题——数学(上海卷)+Word版含答案

合集下载

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。

1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。

1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。

答案:a = 3,b = 7。

2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。

答案:a的值为3。

2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。

答案:m的值为2,n的值为1。

2.3. 题目:若x的值满足|x + 3| = 5,求x的值。

答案:x的值为-8或2。

3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。

- 10和15的最小公倍数为30。

- 12和18的最小公倍数为36。

最大公约数:- 3和6的最大公约数为3。

- 10和15的最大公约数为5。

- 12和18的最大公约数为6。

3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。

答案:两条平行线之间的夹角为0°。

3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。

答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。

以上为2023年上海市数学中考试题及答案,仅供参考。

2017年上海高考数学真题试卷(word解析版)

 2017年上海高考数学真题试卷(word解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一.填空题目(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知集合{1,2,3,4}A ,集合{3,4,5}B ,则A B ∩2.若排列数6654m P ,则m3.不等式11x x 的解集为4.已知球的体积为36 ,则该球主视图的面积等于5.已知复数z 满足30z z,则||z6.设双曲线22219x y b(0)b 的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF ,则2||PF7.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为8.定义在(0,) 上的函数()y f x 的反函数为1()y f x ,若31,0()(),0x x g x f x x为奇函数,则1()2f x 的解为9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10.已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b的项是互不相等的正整数,若对于任意*n N ,{}n b 的第na 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b11.设1a 、2a R ,且121122sin 2sin(2) ,则12|10| 的最小值等于12.如图,用35个单位正方形拼成一个矩形,点1P、2P 、3P 、4P 以及四个标记为“”的点在正方形的顶点处,设集合1234{,,,}P P P P ,点P ,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()()P P D l D l ,则 中所有这样的P 为二.选择题目(本大题共4题,每题5分,共20分)13.关于x 、y 的二元一次方程组50234x y x y的系数行列式D 为()A.0543 B.1024 C.1523 D.605414.在数列{}n a 中,1(2nn a ,*n N ,则lim n n a ()A.等于12B.等于0C.等于12D.不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N ,则“存在*k N ,使得100kx 、200kx 、300kx 成等差数列”的一个必要条件是()A.0aB.0b C.0c D.20a b c 16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C 和222:19y C x .P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ的最大值.记{(,)|P Q P 在1C 上,Q 在2C 上,且}OP OQ w,则 中元素个数为()A.2个B.4个C.8个D.无穷个三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,直三棱柱111ABC A B C 的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C 的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18.已知函数221()cos sin 2f x x x,(0,)x .(1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A所对边a ,角B 所对边5b ,若()0f A ,求△ABC 的面积.19.根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.在平面直角坐标系xOy 中,已知椭圆22:14x y ,A 为 的上顶点,P 为 上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP ,求P的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP ,直线AQ 与 交于另一点C ,且2AQ AC ,4PQ PM ,求直线AQ 的方程.21.设定义在R 上的函数()f x 满足:对于任意的1x 、2x R ,当12x x 时,都有12()()f x f x .(1)若3()1f x ax ,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x .证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一、填空题目(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合1,2,3,4,3,4,5A B ,则A B ∩.【解析】本题考查集合的运算,交集,属于基础题【答案】3,42.若排列数6P 654m ,则m .【解析】本题考查排列的计算,属于基础题【答案】33.不等式11x x 的解集为.【解析】本题考查分式不等式的解法,属于基础题【答案】,0 4.已知球的体积为36 ,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ,所以29S R ,属于基础题【答案】95.已知复数z 满足30z z,则z .【解析】本题考查复数的四则运算和复数的模,2303z z z设z a bi ,则22230,a b abi a b,z【答案】6.设双曲线 222109x y b b 的焦点为12F F 、,P为该双曲线上的一点.若15PF ,则2PF.【解析】本题考查双曲线的定义和性质,1226PF PF a (舍),2122611PF PF a PF 【答案】117.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC,,,,,,,属于基础题【答案】(432) ,,8.定义在(0,) 上的函数()y f x 的反函数-1()y f x .若31,0,()(),0x x g x f x x 为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x,所以1()13x f x,当2x 时,8()9f x,所以18(29f【答案】9x9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题总的情况有:42C 6种,符合题意的就两种:①和③,①和④【答案】1310.已知数列na 和 nb ,其中2,N na n n , nb 的项是互不相等的正整数.若对于任意N n n b ,中的第n a 项等于 n a 中的第n b 项,则149161234lg lg b b b b b b b b.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b ,所以214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b 【答案】211.设12R ,,且121122sin 2sin(2) ,则1210 的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3,,要使121122sin 2sin(2) ,则111122221=122sin 2,,1=12sin(2)4k k k Z k1212min min31010(2)44k k,当122=11k k 时成立【答案】412.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合1234=,,,P P P P ,点P .过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则 中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。

