2015年5年级“希望杯”初赛试题答案

合集下载

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、以下每题6分,共120分1.(6分)计算:=.2.(6分)9个13相乘,积的个位数字是.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有个.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是厘米.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有个.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是平方米.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是.(π取3.14)9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要个小正方体.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有个.13.(6分)两位数和都是质数,则有个.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e=.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体个.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是个.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有盏.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在岁.2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:=890.【分析】根据同分母分数相加减的法则:分母不变,只把分子相加减;由此,原式可写成几个同分母分数的差的形式,然后化简每个分数,再相减即可.【解答】解:=﹣﹣=1000﹣100﹣10=890.故答案为:890.【点评】本题解决的关键是仔细观察数字的特点,把原式转化为几个同分母分数的差的形式.2.(6分)9个13相乘,积的个位数字是3.【分析】数的个位数,13的个位数是3,因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;由此解答即可.【解答】解:因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;故答案为:3.【点评】要考查积的尾数特征,找出尾数出现的规律是解答本题的关键.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是1.【分析】自然数a、b、c除以14都余5,设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15,再除以14,即可得余数为1.据此解答即可.【解答】解:设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15[14(x+y+z)+15]÷14=x+y+z+1…1,故答案为:1.【点评】本题考查了带余除法,关键是设出a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有25个.【分析】根据题意分析可知:如果恰好是一奇一偶的排下去,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数;所以最多25个偶数,据此得解.【解答】解:根据题意分析可知:为了让得到的偶数最多,则按照一奇一偶的排列,如,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数所以最多25个偶数.故答案为:25.【点评】本题主要考查学生对于奇数和偶数的性质的理解和应用,要熟练掌握.另外要学会分情况思考问题的能力.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是60厘米.【分析】平面图形的周长,就是这个围成这个图形的各条边的长度的和.这个组合图形的外围折线部分向外平移,就成了一个大长方形,其长是16厘米,宽是8+8÷2+8÷2÷2=14(厘米),要求这个组合图形的周长,就相当于求长是16厘米、宽是14厘米的长方形的周长,利用长方形的周长=(长+宽)×2计算即可.【解答】解:[16+(8+8÷2+8÷2÷2)]×2=(16+14)×2=60(厘米)答:这个图形的周长是60厘米.故答案为:60.【点评】考查了巧算周长,解答此题的关键是明确这个图形的周长是由哪几条边长组成的.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有3个.【分析】要满足a+b+c=c+d+e=c+f+g,即为a+b=d+e=f+g,而a,b,c,d,e,f,g分别代表1至7中的一个数字,所以,只要确定a,b,d,e,f,g的组合,就可以确定c.【解答】解:a+b+c=c+d+e=c+f+g,即为a+b=d+e=f+g,只能出现3种情况:①1+7=2+6=3+5,此时c=4;②2+7=3+6=4+5,此时c=1;③1+6=2+5=3+4,此时c=7;所以c的可能取值有1、4、7,共3个.【点评】a+b=d+e=f+g,这6个数需要满足“对称”,分情况讨论可以确定它们的组合.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是96平方米.