超再生接收电路原理
315MHZ超再生接收模块原理及性能详解

315MHZ超再生接收模块原理及性能详解超再生接收模块的体积:30x13x8毫米模块的中间两个引脚都是信号输出,连通的这是超再生接收模块的等效电路图主要技术指标:1。
通讯方式:调幅AM2。
工作频率:315MHZ(可以提供433MHZ,购货时请特别注明)3。
频率稳定度:±200KHZ4。
接收灵敏度:-106DBM5。
静态电流:≤5MA6。
工作电流:≤5MA7。
工作电压:DC 5V8。
输出方式:TTL电平接收模块的工作电压为5伏,静态电流4毫安,它为超再生接收电路,接收灵敏度为-105dbm,接收天线最好为25~30厘米的导线,最好能竖立起来。
接收模块本身不带解码集成电路,因此接收电路仅是一种组件,只有应用在具体电路中进行二次开发才能发挥应有的作用,这种设计有很多优点,它可以和各种解码电路或者单片机配合,设计电路灵活方便。
这种电路的优点在于:1.天线输入端有选频电路,而不依赖1/4波长天线的选频作用,控制距离较近时可以剪短甚至去掉外接天线2.输出端的波形相对比较干净,干扰信号为短暂的针状脉冲,所以抗干扰能力较强。
3模块自身辐射极小,加上电路模块背面网状接地铜箔的屏蔽作用,可以减少自身振荡的泄漏和外界干扰信号的侵入。
4.采用带骨架的铜芯电感将频率调整到315M后封固,这与采用可调电容调整接收频率的电路相比,温度、湿度稳定性及抗机械振动性能都有极大改善。
可调电容调整精度较低,只有3/4圈的调整范围,而可调电感可以做到多圈调整。
可调电容调整完毕后无法封固,因为无论导体还是绝缘体,各种介质的靠近或侵入都会使电容的容量发生变化,进而影响接收频率。
另外未经封固的可调电容在受到振动时定片和动片之间发生位移;温度变化时热胀冷缩会使定片和动片间距离改变;湿度变化因介质变化改变容量;长期工作在潮湿环境中还会因定片和动片的氧化改变容量,这些都会严重影响接收频率的稳定性,而采用可调电感就可解决这些问题,因为电感可以在调整完毕后进行封固,绝缘体封固剂不会使电感量发生变化无线数传模块开发注意事项:模块必须通过信号调制才能正常工作。
超再生接收电路及原理分析

超再生接收电路及原理分析超再生电路本质上是一个电容三点振荡器,原理图如下图所示。
电路是典型的共基电路,晶体管的B和C之间通过交流连接L3和C12,电容C9和BE之间的结电容构成分压反馈,形成三点式振荡器。
L4用来隔绝振荡频率与地之间的连通。
振荡器工作时,随着振荡幅度增加,晶体管电流Ice增加,这个Ice流过R12,会使R12两端电压成增长趋势,而C11两端电压已经建立(静态工作点建立时建立的),无法突变,因此改电流对C11充电,使其两端电压升高,晶体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐停止而减小,这使得R12两端电压成减小趋势,C11开始通过R12放电,C11两端电压降低,晶体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C11和R12决定,约为它们乘积的倒数。
C11和R12两端的电压为类似类似方波或三角波(这个与原始静态工作点有关,原始静态工作点高,振荡建立快,C11很快冲点饱和,此时电路为平衡状态,振幅不便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角波形),经过后面的电感电容网络滤波后,理论上为直流电压,以下简称R12C11为RC,L2C12为LC。
此电路为自熄式,间歇频率由自身提供,与振荡频率牵连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可以用标准方波,效果更好。
电路是怎么接收信号的呢?先从调幅信号来说。
LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡幅度有加强作用,类似于正反馈,此时电路正式进入超再生状态。
通过前面的分析知道,电路振荡建立的速度与工作点有关,而振荡幅度受到改变时工作点也会相应变化,因此外部调幅信号使晶体管工作点随输入信号幅度变化而变化,而工作点的变化,又影响振荡的建立时间。
超再生接收电路

超再生接收电路
超再生检波电路实际上是一个受间歇振荡控制的高频振荡器,这个高频振荡器采用电容三点式振荡器,振荡频率和接收频率相一致.而间歇振荡又是在高频振荡的过程中产生的,反过来又控制着高频振荡器的振荡和间歇,间歇振荡的频率是由电路的参数决定的,一般为一百千赫到几百千赫,频率低了抗干扰能力较好,但灵敏度较低,频率选高了,正好相反。
该电路有很高的增益,未收到信号时,由于受外界杂散信号的影响,会产生特有的噪音。
噪音的频率范围大约0.3-5kHz,听起来像沙沙声。
当接收到信号时,电路谐振,噪音被抑制。
高频电路开始产生振荡,振荡建立的快慢和间歇时间的长短,受接收信号的振幅控制,接收信号振幅大,起始电平高,振荡建立快,每次振荡间歇时间短,得到的控制电压也高,反之,接收信号的幅度小,得到的控制电压也低。
这个控制电压便可以作为电路的输出电压。
超再生接收机原理