2010年高考数学上海(理)(word版含答案)

2010年高考数学上海(理)(word版含答案)
为 aij (i,j 1 , 2, ,n) .当 n 9 时, a11 a22 a33 a99
*

11.将直线 l2 : nx y n 0 、 l3 : x ny n 0 ( n N ) 、 x 轴、 y 轴围成的封闭图形 的面积记为 Sn ,则 lim S n
*
(1)证明: an 1 是等比数列; (2)求数列 Sn 的通项公式,并指出 n 为何值时, S n 取得最小值,并说明理由.
21. (本题满分 13 分)本题共有 2 个小题,第 1 小题满分 5 分,第 2 小题满分 8 分. 如图所示,为了制作一个圆柱形灯笼,先要制作 4 个全等的矩形骨架,总计耗用 9.6 米 铁丝,骨架将圆柱底面 8 等分,再用 S 平方米塑料片制成圆柱的侧面和下底面(不安装 上底面) . (1)当圆柱底面半径 r 取何值时, S 取得最大值?并求出该最大值(结果精确到 0.01 平方米) ; (2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯,当灯笼的底面半径为 0.3 米时, 求图中两根直线 A1 B3 与 A3 B5 所在异面直线所成角的大小 (结果用反三角函数值 表示) . B1 B2 B3 B4 B8 B7 B6 B5
(A)充分不必要条件 (C)充要条件 16.直线 l 的参数方程是 (A) (1,2)
x 1 2t (t R) ,则 l 的方向向量 d 可以是 y 2 t
(B) (2,1)
1
(C) ( 2 ,1)
(D) (1, 2 )
1 x 17.若 x0 是方程 ( ) x 3 的解,则 x0 属于区间 2
2 x 0 的解集为 x4
. .
2.若复数 z 1 2i (i 为虚数单位) ,则 z z z

上海市高一上学期期中考试数学试卷含答案(word版)

上海市高一上学期期中考试数学试卷含答案(word版)