【分析】由题意可知:拿走一个小正方体,就减少了三个面,同时又增加了三个面,同理可得,拿走8个顶点上的小正方体,就减少了24个面,同时又增加了24个面,则图形的表面积没有变,据此解答即可.【解答】解:因为拿走一个小正方体,就等于减少了三个面,同时又增加了三个面,则拿走8个顶点上的小正方体,就减少了24个面,同时又增加了24个面,所以说表面积相比没有变,64=4×4×4,表面积是4×4×6=96(平方米).故此时的几何体的表面积是96平方米.故答案为:96.【点评】解答此题的关键是:看计算表面积所用的面有没有变化,从而问题得解.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是212.(π取3.14)【分析】百位数字是最小的质数,最小的质数2,那么百位数字是2;十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,而0.3+π×13=41.12,那么十位上是1;个位数字是三位数中能被17整除的最小数的个位数字,三位数中能被17整除的最小数是102,这个三位数的个位数字式是2,所以这个三位数是212,据此解决即可.【解答】解:最小的质数2,那么百位数字是2,0.3+π×13=41.12,那么十位上是1,三位数中能被17整除的最小数是102,那么个位上是2,这个三位数是212.故答案为:212.【点评】本题考查计算及其概念问题,根据已知条件推出各位数字,进而解决问题.9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是9060.【分析】通过观察,0.04285的循环节是142857,说明每6位数一个循环,求出小数部分前2015位的数字里面有多少个6,就有多少个(1+4+2+8+5+7),再根据余数,进一步确定余数是下一个循环的前几个,进而解决问题.【解答】解:循环小数0.04285每6位数一个循环,小数部分第一位是0,后面小数部分的2014位数字共有2014÷6=335(个)…4,余数是4,所以在第336个周期的第4个数是8,即小数部分前2015位数字和是:(1+4+2+8+5+7)×335+1+4+2+8=27×335+15=9045+15=9060;答:和是9060.故答案为:9060.【点评】此题属于周期问题,最后的余数是解决问题的关键,最后的余数是下一个周期的前几个,先探索周期的变化规律,再根据规律和余数解答,求出问题.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要10个小正方体.【分析】根据给出从上面看到的图形可知:下层最少有8个,最中间不放;根据从前面和左面看到的是,可知上层最少有2个占2个角,右后面的角没有,由此即可解决问题.【解答】解:由题意可知正方体的个数:8+2=10(个)答:一共有10个小正方体组成的.故答案为:10.【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?【分析】根据a与b的最大公约数是4,可以得出a,b可能的数,再根据a与c、b与c的最小公倍数都是100,得出c的取值的范围,由乘法原理解答即可.【解答】解:根据题意可得,a、b中有一个为4,另一个为4、20或100,故有3种可能:①a=4,b=4,②a=4,b=20;③a=4,b=100;对于a、b的这3组取值,c可取25,50,100;因此,满足以上条件的自然数a、b、c有:3×3=9(组).答:满足条件的自然数a、b、c共有9组.【点评】根据a与b的关系确定a,b可能的数,再根据a与c,b与c的关系求出c可能的数,再根据乘法原理解答即可.12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有36个.【分析】根据能被3整除的数的特征:各位上数字之和能被3整除,这个数就能被3整除,所以1,2,3,4,5可把这五个数字三个三个相加,相加的和不能被3整除的三个数,组成的三位数也不会被3整除,据此解答即可.【解答】解:1+2+3=6,1+2+4=7,1+2+5=8,1+3+4=8,1+3+5=9,1+4+5=10,2+3+4=9,2+3+5=10,2+4+5=11,3+4+5=12,其中不能被3整除的数有7、8、10,11,那么由数字1、2、4,1、2、5,2、3、5组成的三位数不是3的倍数,即不能被3整除的数有:124、142、214、241、412、421;125、152、215、251、512、521;134,143,314,341,413,431;145,154,415,451,514,541;235、253、325、352、523、532;245,254,425,452,524,542;共36个.故答案为:36.【点评】此题主要考查的是能被3整除数的特征的应用,先找出不是3的倍数的数字组合,再进一步求解.13.(6分)两位数和都是质数,则有9个.【分析】根据质数的定义“除了1和它本身外,没有别的因数的数为质数”,把两位数中的质数写出来即可.【解答】解:两位数的质数有:11,13,31,17,71,37,73,79,97,共9个.答:有9个.故答案为:9.【点评】此题解答的关键在于理解质数的概念,注意不重不漏.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e= 35.【分析】题目可转化为一个两位数与一个三位数的和等于1079,求这两个数各位上的数字.【解答】解:由题意知,一个两位数与一个三位数的和等于1079∴c=9,a+d=17,b+e=9,∴a+b+c+d+e=35.故答案为:35.【点评】此题属于比较灵活的题目,关键在于读懂题目,转换问题,解决问题.