最新人教版九年级数学下册27.1图形的相似(无答案)

合集下载

最新人教版九年级数学下册27.1图形的相似

最新人教版九年级数学下册27.1图形的相似
完全相同 两个图形的形状 ________ ,但图形 不一定相同 的大小位置 __________ ,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 _________ 缩小 得到的,实际的建筑物 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
4. 如图所示的两个矩形相似吗?为什么? 如果相似,相似比是多少?
A 2 B C 3 D
E 1 F
1.5
H
G
解;矩形ABCD相似于矩形EFGH 因为它们的对应角相等,对应边成比例。
AB 2 相似比为: EF 1
2、下列说法中,错误的是( B) (A)两个全等三角形一定是相似形 (B)两个等腰三角形一定相似 (C)两个等边三角形一定相似 (D)两个等腰直角三角形一定相似 3、在下列各组图形: ①两个平行四边形;②两个圆;③两个矩形; ④均有一个内角是80°的两个等腰三角形;⑤ 两个正五边形;⑥均有一个内角是100°的两个 等腰三角形. 其中一定是相似图形的是 ②, ⑤, ⑥ .(填序号)
A、大小不同 B、大小相同 C、形状相同 D、形状不同 答案:( C )
小练习
1、下列说法正确的是( D ) A.小明上幼儿园时的照片和初中毕业 时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.
相似的图形具有传递性;
图形 A
图形 B
图形 C
人教版九年级数学下册
第二十七章相似

