2x lnx -ax =-x 2-3有解,即a =x +2ln x +3x 有解.令h (x )=x +2ln x +3x,则h ′(x )=1+2x -3x2=错误!,当0<x <1时,h ′(x )<0,函数h (x )单调递减;当x >1时,h ′(x )>0,函数h (x )单调递增,所以h (x )≥h (1)=4,所以由方程a =x +2ln x +3x 有解,可得a ≥4.故a 的取值范围为[4,+∞).。

2015届高考数学(理)二轮专题配套练习:专题2_第1讲_函数、基本初等函数的图象与性质(含答案)

2015届高考数学(理)二轮专题配套练习:专题2_第1讲_函数、基本初等函数的图象与性质(含答案)

第1讲 函数、基本初等函数的图象与性质考情解读 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下. 2.函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择、填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素 定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数,定义域和对应关系相同的两个函数是同一函数. 2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |. 3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换. 4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质.(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32的值等于________.思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5 B .-1 C .3 D .4(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为_________.热点二 函数的图象例2 (1)(2014·烟台质检)下列四个图象可能是函数y =10ln|x +1|x +1图象的是()(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系中的图象大致是( )(2)(2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性. 思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力. (2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么( )A .a a <a b <b aB .a b <a a <b aC .a a <b a <a bD .a b <b a <a a(2)已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y=f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a .(2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中.5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较.6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________.2.(2014·福建)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是()押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为()2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A .有最小值-1,最大值1 B .有最大值1,无最小值 C .有最小值-1,无最大值 D .有最大值-1,无最小值(推荐时间:40分钟)一、选择题1.下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( ) A .f (x )=12 B .f (x )=x 2-4x +4 C .f (x )=2x D .f (x )=log 12x2.(2014·浙江)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是()3.已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值等于( ) A.1lg 2 B .-1lg 2 C .lg 2 D .-lg 2 4.若a >b ,则下列不等式成立的是( )A .ln a >ln bB .0.3a>0.3bC .1122a b > D .3a >3b5.设偶函数f (x )满足f (x )=2x-4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 6.使log 2(-x )<x +1成立的x 的取值范围是( ) A .(-1,0) B .[-1,0) C .(-2,0) D .[-2,0)7.下列函数中,与函数f (x )=2x -1-12x 1的奇偶性、单调性均相同的是()A .y =e xB .y =ln(x +x 2+1)C .y =x 2D .y =tan x8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2]B .⎝⎛⎦⎤0,12C .⎣⎡⎦⎤12,2 D .(0,2] 二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧13e x (x ≥2)f (x +1)(x <2),则f (ln 3)=________.10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.12.已知定义在R 上的函数y =f (x )满足以下三个条件: ①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2); ③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论:①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________.例1 (1)(-1,3) (2)-14 变式训练1 (1)C (2)⎝⎛⎭⎫-2,23 例2 答案 (1)C (2)D 变式训练2 (1)C (2)D 例3 (1)C (2)D 变式训练3 (1)B (2)0 1.516 2.B 1.A 2.D 3.CCDDDB ABC9.e 10.{a |a ≤2} 11.-10 12.f (4.5)<f (7)<f (6.5) 13.①②③。

2015届高考数学(理)二轮专题配套练习:专题2_第3讲_导数及其应用(含答案)

2015届高考数学(理)二轮专题配套练习:专题2_第3讲_导数及其应用(含答案)
(1)定积分的性质:
①ʃkf(x)dx=kʃf(x)dx;
②ʃ[f1(x)±f2(x)]dx=ʃf1(x)dx±ʃf2(x)dx;
③ʃf中a<c<b).
(2)微积分基本定理:
一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃf(x)dx=F(b)-F(a).
思维启迪(1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A点坐标是解题的关键点,列方程求出.
思维升华(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
A.2B.4C.2 D.4
思维启迪(1)利用微积分基本定理先求出a,再求分段函数的函数值;(2)利用图形将所求面积化为定积分.
思维升华(1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数.
(2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.
(2)求导函数f′(x);
(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0.
②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.