上海市高一上学期期中考试数学卷一、填空题(本大题满分40分)本大题共有10小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B ⋃=_____.2.2log (21)x -有意义x 的取值范围是________.3.已知,x y R +∈,且满足341x y +=,则xy 的最大值为_________.4.用有理指数幂的形式表示:3a a =_______. 5.函数20192020x y a +=+(其中a 为常数且0,1a a >≠)的图像恒过定点_________.6.已知关于x 的一元二次方程20x px p ++=的两个实数根分别为,αβ,且223αβ+=,则实数p =____.7.已知3log 7a =,7log 4b =,用a 、b 表示7log 42为______.8.如果幂函数()22279919m m y m m x --=-+图像不经过原点,则实数m =__________.9.已知等式(2)(12)430x m x n x ++-+-=对x R ∈恒成立,则m n +=_______.10.若关于x 的不等式()24(4)0kx k x ---<有且只有一个整数解,则实数k 的取值范围是________. 二、选择题(本大题共有4题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号的空格内填入代表答案的序号,选对得3分,否则一律得零分.11.已知0a b <<,则2222a b a b +-和a b a b+-的大小关系是( ) A .2222a b a b a b a b ++>-- B .2222a b a b a b a b ++<-- C .2222a b a b a b a b ++≥-- D .2222a b a b a b a b++≤-- 12.下图表示图形阴影部分的是( )A .()ABC ⋂⋃ B .()A B C ⋂⋃ C .()A B C ⋃⋃D .()A B C ⋃⋂13.设a 为非零实数,则“1a >”是“11a<”的什么条件?( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不是充分条件也不是必要条件14.非空集合A 具有下列性质:①若,x y A ∈,则x A y ∈;②若,x y A ∈,则x y A +∈,下列判断一定成立的是( )(1)1A -∉(2)20202021A ∈(3)若,x y A ∈,则xy A ∈(4)若,x y A ∈,则x y A -∉ A .(1)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4)三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.15.(本题满分8分)(1)若关于x 的不等式2(1)40x k x +-+>的解集为R ,求k 的取值范围;(2)若关于x 的不等式|1||1|x x m +-->对任意实数x 恒成立,求m 的取值范围.16.(本题满分8分)若,,,a b c d R ∈,且2()ac b d =+,求证:一元二次方程20x ax b ++=和20x cx d ++=中至少有一个方程有实根.17.(本题满分8分) 已知集合{23}A x x x =-≤,集合{1}B x ax =>,若A B ⋂=∅,求实数a 的取值范围.18.(本题满分10分)本题共有2个小题,第1小题满分6分,第2小题满分4分.运货卡车以每小时x 千米的速度匀速行驶300千米,按交通法规限制50100x ≤≤(单位:千米/小时),假设柴油的价格是每升6元,而汽车每小时耗油24420x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时46元. (1)求这次行车总费用y 关于x 的表达式(总费用为油费与司机工资的总和);(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.19.