最新人教版九年级数学下册第二十七章《图形的相似》教材梳理

最新人教版九年级数学下册第二十七章《图形的相似》教材梳理

疱丁巧解牛知识·巧学一、相似的概念1.相似图形:把具有相同形状的图形称为相似形.“相同形状”也就是一个图形可看作是由另一个图形放大、缩小或复制得到的.方法归纳相似关系中只关注图形的形状是否相同,不考虑它们的大小和位置之间的关系.也就是说:只要两个图形形状相同,不论大小是否相同,位置如何摆放都是相似形.2.生活中常见的相同形状的图形主要有以下几种类型:(1)同一地区按不同的比例尺所绘制的地图;(2)同一张底片扩印出来的照片,电影胶片上的图像与它映照到屏幕上的图像;(3)通过放大镜、眼镜所看到的图形与实际图形;(4)沙盘模型与建筑原型是相似形.3.相似多边形:形状相同的多边形是相似多边形.例如:国旗上的5个五角星都相似.要点提示形状相同的前提是边数相同.4.相似与全等:全等是相似的特殊情形.形状相同,两图形相似;形状相同并且大小也相同,两图形全等.辨析比较“放大镜”与“哈哈镜”.放大镜是一种用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜.使用放大镜,令其紧靠眼睛,并把物体放在它的焦点以内,成一正立放大的虚像,这个“像”与物体本身相似.哈哈镜镜面凹凸不平,根据凹凸镜成像原理,成的是或大或小的虚象,照出人来就奇形怪状了,所以哈哈镜的“像”与物体本身不相似.二、比例线段1.线段的比:线段的比是指用同一长度单位量得两条线段的长度的比.①两条线段的比与长度单位的选择无关;②求两条线段的比时,若其单位不同,则必须使单位相同再求比;③两条线段的比是一个正数;④两条线段的比a∶b中,要清楚谁为前项.例如:线段a=10 cm,b=15 cm,则线段a与b的比是10∶15=2∶3,a是前项,b是后项;线段b与a的比是15∶10=3∶2,b是前项,a是后项.10cm,则线段AB与AC的比是正方形ABCD中,AB=10 cm,对角线AC=210=2∶2.10∶22.比例线段:比例线段是指在四条线段a、b、c、d中,如果其中两条线段的比a∶b等于另外两条线段的c∶d,即a∶b=c∶d.那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.例如:四条线段1 cm、2 cm、3 cm、6 cm满足1∶2=3∶6,所以1 cm、2 cm、3 cm、6 cm是比例线段.要点提示①四条线段才能成比例;②线段成比例时,一定要将线段按顺序列出,不可颠倒,一般可以按大小顺序写出.3.比例中项:若作为比例内项的两条线段相同,即a∶b=b∶c,则线段b叫做a、c的比例中项.三、相似多边形的性质1.相似多边形的性质:对应边成比例,对应角相等.(1)形状的相同是指“对应边成比例,对应角相等”.(2)识别两个边数相同的多边形是否相似的方法:①两个多边形的边都对应成比例;②角都对应相等, 那么这两个多边形相似.误区警示上述两个条件必须同时成立,缺一不可(如矩形与正方形角都对应相等,但边不是都对应成比例,不相似;菱形与正方形边都对应成比例,但角不是对应相等,不相似).在格点上画多边形相似时,就是保持对应位置上的线段放大或缩小相同的倍数,对应的角的大小不变,所以画出的多边形是相似的.2.相似比:相似多边形对应边的比叫做相似比.例如:若△ABC 与△A′B′C′相似,那么k A C CA C B BC B A AB =''=''='',这两个相似三角形的相似比就是k.(1)相似比是有顺序性的,前面的一个多边形的边作为分子,后面一个多边形的边作为分母.表示两个多边形相似的顺序不一样时,相似比也不相同.(2)相似比为正数.相似比为1,即k=1时,两个相似多边形不仅形状相同,而且大小也相同,这时两个多边形就全等.深化升华 根据性质,可以由一个图形的已知条件求其相似图形的未知元素.①由对应角相等,可以直接求出对应角的度数;②由对应边的比等于相似比,列比例式可以求对应边长.问题·探究问题1 等边三角形都相似吗?导思:根据相似多边形的定义,比较它们的边,是否成比例比较它们的角是否相等. 探究:(1)从不同类型的三角形入手:①等边三角形的三条边都相等,三个角都是60°,因此,两个等边三角形的边都对应成比例,角也都对应相等,所以是相似的;②两个等腰三角形,当它们的顶角不相等时,角就不能对应相等,虽然两三角形对应腰的比相等,但是不能等于两底边的比,所以也不一定相似;③由于任意两个三角形,它们的边不一定对应成比例,角也不一定对应相等,所以不一定相似.(2)看看我们学习过的四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等图形,它们各自能相似吗?如果不相似,添加几个条件就可以判断它们相似呢?(见27.2《问题·探究》)(3)不同边数的多边形相似吗?边长为10 cm 的正方形与同样边长的正六边形相似吗?为什么?问题2 相似三角形的周长之比为多少?导思:熟悉比例的变形,避免重复计算.探究:比例是商的形式,根据等式的基本性质,可以把商与积互化.(1)【比例的基本性质】在任意的一个比例里,两个外项的积等于两个内项的积,即a ∶b=c ∶d ⇔da=bc.(符号“⇔”表示从左边的条件可以得到右边的结论,把右边作为条件,可以得到左边的结论).(2)【反比定理】在一个比例里,第一个比的反比,等于第二个比的反比,这叫做比例中 的反比定理,即cd a b d c b a =⇔=. (3)【更比定理】在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例;或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理,即db c a d c b a =⇔=. (4)【合比定理】在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理,即dd c b b a d c b a +=+⇔=. (5)【等比定理】几个相等的比的前项的和与后项的和的比,等于这些比里的任一个比,即 若k n m d c b a ==== (b+d+…+n≠0),则k nd b m c a =++++++ . 典题•热题例1 如图27.1-2,在给出的点格内通过放大或缩小画出已给图形的相似形.图27.1-2思路解析:首先固定一个最左边格点上的一个点,分别在横线上和竖线上把相应的线段放 大或缩小(画图,一般都画在所给定的区域内).解:如图27.1-3.图27.1-3方法归纳 在格点中作相似形时,找能够反映图形特征的点,作出这些被放大或缩小后的位置,再由这些点构造新图形.例2 (1)已知线段a=30 mm ,b=5 cm ,则a ∶b=__________;(2)量得A 、B 两地在某张地图上的距离是5 cm ,而两地的实际距离是250 km ,则这张地图的比例尺是__________;(3)在相同时刻的物高与影长成比例.如果一古塔在地面上的影长为50 m ,同时,高为1.5 m 的测竿的影长为2.5 m ,那么古塔的高是__________m.思路解析:(1)由定义“两条线段的比是这两条线段长度的比”,在计算它们的比时先要 统一单位;因为a=30 mm=3 cm ,所以a ∶b=3∶5.(2)比例尺=实际距离图上距离,通常写成1∶常数的形式,计算前还是要注意统一单位;因为 5cm=0.05 m ,250 km=250 000 m ,所以比例尺为0.05∶250 000=1∶5 000 000.(3)相同时刻的物高与影长成比例,因此古塔的高、古塔的影长、测竿的高、测竿的影长是成比例线段,即测杆的影长测杆的高古塔的影长古塔的高=,从而解决问题. 设古塔的高为x m ,根据题意得5.25.150=x , 解得x=30,所以古塔的高为30 m.答案:(1)3∶5 (2)1∶5 000 000 (3)30深化升华 利用比例线段可以进行相关计算,其关键是找准比例式.比例尺=测杆的影长测杆的高物体的影长物体的高实际距离图上距离=;. 例3 若x ∶y ∶z=3∶4∶7且2x-y+z=18,那么x+2y-z=__________. 思路解析:由x ∶y ∶z=3∶4∶7,知743z y x ==.可利用比例解决问题.特别是遇到连等式时,可用设比例系数(即公比)的办法解决.方法一:∵x ∶y ∶z=3∶4∶7,∴743z y x ==. 设k z y x ===743(k≠0),则x=3k ,y=4k ,z=7k. ∴ 2x-y+z=6k-4k+7k=9k ,即9k=18.解得k=2.∴ x+2y-z=3k+8k-7k=4k=4×2=8.方法二:∵x ∶y ∶z=3∶4∶7,∴y z y x 47,43==. ∴2x-y+z=2×y 43-y+y 47=18.解方程得y=8. ∴x=6,z=14.∴x+2y-z=6+16-14=8.答案:8变式方法 利用比例式计算时,通常可用方程思想,设中间参数计算.又如:已知x ∶y=2∶7,求22225223y xy x y xy x -++-的值. 由x ∶y=2∶7,得y x 72=.把y x 72=代入原式得(以下略).。