2015高考数学函数拓展专题一函数的极值、最值问题(无答案)理

2015高考数学函数拓展专题一函数的极值、最值问题(无答案)理

专题一:函数的极值、最值问题一、知识要点归纳(1)函数中与极值以及最值相关的常见题型1.直接求极值或者最值问题这类题的一般思路为:利用导数分析单调性,结合导函数图象(或者决定导函数符号的函数图象)写出单调区间,求出极值、最值。

注:对于求导后含参数的函数,一定要具备分类讨论的意识,一般来讲求导后,① 若函数极值点是否存在不确定,则需要分析导函数()0f x '=有根或者无根的条件,说得通俗一点,就 是要找到导函数()0f x '=有根或无根时,参数满足的相应条件是什么,之后再以条件为标准进行分类讨论 ②若极值点与定义域的关系不确定(给定定义域与单调区间关系不确定),则需要分析极值点在定义域的条件,之后再由此得到一些条件作为标准进行分类讨论② 若定义域内极值点之间大小不确定,则需要分析极值点之间大小确定的条件,之后也由此得到一些条件作为标准进行分类讨论③ ④若求最值时,端点函数值、极值之间大小无法确定,则需要分析函数值与极值之间大小确定的条件,之后再以所得条件为标准进行分类讨论值得指出的是,一般这类分类讨论的大题,通常都会夹杂以上几种需要讨论的情况,为此我们需要掌握分类讨论本质,才能得心应手。

2.间接的求极值或者最值的问题这类题的一般思路为:把要解决的问题转化化归到函数极值或者最值问题。

常见的问题:① 恒成立、能成立问题这类问题往往涉及需要转化化归到最值问题。

② 不等式证明问题这类问题细分两小类问题:第一类:纯函数不等式的证明问题,例如在指定条件下证明()()f x g x >,这类问题需要先构造合理函数,再将函数不等式证明问题转化化归到恒成立问题,之后再转化为所构造的函数最值问题;对于不等式()()f x g x >恒成立的证明构造函数所用的技巧有:()()()h x f x g x =-、()()()f x h xg x =、或对不等式()()f x g x >作代数恒等变形后再构造函数。

高考数学导数与函数的极值、最值

高考数学导数与函数的极值、最值
课前基础巩固
0
[解析]结合函数g(x)图像(图略)可知g(x)=-x2的极值点是x=0.因为f'(x)=3(x-1)2≥0, f'(x)=0无变号零点,所以函数f(x)=(x-1)3不存在极值点.
不存在
5.函数g(x)=x2在[1,2]上的最小值和最大值分别是 ,在(1,2)上的最小值和最大值均 (填“存在”或“不存在”).
D
例3 (1)[2021·全国乙卷] 设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则( )A.a<b B.a>b C.ab<a2 D.ab>a2
课堂考点探究
方法二:因为x=a为函数f(x)的极大值点,且f(a)=0,f(b)=0,所以结合三次函数的图像知,当a>0时,y=f(x)的大致图像如图①,此时0<a<b,得a2<ab;当a<0时,y=f(x)的大致图像如图②,此时b<a<0,得a2<ab.综上可得a2<ab,故选D.
-1
[总结反思]求函数极值的一般步骤:①先求函数f(x)的定义域,再求函数f(x)的导函数;②求f'(x)=0的根;③判断在f'(x)=0的根的左、右两侧f'(x)的符号,确定极值点;④求出具体极值.
课堂考点探究
微点3 已知极值求参数例3 (1)[2021·全国乙卷] 设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则( )A.a<b B.a>b C.ab<a2 D.ab>a2
课前基础巩固
f(a)
f(b)
f(a)
f(b)
[常用结论]导数研究不等式的关键是函数的单调性和最值,各类不等式与函数最值的关系如下:

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值一、单项选择题1.(2021·浙江丽水联考)若函数f(x)=(x-a)3-3x+b的极大值是M,极小值是m,则M-m的值()A.与a有关,且与b有关B.与a有关,且与b无关C.与a无关,且与b无关D.与a无关,且与b有关2.(2021·山东青岛期末)若函数f(x)=x2-ax+ln x在区间(1,e)上单调递增,则实数a的取值范围是() A.[3,+∞) B.(-∞,3]C.[3,e2+1]D.[-e2+1,3],则下列关于函数f(x)的说法正确的是()3.(2021·陕西西安月考)已知函数f(x)=3xe xA.在区间(-∞,+∞)上单调递增B.在区间(-∞,1)上单调递减,无极小值C.有极大值3eD.有极小值3,无极大值e4.(2021·湖南岳阳期中)已知直线y=kx(k>0)和曲线f(x)=x-a ln x(a≠0)相切,则实数a的取值范围是()A.(-∞,0)∪(0,e)B.(0,e)C.(0,1)∪(1,e)D.(-∞,0)∪(1,e)5.(2021·湖北十堰二模)已知函数f(x)=2x3+3mx2+2nx+m2在x=1处有极小值,且极小值为6,则m=() A.5 B.3C.-2D.-2或56.(2021·四川成都二模)已知P是曲线y=-sin x(x∈[0,π])上的动点,点Q在直线x-2y-6=0上运动,则当|PQ|取最小值时,点P的横坐标为()A.π4B.π2C.2π3D.5π67.(2021·湖北荆门期末)已知曲线y=sinxe x+1(x≥0)的一条切线的斜率为1,则该切线的方程为()A.y=x-1B.y=xC.y=x+1D.y=x+2二、多项选择题8.(2021·广东湛江一模)已知函数f(x)=x3-3ln x-1,则()A.f(x)的极大值为0B.曲线y=f(x)在点(1,f(1))处的切线为x轴C.f(x)的最小值为0D.f(x)在定义域内单调9.(2021·山东淄博二模)已知e是自然对数的底数,则下列不等关系中错误的是()A.ln 2>2e B.ln 3<3eC.ln π>πe D.ln3ln π<3π10.(2021·辽宁沈阳二模)已知函数f(x)={2x+2,−2≤x≤1,lnx-1,1<x≤e,若关于x的方程f(x)=m恰有两个不同的根x1,x2(x1<x2),则(x2-x1)f(x2)的取值可能是()A.-3B.-1C.0D.2三、填空题11.(2021·福建三明二模)已知曲线y=ln x+ax与直线y=2x-1相切,则a=.12.(2021·江苏无锡月考)试写出实数a的一个取值范围,使函数f(x)=sinx-ae x有极值.13.(2021·四川成都月考)设函数f(x)=e x-2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是.四、解答题14.(2021·山东潍坊二模)已知函数f(x)=ax 2+bx+ce x的单调递增区间是[0,1],极大值是3e.(1)求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)若存在非零实数x0,使得f(x0)=1,求f(x)在区间(-∞,m](m>0)上的最小值.15.(2021·河北唐山期末)已知函数f(x)=a e x-x-1(a∈R),g(x)=x2.(1)讨论函数f(x)的单调性;(2)当a>0时,若曲线C1:y1=f(x)+x+1与曲线C2:y2=g(x)存在唯一的公切线,求实数a的值.16.(2021·浙江嘉兴月考)已知f(x)=a2ln x-1ax2-(a2-a)x(a≠0).2(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处取得极大值,求实数a的取值范围.答案及解析1.C解析因为f(x)=(x-a)3-3x+b,所以f'(x)=3(x-a)2-3,令f'(x)=3(x-a)2-3=0,得x=a-1或x=a+1,判断可得函数的极大值M=f(a-1)=-1-3(a-1)+b=2-3a+b,极小值m=f(a+1)=1-3(a+1)+b=-2-3a+b,因此M-m=4.