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是347.【分析】要求这个三位数是多少,可通过求得a、b、c的值解决.因为a×(b+c)=33=3×11,只有一种可能,a=3;两式相减得c×(b﹣a)=7,7=1×7,只有一种可能,c=7,从而推出a值,解决问题.【解答】解:a×(b+c)=33=3×11,只有一种可能,a=3;b(a+c)﹣a(b+c)=40﹣33=7,即c×(b﹣a)=7,又7=1×7,所以c×(b﹣a)=1×7,只有一种可能,c=7;所以3×(b+7)=33b+7=11b=4所以这个三位数是347.故答案为:347.【点评】此题关键通过两式之间的关系推出这个三位数各位上的数值,解决问题.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体16个.【分析】根据长方体的表面积公式S=﹙长×宽+长×高+宽×高﹚,求出长×宽+长×高+宽×高的和,由此判断出长方体的最小体积,进而求出最少需要棱长为1的小正方体的个数.【解答】解:长×宽+长×高+宽×高=52÷2,长×宽+长×高+宽×高=26,8×2+8×1+2×1=26,此时长方体的体积最小,8×2×1=16,因此最少需要棱长1的小正方体16个.故答案为:16.【点评】本题主要是灵活利用长方体的表面积公式与长方体和正方体的体积公式解答.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是215个.【分析】设原计划的工作量是每天生产x个零件,利用原来零件的总数作为相等关系列方程求解.【解答】解:设原计划的工作量是每天生产x个零件,由题意得:(x﹣3)×31+60=(x+3)×25﹣6031x﹣93+60=25x+75﹣606x=48x=8(8﹣3)×31+60=5×31+60=215(个)答:原计划的零件生产定额是215个.故答案为:215.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是938分.【分析】首先判断出这11名学生的平均分大于等于85.25和小于85.35之间,这11名同学的总分大于或等于85.25×11=937.75分和小于85.35×11=938.85之间,然后求出这11名同学的总分.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到85.3的数值范围是:(大于等于85.25和小于85.35之间)所以这11名同学的总分大于或等于85.25×11=937.75分和小于85.35×11=938.85之间,∵每个学生的分数都是整数,∴得分总和也是整数,在937.75和838.85之间只有938是整数,∴这11名同学的总得分是938分.故答案为:938.【点评】解答此题的关键是判断出这11名学生的平均分大于等于85.25和小于85.35之间.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有1006盏.【分析】分别找出2、3、5的倍数,2和3的公倍数,2和5的公倍数,3和5以及2、3和5的公倍数,求出拉过三次、二次、一次的个数,一次、三次是被拉灭的灯,求出被拉灭的灯的个数,进而求出亮着的灯的个数,解决问题.【解答】解:在1到2015这2015个数中,2的倍数有:2015÷2≈1007(个)3的倍数有:2015÷3≈671(个)5的倍数有:2015÷5=403(个)2和3的倍数有:2015÷(2×3)≈335(个)2和5的倍数有:2015÷(2×5)≈201(个)3和5的倍数有:2015÷(3×5)=≈134(个)2、3、5的倍数有:2015÷(2×3×5)≈67(个)可知,拉过三次的有:67盏,拉过二次的有:(335﹣67)+(201﹣67)+(134﹣67)=268+134+67=469(盏)拉过一次的有:(1007﹣268﹣134﹣67)+(671﹣268﹣67﹣67)+(403﹣134﹣67﹣67)=538+269+135=942(盏)被拉灭的灯有:942+67=1009(盏)所以,亮着的灯为:2015﹣1009=1006(盏).答:这时,亮着的灯有1006盏.故答案为:1006.【点评】此题运用最小公倍数的知识,求出各种情况灯的数量,根据拉过的次数,求得拉过奇数次的灯的数量,进而解决问题.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在22或4岁.【分析】根据题意,假设小明是2000年前出生的,设出生日期为19xy,根据题意可得,2015﹣(1900+10x+y)=1+9+x+y,因为x与y都是个位数,然后后用尝试法进行解答即可;假设小明是2000年后出生的,设出生日期为20xy,x要小于2;根据题意可得,2015﹣(2000+10x+y)=2+0+x+y,然后再进一步解答即可.【解答】解:假设小明是2000年前出生的,设出生日期为19xy,根据题意可得:2015﹣(1900+10x+y)=1+9+x+y115﹣10x﹣y=10+x+y11x+2y=105因为x与y是个位数,解得:x=9,y=3也就是小明是1993年出生的,今年是:1+9+9+3=22(岁)假设小明是2000年后出生的,设出生日期为20xy,x要小于2,根据题意可得:2015﹣(2000+10x+y)=2+0+x+y15﹣10x﹣y=2+x+y11x+2y=13因为x与y是个位数,解得:x=1,y=1也就是小明是2011年出生的,今年是:2+0+1+1=4(岁)答:小明今年22岁或4岁.故答案为:22或4.【点评】根据题意,分为两个年龄阶段,也就是2000年前出生,或2000年后出生,根据题意设出出生年份,列出方程,用尝试法进行解答即可.。