人教版初中数学九年级下册27.1 图形的相似(共33张PPT)

人教版初中数学九年级下册27.1 图形的相似(共33张PPT)

学习重点
理解相似图形的概念,能根据相似的基本性质进行判 断和计算
学习难点
运用相似多边形的特征进行相关的计算
预习导学
(阅读本节课教材)
相似图形. 1.形状相同的图形叫做________ 2.下列图形相似的是( A ).
A.两个圆 B.两个矩形 C.两个等腰梯形 D.两个菱形 相等 ,对应边的比______ 相等 ;如 3.相似多边形对应角______ 相等 ,对应边的比______ 相等 , 果两个多边形满足对应角______ 相似 . 那么这两个多边形______ 相似比;当相似比为 4.相似多边形对应边的比称为______ 全等 _. 1时,两个多边形___
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
1:指出他们的对应角、对应边. 2:左边的四边形与右边的四边形的相似比是多少? 右边与左边的相似比呢? 1∶2 2∶1
4.请画出左边图形的相似图形,使它们的相 似比为2:1
5.下列图形中,能确定相似的有( A B D F A.两个半径不等的圆 B.所有等边三角形 C.所有等腰三角形 D.所有正方形 E.所有等腰梯形 F.所有正六边形
两地的距离是30 cm,则两地的实际距离是( C
A.30 km C.3000 km B.300 km D.300,求未知 边a、b、c、d的长度.6
c
3 5 9 d 2 b 7.5 a
解:由图示: 可知两图形的相似比为: 所以
2 3 3 b
2 2 a 3
5 2 7.5 3
b = 4.5 a=3
c 2 6 3
d 2 9 3