(本题满分14分)本题共有4个小题,第1小题满分2分,第2小题满分5分,第3小题满分3分,第4小题满分4分.设函数1||1 yx=-(1)求定义域D;(2)在下图平面直角坐标系中画出函数的图像;(3)试说明函数关于y轴对称;(4)解不等式1||1xx>-.参考答案一、填空题(本大题满分40分)本大题共有10小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.【答案】:{1,2,3,4,6,8} 2.【答案】:1,2⎛⎫+∞⎪⎝⎭3.【答案】:148 4.【答案】:12a 5.【答案】:(2019,2021)- 6.【答案】:1-7.【答案】:112b a ++ 8.【答案】:39.【答案】:3- 10.【答案】:[3(4,3-⋃+二、选择题(本大题共有4题,满分1分)每题有且只有一个正确答案,考生应在答题纸的相应编号的空格内填入代表答案的序号,选对得3分,否则一律得零分.11.B 12.A 13.A 14.C三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应编号的规定区域内写岀必要的步骤.15.【答案】:(1)∵2(1)40x k x +-+>的解集为R ,2(1)160k ∆=--<,解得35k -<<,故k 的取值范围的是(3,5)-(2)根据三角不等式可得|1||2||12||1|x x x ++-≥+-=-,当且仅当10x +≤,即1x ≤-,等号成立. 所以|1||1|2x x +--≥-,因为|1||1|x x m +-->对任意实数x 恒成立,所以2m <-,故m 的取值范围是(,2)-∞-.16.【答案】:证明:假设一元二次方程20x ax b ++=和20x cx d ++=都没有实根设20x ax b ++=的判别式为1∆,20x cx d ++=的判别式为2∆,则2140a b ∆=-<,2240c d ∆=-<,则22440a b c d -+-<,即2244a c b d +<+根据基本不等式222a c ac +≥,所以22244ac a c b d ≤+<+,即2()ac b d <+,与题设2()ac b d =+矛盾,故假设不成立,即一元二次方程20x ax b ++=和20x cx d ++=中至少有一个方程有实根.17.【答案】: |23|2313x x x x x x -≤⇒-≤-≤⇒≤≤,故{3}[1,3]A x x x =-≤=若0a =,B =∅,满足A B ⋂=∅若0a <,1,B a ⎛⎫=-∞ ⎪⎝⎭,满足A B ⋂=∅; 若0a >,1,B a ⎛⎫=+∞ ⎪⎝⎭,则13a ≥,即13a ≤,所以103a <≤ 综上,实数a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦. 18.【答案】(1)设行车所用的时间为t ,则300t x=小时,行车总费用为y ; 根据行车总费用=耗费柴油的费用+司机的工资,可得:23003006446,50100420x y x x x ⎛⎫=⋅⋅++⋅≤≤ ⎪⎝⎭ 化简整理可得,2100030,501007x y x x =+≤≤ 故这次行车总费用y 关于x 的表达式为:2100030,501007x y x x =+≤≤ (2)由(1)可知,2100030,501007x y x x =+≤≤∴2300600y ≥=⨯=,当且仅当21000307x x =,即70x =时取“=”, 故当70x =时,这次行车的总费用最低为600元.19.【答案】:(1)根据题意得||10x -≠,所以(,1)(1,1)(1,)D =-∞-⋃-⋃+∞(2)(3)若()00,x y 在图像上,则关于y 轴对称点()00,x y -,也符合函数解析式,故也在图像上.(4)若1x >时,11x x >-,即210x x --<1515x -+<<,所以151x +<< 若11x -<<,11||1x ≤--,则1||1x x ≤-恒成立,所以1||1x x >-无解, 若1x <-,10||1x >-,则1||1x x <-恒成立,所以成立, 综上,1||1x x >-的解集是15(,1)1,2⎛+-∞-⋃ ⎝⎭.。