故选C.2.B解析依题意f'(x)=2x-a+1x ≥0在区间(1,e)上恒成立,即a≤2x+1x在区间(1,e)上恒成立,令g(x)=2x+1x (1<x<e),则g'(x)=2-1x2=2x2-1x2=(√2x+1)(√2x-1)x2>0,所以g(x)在区间(1,e)上单调递增,而g(1)=3,所以a≤3,即实数a的取值范围是(-∞,3].故选B.3.C解析由题意得函数f(x)的定义域为R,f'(x)=3(1−x)e x.令f'(x)=0,得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,故f(1)是函数f(x)的极大值,也是最大值,且f(1)=3e,函数f(x)无极小值.故选C.4.A解析设直线y=kx(k>0)与曲线f(x)=x-a ln x(a≠0)相切于点P(x0,x0-a ln x0)(x0>0).由题意得,f'(x)=1-ax ,则以P为切点的切线方程为y-x0+a ln x0=1-ax0(x-x0),因为该切线过原点,所以-x0+a ln x0=1-ax0(-x0),因此ln x0=1,即x0=e,所以k=1-ae>0,得a<e,又a≠0,故实数a的取值范围是(-∞,0)∪(0,e).故选A.5.A解析f'(x)=6x2+6mx+2n.因为f(x)在x=1处有极小值,且极小值为6,所以{f'(1)=0, f(1)=6,即{6+6m+2n=0,2+3m+2n+m2=6,解得{m=5,n=−18或{m=−2,n=3.当m=5,n=-18时,f'(x)=6x2+30x-36=6(x+6)(x-1),则f(x)在区间(-∞,-6)上单调递增,在区间(-6,1)上单调递减,在区间(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=6.当m=-2,n=3时,f'(x )=6x 2-12x+6=6(x-1)2≥0, 则f (x )在R 上单调递增,f (x )无极值. 综上可得,m=5,n=-18. 6.C 解析 如图所示,要使|PQ|取得最小值,则曲线y=-sin x (x ∈[0,π])在点P 处的切线与直线x-2y-6=0平行,对函数y=-sin x 求导得y'=-cos x ,令y'=12,可得cos x=-12,由于0≤x ≤π,所以x=2π3.故选C . 7.C 解析 由题得y'=cosx·e x -sinx·e x(e x )2=cosx-sinxe x.设切点为(x 0,y 0)(x 0≥0),则y'|x=x 0=cos x 0-sin x 0e x 0,由y'|x=x 0=1,得e x 0=cos x 0-sin x 0.令f (x )=e x -cos x+sin x (x ≥0),则f'(x )=e x +sin x+cos x=e x +√2sin x+π4,当0≤x<1时,f'(x )>0,当x ≥1时,e x ≥e,√2sin (x +π4)≥-√2,f'(x )>0,所以∀x ≥0,f'(x )>0,所以f (x )在区间[0,+∞)上单调递增,则f (x )≥f (0)=0,所以方程e x 0=cos x 0-sin x 0只有一个实根x 0=0,所以y 0=sin0e 0+1=1,故切点为(0,1),切线斜率为1,所以切线方程为y=x+1.8.BC 解析 函数f (x )=x 3-3ln x-1的定义域为(0,+∞),f'(x )=3x 2-3x =3x (x 3-1).令f'(x )=3x (x 3-1)=0,得x=1,列表得:f (x ) 单调递减单调递增所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调,故C 正确,A,D 错误;对于B,由f (1)=0及f'(1)=0,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-0=0(x-1),即y=0,故B 正确,故选BC .9.ACD 解析 令f (x )=ln x-xe ,x>0,则f'(x )=1x −1e ,令f'(x )=0,得x=e,当0<x<e 时,f'(x )>0,当x>e 时,f'(x )<0,所以f (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,故f (x )max =f (e)=ln e -ee =0,则f (2)=ln 2-2e <0得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0得ln 3<3e ,故B 正确;f (π)=ln π-πe <0得ln π<πe ,故C 错误;对于D 项,令g (x )=lnx x,x>0,则g'(x )=1−lnx x 2,当0<x<e时,g'(x )>0,当x>e 时,g'(x )<0,所以g (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,则g (3)>g (π),得ln33>ln ππ,即ln3ln π>3π,故D 错误.故选ACD .10.BC 解析 画出函数f (x )的图象,如图,因为f (x )=m 的两根为x 1,x 2(x 1<x 2),所以x 1=m-22,x 2=e m+1,m ∈(-1,0],从而(x 2-x 1)·f (x 2)=e m+1-m-22m=m e m+1-m 22+m.令g (x )=x e x+1-12x 2+x ,x ∈(-1,0],则g'(x )=(x+1)e x+1-x+1.因为x ∈(-1,0],所以x+1>0,e x+1>e 0=1,-x+1>0, 所以g'(x )>0,从而g (x )在区间(-1,0]上单调递增.又g (0)=0,g (-1)=-52,所以g (x )∈-52,0,即(x 2-x 1)·f (x 2)的取值范围是-52,0,故选BC . 11.1 解析 由题意得函数y=ln x+ax 的定义域为x>0,y'=1x +a.设曲线y=ln x+ax 与直线y=2x-1相切于点P (x 0,y 0),可得1x 0+a=2,即ax 0=2x 0-1①,y 0=ln x 0+ax 0,y 0=2x 0-1,所以ln x 0+ax 0=2x 0-1②,联立①②,可得x 0=1,a=1. 12.(-√2,√2)(答案不唯一) 解析 f (x )=sinx-a e x的定义域为R ,f'(x )=cosx-sinx+ae x,由于函数f (x )=sinx-a e x有极值,所以f'(x )=cosx-sinx+ae x有变号零点,因此由cos x-sin x+a=0,即a=sin x-cosx=√2sin x-π4,可得a ∈(-√2,√2),答案只要为(-√2,√2)的子集都可以. 13.e 2-4 解析 f'(x )=e x -2.设切点为(t ,f (t )),则f (t )=e t -2t ,f'(t )=e t -2,所以切线方程为y-(e t -2t )=(e t -2)(x-t ),即y=(e t -2)x+e t (1-t ),所以a=e t -2,b=e t (1-t ),则2a+b=-4+3e t -t e t .令g (t )=-4+3e t -t e t ,则g'(t )=(2-t )e t .当t>2时,g'(t )<0,g (t )在区间(2,+∞)上单调递减;当t<2时,g'(t )>0,g (t )在区间(-∞,2)上单调递增,所以当t=2时,g (t )取最大值g (2)=-4+3e 2-2e 2=-4+e 2,即2a+b 的最大值为e 2-4. 14.解 (1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a-b)x+b-ce x.因为e x >0,所以f'(x )≥0的解集与-ax 2+(2a-b )x+b-c ≥0的解集相同,且同为[0,1].所以有{a>0,2a-ba=1,b-c-a=0,解得a=b=c.所以f(x)=a(x 2+x+1)e x(a>0),f'(x)=-ax2+axe x(a>0).因为a>0,所以当x<0或x>1时,f'(x)<0,函数f(x)单调递减,当0≤x≤1时,f'(x)≥0,函数f(x)单调递增,且f'(1)=0,所以f(x)在x=1处取得极大值,又由题知,极大值为3e,所以f(1)=3ae =3e,解得a=1,所以a=b=c=1.所以f(x)=x 2+x+1e x,f'(x)=-x2+xe x.所以f(-1)=1e-1=e,f'(-1)=-2e-1=-2e.所以曲线y=f(x)在点(-1,f(-1))处的切线方程为y-e=-2e(x+1),即y=-2e x-e.