新人教版九年级数学下册 第27章 相似 课件

新人教版九年级数学下册 第27章  相似 课件

图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 缩小 得到的,实际的建筑物 _________ 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
• 认识形状相同的图形。
• 对相似图形概念的理解。
• 抓住形状相同的图形的特征,认
识其内涵。
回顾旧知
全等图形
A' B
A
B'
C'
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
它们的大小不一定相等,
形状相同.
知识要点
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
不规则四边形
B
A
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对 应 角 有 什 么 D 关 系?
对应边有什么关系? C1

27.1 图形的相似课件(共30张PPT)

27.1  图形的相似课件(共30张PPT)

比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?

问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.

新人教版九年级数学下册 27.1图形的相似

新人教版九年级数学下册 27.1图形的相似

1No.6 课题:27.1图形的相似主编: 审核: 验收人: 课型:新授课 学习目标:1.通过实例了解相似图形.2.理解相似多边形的性质.学习重点:相似多边形的性质. 一、学习研讨:简记(一)相似图形1.观察下列各组图形,有什么相同之处结论:我们把 的图形叫相似图形。

(二)相似多边形 1.定义叫做相似多边形.叫做相似比.图中两个大小不同的四边形ABCD 和四边形A B C D 中, , ,因此四边形ABCD 和四边形A B C D 相似 .由定义可知,相似多边形的对应角 相等,对应边成比例.2.对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的2比相等,如 ,(即 )我们就说这四条线段成比例. 3. 例:如图:四边形ABCD 和四边形EFGH 相似,求∠α、∠β的度数和EH 的长度x.二、巩固提高1. 如图所示的两个五边形相似,求未知边a,b,c,d 的长度.2.如图,已知梯形ABCD 和梯形A ′B ′C ′D ′相似,AB ∥CD, A ′B ′∥C ′D ′, 求出图中∠α、∠β的度数以及边x 、y 、z 的长.相似比是多少?3.如图,D E ∥BC,求 ,并证明△ABC 与△ADE 相似.65°βABCDx y1513.5100°αA ’B ’C ’D ’1014z 8,,AD AE DE AB AC BCj9CBA 57.54.如图,在下面三个矩形中,相似的是()A、甲、乙和丙B、甲和乙C、甲和丙D、乙和丙三、学(教)后反思:6486甲乙丙3。

新人教版九年级数学下册 27.1图形的相似

新人教版九年级数学下册 27.1图形的相似

No.6 课题:27.1图形的相似主编: 审核: 验收人: 课型:新授课 学习目标:1.通过实例了解相似图形.2.理解相似多边形的性质.学习重点:相似多边形的性质.一、学习研讨: 简记 (一)相似图形1.观察下列各组图形,有什么相同之处结论:我们把 的图形叫相似图形。

(二)相似多边形 1.定义叫做相似多边形. 叫做相似比.图中两个大小不同的四边形ABCD 和四边形A B C D 中, , ,因此四边形ABCD 和四边形A B C D 相似 .由定义可知,相似多边形的对应角 相等,对应边成比例.2.对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的 比相等,如 ,(即 )我们就说这四条线段成比例.3. 例:如图:四边形ABCD 和四边形EFGH 相似,求∠α、∠β的度数和EH 的长度x.二、巩固提高1. 如图所示的两个五边形相似,求未知边a,b,c,d 的长度.2.如图,已知梯形ABCD 和梯形A ′B ′C ′D ′相似,AB ∥CD, A ′B ′∥C ′D ′, 求出图中∠α、∠β的度数以及边x 、y 、z 的长.相似比是多少?3.如图,D E ∥BC,求 ,并证明△ABC 与△ADE 相似.4.如图,在下面三个矩形中,相似的是( ) A 、甲、乙和丙 B 、甲和乙 C 、甲和丙 D 、乙和丙65°βABCDx y1513.5100°αA ’B ’C ’D ’1014z 868486甲乙 丙,,AD AE DE AB AC BCj9CBA 57.5三、学(教)后反思:。