希望杯第一届至第十届五年级试题与答案

希望杯第一届至第十届五年级试题与答案

10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是

8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =

BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=

10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是

希望杯第1-8届五年级数学试题及答案(WORD版)

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

2015年五年级希望杯100题(完整答案).doc

2015年五年级希望杯100题(完整答案).doc

2015 年希望杯五年级赛前100 题【1-4,简便计算】1)计算: 0.685×5.6+3.4×0.685+0.685。

=0.685 ×( 5.6+3.4+1 )=0.685 × 10=6.852)计算: 2015-2014+2013-2012+ +3-2+1。

=(2015-2014)+(2013-2012)++(3-2)+(1-0)=10083)计算: 21×20.15+350×2.015+4.1× 201.5+0.03×2015。

=21× 20.15+35 × 20.15+41× 20.15+3× 20.15=20.15 × (21+35+41+3)=20.15 × 100=20154)计算: 2015×20142015-2014×20152014。

=2015× (20142014+1)-2014 ×(20152015-1)=2015× 20142014+2015-(2014 × 20152015-2014)=2015+2014=40295) 5 个连续奇数的和是 2015,求其中最大的奇数。

【奇偶数】中间数:2015÷ 5=403最大者: 403+2+2=407答:最大的奇数为407。

6)若将 2015 分解成 5 个自然数的和,则这 5 个自然数的积是“奇数”,“偶数”,还是“奇数或偶数”?5 个奇数的【奇偶数】 5 个自然数之和为 2015,是奇数,所以其中有奇数个奇数。

如果全为话,其积为奇数;如果不全为奇数的话,其积为偶数。

答:这五个自然数的积是奇数或偶数。

7)若 a 是质数, b 是合数,试写出一个合数 (用 a, b 表示 )。

【质数与合数】答: ab 为合数。

8)1, 3, 8,23,229,2015 的和是奇数还是偶数?【奇偶数】其中有 5 个奇数,所以和为奇数。

希望杯第1-8届五年级数学试题及答案(WORD版)

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯"全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。

2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点。

4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ .5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米.10.六位自然数1082□□能被12整除,末两位数有种情况.11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2"。

警察由此判断该车牌号可能是.16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9.小光,小亮二人随意往桌上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9.中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(五年级第1试)

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(五年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、以下每题6分,共120分1.(6分)计算:=.2.(6分)9个13相乘,积的个位数字是.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有个.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是厘米.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有个.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是平方米.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是.(π取3.14)9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要个小正方体.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有个.13.(6分)两位数和都是质数,则有个.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e=.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体个.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是个.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有盏.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在岁.2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:=890.【解答】解:=﹣﹣=1000﹣100﹣10=890.故答案为:890.2.(6分)9个13相乘,积的个位数字是3.【解答】解:因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;故答案为:3.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是1.【解答】解:设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15[14(x+y+z)+15]÷14=x+y+z+1…1,故答案为:1.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有25个.【解答】解:根据题意分析可知:为了让得到的偶数最多,则按照一奇一偶的排列,如,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数所以最多25个偶数.故答案为:25.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

2015年五年级希望杯100题(完整答案)

2015年五年级希望杯100题(完整答案)

2015年五年级希望杯100题(完整答案)2015年希望杯五年级赛前100题【1-4,简便计算】1)计算:0.685×5.6+3.4×0.685+0.685。

=0.685×(5.6+3.4+1)=0.685×10=6.852)计算:2015-2014+2013-2012+…+3-2+1。

=(2015-2014)+(2013-2012)+…+(3-2)+(1-0)=10083)计算:21×20.15+350×2.015+4.1×201.5+0.03×2015。

=21×20.15+35×20.15+41×20.15+3×20.15=20.15×(21+35+41+3)=20.15×100=20154)计算:2015×20142015-2014×20152014。

=2015×(20142014+1)-2014×(20152015-1)=2015×20142014+2015-(2014×20152015-2014) =2015+2014=40295)5个连续奇数的和是2015,求其中最大的奇数。

【奇偶数】中间数:2015÷5=403最大者:403+2+2=407答:最大的奇数为407。

6)若将2015分解成5个自然数的和,则这5个自然数的积是“奇数”,“偶数”,还是“奇数或偶数”?【奇偶数】5个自然数之和为2015,是奇数,所以其中有奇数个奇数。