(2)由(1)知函数f(x)在区间(-∞,0)上单调递减,在区间(0,1)上单调递增,且f(0)=1e0=1, 所以满足f(x0)=1(x0≠0)的x0∈(1,+∞).所以当0<m≤x0时,由函数f(x)的单调性易知,f(x)在区间(-∞,m]上的最小值为f(0)=1;当m>x0时,f(m)<f(x0)=f(0)=1,f(x)在区间(-∞,m]上的最小值为f(m)=m 2+m+1 e m.综上所述,f(x)在区间(-∞,m]上的最小值为{1,0<m≤x0, m2+m+1e m,m>x0.15.解 (1)f'(x)=a e x-1.当a≤0时,f'(x)<0恒成立,f(x)在区间(-∞,+∞)上单调递减.当a>0时,由f'(x)=0,得x=-ln a.当x<-ln a时,f'(x)<0,f(x)单调递减;当x>-ln a时,f'(x)>0,f(x)单调递增.综上,当a ≤0时,f (x )在区间(-∞,+∞)上单调递减;当a>0时,f (x )在区间(-∞,-ln a )上单调递减,在区间(-ln a ,+∞)上单调递增.(2)因为曲线C 1:y 1=a e x 与曲线C 2:y 2=x 2存在唯一的公切线,设该公切线与曲线C 1,C 2分别切于点(x 1,a e x 1),(x 2,x 22),显然x 1≠x 2.由于y 1'=a e x,y 2'=2x ,所以a e x 1=2x 2=ae x 1-x 22x 1-x 2,因此2x 2x 1-2x 22=a e x 1−x 22=2x 2-x 22,所以2x 1x 2-x 22=2x 2,即x 2=2x 1-2.由于a>0,故x 2>0,从而x 2=2x 1-2>0,因此x 1>1.此时a=2x2e x 1=4(x 1-1)e x 1(x 1>1).设F (x )=4(x-1)e x(x>1),则问题等价于当x>1时,直线y=a 与曲线y=F (x )有且只有一个公共点.又F'(x )=4(2−x)e x,令F'(x )=0,解得x=2,所以F (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减.而F (2)=4e 2,F (1)=0,当x →+∞时,F (x )→0, 所以F (x )的值域为0,4e 2,故a=4e 2. 16.解 (1)由题意得,当a=1时,函数f (x )=ln x-12x 2,其定义域为(0,+∞),因此f'(x )=1x -x=1−x 2x.令f'(x )>0,即1-x 2>0,得0<x<1,所以f (x )在区间(0,1)上单调递增; 令f'(x )<0,即1-x 2<0,得x>1,所以f (x )在区间(1,+∞)上单调递减. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)由题意,函数f (x )=a 2ln x-12ax 2-(a 2-a )x (a ≠0)的定义域为(0,+∞),11且f'(x )=a 2x -ax-(a 2-a )=-a(x+a)(x-1)x .当a<0时,-a>0, ①若-1<a<0,令f'(x )>0,即(x+a )(x-1)>0,得x>1或0<x<-a ;令f'(x )<0,即(x+a )(x-1)<0,得-a<x<1,所以函数f (x )在区间(1,+∞),(0,-a )上单调递增,在区间(-a ,1)上单调递减.所以当x=1时,函数f (x )取得极小值,不符合题意.②若a=-1,可得f'(x )=(x-1)2x ≥0,此时函数f (x )在区间(0,+∞)上单调递增,函数f (x )无极值,不符合题意.③若a<-1,令f'(x )>0,即(x+a )(x-1)>0,得x>-a 或0<x<1,令f'(x )<0,即(x+a )(x-1)<0,得1<x<-a ,所以函数f (x )在区间(1,-a )上单调递减,在区间(0,1),(-a ,+∞)上单调递增,所以当x=1时,函数f (x )取得极大值,符合题意.当a>0时,-a<0.令f'(x )>0,即(x+a )(x-1)<0,得0<x<1;令f'(x )<0,即(x+a )(x-1)>0,得x>1,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,所以当x=1时,函数f (x )取得极大值,符合题意.综上可得,实数a 的取值范围是(-∞,-1)∪(0,+∞).。