人教版九年级数学下册第二十七章27.1 图形的相似

人教版九年级数学下册第二十七章27.1 图形的相似

解:∠A=65° , ∠B=65° , ∠D=∠C=180° -65° =115° , 15 15 A′D′= 4 cm,B′C′=A′D′= 4 cm.
15. 在△ ABC 中,AB=12,点 E 在 AC 上,点 D AD AE 在 AB 上,若 AE=6,EC=4,且DB=EC. (1)求 AD 的长; DB EC (2)试问 AB =AC能成立吗?请说明理由.
13. 一个四边形的边长分别是 3,4,5,6,另一 个和它相似的四边形的最小边长为 6,那么另一个四 边形的周长为 36 .
14. 如 图所 示 , 等腰 梯 形 ABCD 与等 腰 梯 形 A′B′C′D′相似,∠A′=65° ,A′B′=6 cm,AB=8 cm, AD=5 cm,试求梯形 ABCD 各角的度数与 A′D′,B′C′ 的长.
(2)请归纳出相似体的 3 条主要性质: ①相似体的一切对应线段(或弧)长的比等 于
相似比
; ; .
②相似体表面积的比等于 相似比的平方 ③相似体体积的比等于 相似比的立方
17. (1)已知图①中的两个矩形相似,求它们的对 应边的比;
(2)如图②,两个六边形的边长分别都为 a 和 b, 且每一个六边形的内角均是 120° ,它们相似吗?为什 么?
S甲 6 a2 a2 则 =6b2 =b ,又设 V 甲、V 乙分别表示这两个正 S乙 V甲 a3 a3 方体的体积,则 =b3=b . V乙
(1)下列几何体中,一定属于相似体的是( A ) A.两个球体 C.两个圆柱体 B.两个圆锥体 D.两个长方体
8. 在比例尺为 1∶n 的某市地图上,A,B 两地相 距 5 cm,则 A,B 之间的实际距离为( C ) 1 A.5n cm C.5n cm 1 2 B.25n cm D是相似形的是 ( B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

No.6 课题:27.1图形的相似
主编: 审核: 验收人: 课型:新授课 学习目标:1.通过实例了解相似图形.
2.理解相似多边形的性质.
学习重点:相似多边形的性质.
一、学习研讨: 简记 (一)相似图形
1.观察下列各组图形,有什么相同之处
结论:我们把 的图形叫相似图形。

(二)相似多边形 1.定义
叫做相似多边形. 叫做相似比.
图中两个大小不同的四边形ABCD 和四边形A B C D 中, , ,
因此四边形ABCD 和四边形A B C D 相似 .由定义可知,相似多边形的对应角 相等,对应边成比例.
2.对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的 比相等,如 ,(即 )我们就说这四条线段成比例.
3. 例:
如图:四边形ABCD 和四边形EFGH 相似,求∠α、∠β的度数和EH 的长度x.
二、巩固提高
1. 如图所示的两个五边形相似,求未知边a,b,c,d 的长度.
2.如图,已知梯形ABCD 和梯形A ′B ′C ′D ′相似,AB ∥CD, A ′B ′∥C ′D ′, 求出图中∠α、∠β的度数以及边x 、y 、z 的长.相似比是多少?
3.如图,D E ∥BC,求 ,并证明△ABC 与△ADE 相似.
4.如图,在下面三个矩形中,相似的是( ) A 、甲、乙和丙 B 、甲和乙 C 、甲和丙 D 、乙和丙
三、学(教)后反思:
65°
β
A
B
C
D
x y
15
13.5
100
°
α
A ’
B ’
C ’
D ’10
14
z 8
6
4
8
6



,,AD AE DE AB AC BC
j
9
C
B
A 5
7.5。

相关文档
最新文档