_第10章 分式 单元测试卷 2021-2022学年七年级数学沪教版(上海)上册(word 含答案)

_第10章 分式 单元测试卷 2021-2022学年七年级数学沪教版(上海)上册(word 含答案)

2021-2022学年沪教新版七年级上册数学《第10章分式》单元测试卷一.选择题1.下列各式:,其中分式共有()A.1个B.2个C.3个D.4个2.若分式无意义,则x的值为()A.3B.﹣3C.3或﹣3D.93.下列式子是分式的是()A.B.C.D.1+x4.下列式子:①,②,③,④,其中是分式的有()A.2个B.3个C.4个D.5个5.下列各式,,,,(x﹣y),中,分式的个数共有()A.2个B.3个C.4个D.5个6.能使分式的值为零的所有x的值是()A.x=2B.x=﹣2C.x=2或x=﹣2D.x=07.下列约分正确的是()A.B.C.D.8.当分式的值为0时,x的值为()A.0B.2C.0或2D.9.如果把分式中的x和y都扩大3倍,那么分式的值是()A.扩大3倍B.不变C.缩小3倍D.缩小6倍10.下列运算中正确的是()A.B.C.D.二.填空题11.已知,用x的代数式表示y,则y=.12.写出一个含有字母m,且m≠2的分式,这个分式可以是.13.下列各式:(1﹣x),,,+x,,其中是分式的有个.14.如果分式的值为0,则x的值是.15.下列各式:①;②;③;④;⑤;⑥;⑦﹣3x2,是分式的有,是整式的有.(只填序号)16.在有理式:﹣3x、、、、、中,分式有.17.使分式有意义的x的取值范围.18.已知m﹣n=2018,n﹣p=﹣2019,p﹣q=2021,则的值是.19.若把分式中的字母x和y同时增加3倍,分式的值将.20.约分:=;=.三.解答题21.当x为何值时,分式的值为0?22.当m为何值时,分式的值为0?23.当x取什么值时,下列各式的值等于零?(1);(2);(3).24.是否存在x的值,使得当a=4时,分式的值为0?25.已知,求的值.参考答案与试题解析一.选择题1.解:由题可得,分式有:,共1个,故选:A.2.解:∵分式无意义,∴x2﹣9=0,∴x=3且﹣3,故选:C.3.解:A.属于整式,不合题意;B.属于整式,不合题意;C.属于分式,符合题意;D.1+x属于整式,不合题意;故选:C.4.解:由题可得,属于分式的式子为:,,,共3个,故选:B.5.解:由题可得,是分式的有:,,(x﹣y),,共4个,故选:C.6.解:由题意得,解得x=﹣2.故选:B.7.解:A.=1,故本选项错误;B.=x4,故本选项错误;C.=,故本选项错误;D.,故本选项正确;故选:D.8.解:∵分式值为0,∴2x=0,解得:x=0.故选:A.9.解:∵如果把分式中的x和y都扩大了3倍,xy扩大到原来的9倍,x+y扩大的到原来的3倍,∴分式的值扩大3倍.故选:A.10.解:A、=x3,原计算错误,故此选项不符合题意;B、的分子分母没有公因式,不能约分,原计算错误,故此选项不符合题意;C、的分子分母没有公因式,不能约分,原计算错误,故此选项不符合题意;D、==,原计算正确,故此选项符合题意,故选:D.二.填空题11.解:xy﹣x=2y+1,(x﹣2)y=x+1y=,故答案为:.12.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).13.解:(1﹣x),是多项式,属于整式;,是单项式,属于整式;,是多项式,属于整式;分式有+x,,共2个.故答案为:2.14.解:由题意得,x(x﹣2)=0,x﹣2≠0,解得,x=0,故答案为:0.15.解:②;④;⑦﹣3x2的分母中均不含有字母,因此它们是整式,而不是分式.①;③﹣;⑤;⑥分母中含有字母,因此是分式.故答案是:①、③、⑤、⑥,②、④、⑦.16.解:﹣3x、、、中,的分母中均不含有字母,因此它们是整式,而不是分式.、的分母中含有字母,因此是分式.故答案是:、.17.解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.18.解:m﹣n=2018①,n﹣p=﹣2019②,p﹣q=2021③,①+②得:m﹣p=﹣1②+③得:n﹣q=2④①+④得:m﹣q=2020所以原式==﹣.故答案为﹣.19.解:中的字母x和y同时增加3倍,,故答案为:缩小.20.解:=;==;故答案为:,.三.解答题21.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.22.解:由题意得,m2﹣4=0,m2﹣m﹣6≠0,解得,m=2,则当m=2时,此分式的值为零.23.解:(1)由题意得,3x﹣1=0,2x+5≠0,解得,x=,则当x=时,此分式的值为零.(2)由题意得,x+2=0,解得,x=﹣2,则当x=﹣2时,此分式的值为零.(3)由题意得,|x|﹣2=0,x+2≠0,解得,x=2,则当x=2时,此分式的值为零.24.解:a=4时,a﹣x=4﹣x=0,x=4,a2﹣x2=42﹣42=0,分式无意义,∴不存在x的值,得当a=4时,分式的值为0.25.解:∵=,∴x≠0.x+=3,x2+2+=9,∴x2+=7.∴=x2+1+=8,∴=.。

2018年高考真题——文科数学(上海卷)+word版含答案

2018年高考真题——文科数学(上海卷)+word版含答案

2018年普通高等学校招生全国统一考试(上海卷)数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示)4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______ 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim 2n n a →∞+=,则q=____________ 11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________ 12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,的最大值为__________ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2 (B )2此卷只装订不密封 班级姓名准考证号考场号座位号(C)2(D)414.已知a R∈,则“1a﹥”是“1a1﹤”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()(A)4(B)8(C)12(D)16定16.设D是含数1的有限实数集,f x()是义在D上的函数,若f x()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f()的可能取值只能是()(A(B(C(D)0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a R∈,函数f x()22?asin x cos x=+(1)若f x()为偶函数,求a的值;(2)若4fπ〔〕1=,求方程1f x=()ππ-[,]上的解。

(真题)2019年上海市中考数学试卷(Word版)

(真题)2019年上海市中考数学试卷(Word版)