高考数学知识点解析函数的极值与拐点

高考数学知识点解析函数的极值与拐点

高考数学知识点解析函数的极值与拐点高考数学知识点解析:函数的极值与拐点在高考数学中,函数的极值与拐点是一个重要的知识点,也是考试中经常出现的考点。

理解和掌握这两个概念对于解决函数相关的问题至关重要。

接下来,让我们深入探讨一下函数的极值与拐点。

一、函数的极值1、极值的定义函数的极值是指在函数定义域内的某个局部区域内,函数取得的最大值或最小值。

具体来说,如果在函数定义域内的某一点 x₀处,存在一个邻域,使得在这个邻域内,函数值都小于(或大于) f(x₀),那么f(x₀) 就是函数的一个极大值(或极小值)。

2、极值的判定(1)一阶导数判别法设函数 f(x) 在点 x₀处可导,且 x₀为函数的驻点(即 f'(x₀) =0)。

当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x₀) 为极大值。

当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x₀) 为极小值。

(2)二阶导数判别法设函数 f(x) 在点 x₀处二阶可导,且 f'(x₀) = 0,f''(x₀) ≠ 0。

若 f''(x₀) < 0,则 f(x₀) 为极大值;若 f''(x₀) > 0,则 f(x₀) 为极小值。

3、求极值的步骤(1)求出函数的导数 f'(x)。

(2)令 f'(x) = 0,求出驻点。

(3)根据一阶导数判别法或二阶导数判别法判断驻点是否为极值点,并求出极值。

例如,对于函数 f(x) = x³ 3x²+ 1,其导数为 f'(x) = 3x² 6x。

令f'(x) = 0,解得 x = 0 或 x = 2。

当 x < 0 时,f'(x) > 0;当 0 < x < 2 时,f'(x) < 0;当 x > 2 时,f'(x) > 0。

(完整版)高二数学函数的极值与最值试题

(完整版)高二数学函数的极值与最值试题

高二数学函数的极值与最值试题一:选择题1. 函数x ax x x f ++=23)(在),0(+∞内有两个极值点,则实数a 的取值范围是( ) A .),0(+∞ B .)3,3(- C .)0,(-∞ D .)3,(--∞【答案】D2.函数f (x )=x 2+x ﹣lnx 的极值点的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个解:由于函数f (x )=x 2+x ﹣lnx ,(x >0) 则==(x >0)令f ’(x )=0,则故函数f (x )=x 2+x ﹣lnx 的极值点的个数是1, 故答案为 B .3.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34C .38 D .316【答案】C4.函数12)(+⋅=x ex x f ,[]1,2-∈x 的最大值为( )A.14e -B.0C. 2eD. 23e 【答案】C5.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是( ) A. (-1,1) B. (0,1) C. (-1,0) D. (-2,-1)【答案】A6.右图是函数()y f x =的导函数()y f x '=的图象,xyO 1-2-3-1给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.则正确命题的序号是( )A.①②B.①④C.②③D.②④ 【答案】B7.(2008•广东)设a ∈R ,若函数y=e ax +3x ,x ∈R 有大于零的极值点,则( ) A . a >﹣3 B . a <﹣3 C . a >﹣ D .a <﹣ 解:设f (x )=e ax +3x ,则f ′(x )=3+ae ax .若函数在x ∈R 上有大于零的极值点. 即f ′(x )=3+ae ax =0有正根.当有f ′(x )=3+ae ax =0成立时,显然有a <0, 此时x=ln (﹣).由x >0,得参数a 的范围为a <﹣3. 故选B .8.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21xe x x ++„ 2111241x x x<-++(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C9.已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围为( )A. 2(,2)2 B.1(,4)2C. (1,2)D.(1,4) 【答案】B10.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.11.(2012•昌图县模拟)下列关于函数f (x )=(2x ﹣x 2)e x 的判断正确的是( ) ①f (x )>0的解集是{x|0<x <2};②f (﹣)是极小值,f ()是极大值; ③f (x )没有最小值,也没有最大值.A . ①③B . ①②③C . ②D . ①② 解:由f (x )>0⇒(2x ﹣x 2)e x >0⇒2x ﹣x 2>0⇒0<x <2,故①正确; f ′(x )=e x (2﹣x 2),由f ′(x )=0得x=±, 由f ′(x )<0得x >或x <﹣, 由f ′(x )>0得﹣<x <,∴f (x )的单调减区间为(﹣∞,﹣),(,+∞).单调增区间为(﹣,).∴f (x )的极大值为f (),极小值为f (﹣),故②正确. ∵x <﹣时,f (x )<0恒成立.∴f (x )无最小值,但有最大值f () ∴③不正确. 故选D .12.(2010•安庆模拟)如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A . B .C .D .解:由题意f ′(x )=x 2﹣a 2当a 2≥1时,在x ∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f (0)=0,最小值为f (1)=﹣a 2,故有,解得|a|≤,故可得1≤a ≤当a 2∈[0,1],由导数知函数在[0,a ]上增,在[a ,1]上减,故最大值为f (a )=又f(0)=0,矛盾,a ∈[0,1]不成立, 故选A .二:填空题13.函数322()f x x ax bx a =+++在1x =时有极值10,那么,a b 的值分别为________. 【答案】4,-11 14.已知函数f (x) 的导数f ′(x)=a(x +1)(x -a),若f (x)在x =a 处取得极大值,则a 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16 函数的极值与最值1.(2014·课标全国Ⅱ改编)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则p 是q 的________条件. 答案 必要不充分解析 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点, 比如,y =x 3在x =0时,f ′(0)=0, 但在x =0的左右两侧f ′(x )的符号相同, 因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件.2.(2013·辽宁改编)设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )极值情况为________.答案 无极大值也无极小值解析 由x 2f ′(x )+2xf (x )=e x x,得f ′(x )=e x -2x 2f (x )x 3,令g (x )=e x -2x 2f (x ),x >0,则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x-2·e x x =(x -2)e xx .