如果全为5个奇数的话,其积为奇数;如果不全为奇数的话,其积为偶数。

答:这五个自然数的积是奇数或偶数。

7)若a是质数,b是合数,试写出一个合数(用a,b表示)。

【质数与合数】答:ab为合数。

8)1,3,8,23,229,2015的和是奇数还是偶数?【奇偶数】其中有5个奇数,所以和为奇数。

五年级“希望杯”全国数学邀请赛参考答案及评分标准

五年级“希望杯”全国数学邀请赛参考答案及评分标准

第十二届小学 希望杯 全国数学邀请赛参考答案及评分标准五年级㊀㊀第2试一㊁填空题(每小题5分㊂其中第4题,每空2.5分㊂)题号123456789101112答案12619102014;40266808.251569.7517284813㊀㊀二㊁解答题13.(1)最初,圆周上有3个数㊂第1次操作后,圆周上有3+3=6(个)数;第2次操作后,圆周上有6+6=12(个)数;第3次操作后,圆周上有12+12=24(个)数㊂(8分)(2)每次操作,新增的数是原来相邻的两个数的和,而原来的数各被加了2次,则新增的数的和是原来的数的和的2倍,即操作后圆周上的数的和是原来的3倍㊂最初,圆周上的3个数的和是1ˑ3=3㊂第1次操作后,圆周上的数的和是3ˑ3=9;第2次操作后,圆周上的数的和是3ˑ9=27;第3次操作后,圆周上的数的和是3ˑ27=81㊂(15分)14.(1)甲走一圈用360ː30=12(分),丙走一圈用㊀360ː90=4(分)㊂12和4的最小公倍数是12,所以,12分钟后,甲㊁丙第一次同时回到出发点㊂(5分)(2)丙走一圈用360ː50=7.2(分)㊂被12,7.2,4除,商都是大于零的整数,满足此条件的被除数最小是36㊂所以,36分钟后,三人第一次同时回到出发点㊂(10分)(3)当三人第一次同时到达同一地点时,他们各自走过的路程除以360所得的余数相同㊂设三人走了x 分钟,根据同余性质,有360∣(50x -30x ),18∣x ;360∣(90x -50x ),9∣x ;360∣(90x -30x ),6∣x ㊂18,9,6的最小公倍数是18㊂所以,18分钟后三人第一次同时到达同一地点㊂(15分)15.解法1㊀因为胜者加分,负者减同样的分,所以两队积分的和不变㊂(5分)若甲队胜,则甲队的积分是乙队的3倍,可知两队的积分和是4的倍数;若乙队胜,则甲队的积分是乙队的2倍,可知两队的积分和也是3的倍数㊂所以,两队的积分和是3ˑ4=12的倍数,即可能是12,24,36,48分㊂讨论如下:(10分)(1)两队的积分和是12分在甲队胜的情况下,甲队的积分是12ː4ˑ3=9(分);在乙队胜的情况下,甲队的积分是12ː3ˑ2=8(分),那么,本场比赛加分或减分的分值是(9-8)ː2=0.5(分),不符合题意㊂(2)两队的积分和是24分在甲队胜的情况下,甲队的积分是24ː4ˑ3=18(分);在乙队胜的情况下,甲队的积分是24ː3ˑ2=16(分),那么,本场比赛加分或减分的分值是(18-16)ː2=1(分),赛前甲队的积分是18-1=17(分),乙队的积分是24-17=7(分)㊂(3)两队的积分和是36分在甲队胜的情况下,甲队的积分是36ː4ˑ3=27(分),在乙队胜的情况下,甲队的积分是36ː3ˑ2=24(分),那么,本场比赛加分或减分的分值是(27-24)ː2=1.5(分),不符合题意㊂(4)两队的积分和是48分在乙队胜的情况下,甲队的积分是48ː3ˑ2=32(分),甲队赛前积分大于32分,不符合题意㊂综上可知,赛前甲队㊁乙队的积分分别是17分和7分㊂(15分)解法2㊀设甲队赛前积分为x分,乙队赛前积分为y分,本场比赛加分或减分的分值为n分(x,y,n都是整数)㊂根据题设条件,得x+n=3(y-n),①x-n=2(y+n),②(8分)①-②,得2n=3y-3n-2y-2n,解得y=7n,x=17n㊂(10分)因为赛前两队的积分都少于25分,所以n 只能取1㊂即赛前甲队积分为17分,乙队积分为7分㊂(15分)16.甲每秒游100ː200=0.5(米),乙每秒游100ː160=0.625(米),乙每秒比甲多游0.625-0.5=0.125(米),乙第1次追上甲,用40ː0.125=320(秒),(5分)在这个时间内,甲游了320ˑ0.5=160(米),还剩1000-160-40=800(米);乙第2次追上甲(距离差是100米),用100ː0.125=800(秒),(10分)在这个时间内,甲游了800ˑ0.5=400(米),此时,甲还剩800-400=400(米),到此,可知乙还可再追上甲1次㊂综上可知,甲被乙追上3次㊂(15分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档