中考数学试卷 一、选择题(本大题共6题,每小题4分,共24分)1.下计算18–2的结果是(A) 4 (B) 3 (C) 22 (D) 22.下圳对一元二次方程x 2+x –3=0根的情况的判斯,正确的是(A)有两个不村等的实数根(B)有两个相等的实数根(C)有且只有一个实数根(D)没有实数根3.下列对次函数y= x 2–x 的图像的描述,正的是(A)开口向下(B)对称轴是y 物(C)经过原点(D)在对称轴右側部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是 27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是(A)25和30(B)25和29(C)28和30(D)28和295.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(A)∠A=∠B(B)∠A=∠C(C)AC=BD(D)AB⊥BC6.如图1,已知∠POQ=30°,点A 、B 在射线OQ :(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是(A) 5<OB<9(B) (B) 4<OB<9(C) (C)3<OB<7(D) (D) 2<OB<7二、填空题:(本大题共12题,每题4分,满分48分)7.–8的立方根是_______.8.计算:(a+1)2–a 2=_______.9.方程组⎩⎨⎧=+=-202y x y x 的解是_______.10.某商品原价为a 元,如果按原价的八折销售,那么售价是_______元.(用含母a 的代数式表示)11.已知反比例函数xk y 1-=(k 是常数,k≠1)的图像 有一支在第二象限,那么k 的取值范围是_______.12.某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额 的频数分布直方图如图2所示,那么20–30元这个小组的组频率是_______.13.从72,π,3这三个数中任选一个数,选出的这个数是无理数的概率为_______.14.如果一次函数y=kx+3〔k是常数,k≠0)的图像经过点(1,0),那么y的值随x 的增大而_______.(填“增大”或“减小”)15.如图3,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设DA=a,Dc=b,那么向量DF用可量a、b表示为_______.16.通过面出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是_______.17.如图4,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_______.18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图6,菱形ABCD的边长为1,边AB水平放置。

2023年上海市秋考高考数学试卷(精校Word版含答案)

2023年上海市秋考高考数学试卷(精校Word版含答案)

2023年上海市秋考高考数学试卷(精校Word版含答案)题目一题目描述请计算下列方程的解:$$2x - 5 = 10$$解答将方程两边加上5,得到$$2x = 15$$。

再将方程两边除以2,得到$$x = 7.5$$。

题目二题目描述已知函数$$f(x) = 3x^2 + 4x - 1$$,求函数的极值点和极值。

解答首先,求导函数$$f'(x)$$,得到$$f'(x) = 6x + 4$$。

令$$f'(x) = 0$$,解得$$x = -\frac{2}{3}$$。

将$$x = -\frac{2}{3}$$代入原函数$$f(x)$$,得到$$f\left(-\frac{2}{3}\right) = -\frac{23}{3}$$。

因此,函数$$f(x)$$的极值点为$$x = -\frac{2}{3}$$,极值为$$-\frac{23}{3}$$。

题目三题目描述已知等差数列的前5项和为20,公差为3,求这个等差数列的前10项和。

解答设等差数列的首项为$$a$$,公差为$$d$$,则等差数列的前5项和为$$S_5 = \frac{5}{2}[2a + (5-1)d]$$。

代入已知条件得到$$20 = \frac{5}{2}[2a + (5-1)3]$$。

解得$$a = -\frac{13}{5}$$。

等差数列的前10项和为$$S_{10} = \frac{10}{2}[2a + (10-1)d] = \frac{10}{2}[2\left(-\frac{13}{5}\right) + (10-1)3]$$。

计算得到$$S_{10} = 155$$。

题目四题目描述已知函数$$f(x) = \frac{1}{x}$$,求函数的反函数。

解答反函数即为将$$f(x)$$中的$$x$$和$$f(x)$$互换得到的函数。

因此,函数$$f(x)$$的反函数为$$f^{-1}(x) = \frac{1}{x}$$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于 任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B. 1024C. 1523D. 605414. 在数列{}n a 中,1()2nn a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC = ,4PQ PM =,求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B = 【解析】{3,4}A B =2. 若排列数6654mP =⨯⨯,则m =【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于【解析】3436393r r S πππ=⇒=⇒=5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2nn a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ== 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos 22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC = ,4PQ PM =,求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒= 或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM = ,∴003(,3)2Q x y --,∵2AQ AC = ,∴00133(,)42y C x --,代入并联立椭圆方程,解得0x =,019y =-,∴1()3Q ,∴直线AQ 的方程为1y =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。

相关文档
最新文档