令g ′(x )=0,得x =2.当x >2时,g ′(x )>0;当0<x <2时,g ′(x )<0, ∴g (x )在x =2时有最小值g (2)=e 2-8f (2)=0, 从而当x >0时,f ′(x )≥0, 则f (x )在(0,+∞)上是增函数, ∴函数f (x )无极大值,也无极小值.3.已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足.4.设变量a ,b 满足约束条件⎩⎪⎨⎪⎧b ≥a ,a +3b ≤4,a ≥-2.z =|a -3b |的最大值为m ,则函数f (x )=13x 3-m16x 2-2x +2的极小值为________.答案 -43解析 据线性规划可得(a -3b )min =-8, (a -3b )max =-2,故2≤|a -3b |≤8,即m =8,此时f ′(x )=x 2-x -2=(x -2)·(x +1), 可得当x ≤-1时f ′(x )>0,当-1<x <2时f ′(x )<0,当x ≥2时f ′(x )>0, 故当x =2时函数取得极小值,即f (x )极小值=f (2)=-43.5.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是________. 答案 [3,12]解析 方法一 由于f ′(x )=3x 2+4bx +c , 据题意方程3x 2+4bx +c =0有两个根x 1,x 2, 且x 1∈[-2,-1],x 2∈[1,2], 令g (x )=3x 2+4bx +c ,结合二次函数图象可得只需⎩⎪⎨⎪⎧g (-2)=12-8b +c ≥0,g (-1)=3-4b +c ≤0,g (1)=3+4b +c ≤0,g (2)=12+8b +c ≥0,此即为关于点(b ,c )的线性约束条件,作出其对应平面区域,f (-1)=2b -c ,问题转化为在上述线性约束条件下确定目标函数f (-1)=2b -c 的最值问题,由线性规划易知3≤f (-1)≤12.方法二 方程3x 2+4bx +c =0有两个根x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2]的条件也可以通过二分法处理,即只需g (-2)g (-1)≤0,g (2)g (1)≤0即可,利用同样的方法也可解答. 6.已知函数f (x )的导数为f ′(x )=x 2-x ,则当x =________时,函数f (x )取得极大值. 答案 0解析 当x <0或x >1时,f ′(x )>0; 当0<x <1时,f ′(x )<0.所以当x =0时,函数f (x )取得极大值.7.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________. 答案 0<a <1解析 ∵y ′=3x 2-3a ,令y ′=0, 可得a =x 2.又∵x ∈(0,1),∴0<a <1.8.函数f (x )=x 3+3ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是________. 答案 a >2或a <-1解析 f ′(x )=3x 2+6ax +3(a +2),令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. 因为函数f (x )有极大值又有极小值,所以方程x 2+2ax +a +2=0有两个不相等的实根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.9.若函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________________.答案 0<t <1或2<t <3解析 对f (x )求导,得f ′(x )=-x +4-3x=-x 2+4x -3x =-(x -1)(x -3)x .由f ′(x )=0得函数f (x )的两个极值点为1,3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调,所以t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 10.设函数f (x )=e x -ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.所以,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)由于a =1时,(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于 k <x +1e x -1+x (x >0).① 令g (x )=x +1e x -1+x ,则g ′(x )=-x e x -1(e x -1)2+1=e x (e x -x -2)(e x -1)2.由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增, 又h (1)=e -3<0,h (2)=e 2-4>0. 所以h (x )在(0,+∞)上存在唯一零点. 故g ′(x )在(0,+∞)上存在唯一零点. 设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0, 所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.11.(2014·天津)已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围. 解 (1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a .当x所以f (x )的单调递增区间是(0,1a );单调递减区间是(-∞,0),(1a,+∞).当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f (1a )=13a2.(2)由f (0)=f (32a )=0及(1)知,当x ∈(0,32a )时,f (x )>0;当x ∈(32a,+∞)时,f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B ={1f (x )|x ∈(1,+∞),f (x )≠0},则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f (32a)=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B .所以A ⊆B . ③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =(1f (1),0),A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是[34,32].12.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x) =x e x -2e xx 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,得x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点, 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为(e ,e 22).。

相关文档
最新文档