超再生接收机原理超再生接收机的原理是基于再生放大器的工作原理。
再生放大器是一种利用正反馈特性来放大电信号的放大器。
它包含一个放大器和一个正反馈回路。
正反馈回路会将一部分被放大的信号返回到放大器的输入端,使得放大器的增益更大。
超再生接收机的电路结构与普通的放大器电路相似,但在电路中引入了一些特殊的元器件和电路节点。
为了提高接收机的灵敏度,超再生接收机使用了高增益的放大器,以放大微弱的信号。
为了降低接收机的噪声指数,超再生接收机还采用了低噪声放大器,以抑制电路中的噪声。
超再生接收机还引入了一个限幅器,用于限制放大器输出的信号幅度,防止过大的信号对后续电路的损坏。
在限幅器的输出信号中,包含了原始信号和由正反馈产生的回执信号。
为了提取原始信号,还需要一个滤波器对信号进行滤波和解调。
在超再生接收机中,信号的解调是通过信号再生来实现的。
当回执信号与输入信号相加时,会产生一个复合信号,再经过放大和滤波处理后,回执信号会被消除,而原始信号则会被放大和提取。
超再生接收机的原理比较复杂,但其最大的优点是可以有效地提高接收机的灵敏度和抗干扰能力。
通过正反馈放大器的结构和高增益放大器的应用,可以加大信号的幅度,提高信号的强度,从而使接收机能够接收到较远距离的信号。
同时,超再生接收机还能够减小接收到的噪声信号对原始信号的影响,提高接收机的信噪比。
总之,超再生接收机通过正反馈放大器和高增益放大器的结构,以及滤波和解调等特殊电路设计和信号处理技术,提高了接收机的灵敏度和抗干扰能力,成为无线通信和广播领域中的重要设备。
它的原理虽然较为复杂,但通过合理的电路设计和信号处理算法,可以实现高性能的接收效果。
基于超再生原理的单片机无线接收电路设计

基于超再生原理的单片机无线接收电路设计任娟;张永华【摘要】计算机技术的发展,使得微控制器越来越广泛地应用于各个领域。
结合近距离无线通信技术,使用超再生原理的无线电通信电路,组成基于无线电的单片机通信系统,不仅能够消除传统电器控制布线的麻烦,而且增加了电器的智能性,为电器控制功能的增加提供了底层物理通道。
实际应用证明,基于超再生的单片机无线电通信成本低、制作容易,能够满足近距离通信要求,具有较大的实际应用意义。
%Due to the development of computer technology ,micro controller is more and more widely used in various fields .Combined with short distance wireless communication technology ,adopting super regenerative theory of radio communication circuit ,communication system of single chip microcomputer based on radio is designed ,w hich can not only eliminate wiring trouble of traditional electrical control , but also increases intelligence of electrical devices ,provide physical channel for electrical control func-tion .The practical application proves that ,the radio communication system of single -chip microcom-puter based on super regeneration has merit of low cost ,easy manufacture ,can satisfy requirements of short distance communication ,has practical significance .【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2014(000)001【总页数】5页(P8-12)【关键词】单片机;无线通信;超再生接收;载波【作者】任娟;张永华【作者单位】河南省工业科技学校,河南新乡453003;郑州航天电子技术有限公司,河南驻马店461000【正文语种】中文【中图分类】TN851.3引言随着计算机技术的快速发展,单片机以较高的性价比、灵活的编程和控制方式,越来越广泛地应用于各个领域。
超再生接收电路和无线电发射器工作原理

超再生接收电路和无线电发射器工作原理超再生接收电路主要由三个部分组成:前置放大器、检波器和反馈电路。
前置放大器主要负责将接收到的微弱无线电信号放大到合适的水平。
检波器用于将放大后的信号转换为原始的音频或数据信号。
反馈电路则通过正反馈的方式,将一部分输出信号反馈给放大器,以提高整体的增益和灵敏度。
具体来说,当无线电信号经过天线传播到超再生接收电路时,首先会经过前置放大器。
前置放大器会根据输入的信号频率特性进行滤波,以选择性地放大指定频率范围的信号。
放大后的信号进一步通过检波器,该过程也被称为解调。
检波器会根据信号的调制方式,将其转换为原始的音频或数据信号。
在这个过程中,由于信号的幅度会被削弱,因此需要通过反馈电路来增加整体的增益和灵敏度。
反馈电路通过将一部分输出信号反馈给前置放大器,在信号增强的同时,还能进一步提高前置放大器对特定频率范围的选择性。
这种正反馈的方式可以增加整体的增益和灵敏度,使得接收电路能够更好地恢复原始信号。
总体来说,超再生接收电路的工作原理就是通过频率选择、放大和检波等过程,将指定频率范围的无线电信号转换为原始的音频或数据信号。
而反馈电路则起到提高整体增益和灵敏度的作用。
这种接收电路在无线电通信和广播等领域中广泛应用,能够有效地提高信号的接收质量和可靠性。
对于无线电发射器,其工作原理与超再生接收电路正好相反。
无线电发射器主要用于将音频或数据信号转换为无线电信号,并通过天线进行传播。
其主要由以下四个部分组成:音频信号源、调制器、放大器和天线。
首先,音频信号源会提供待发送的音频或数据信号。
这些信号经过调制器,根据调制方式将其转换为模拟调制信号或数字调制信号。
模拟调制方式包括调频调制(FM)和调幅调制(AM),数字调制方式包括频移键控(FSK)和正交幅度调制(QAM)等。
调制器产生的调制信号会经过放大器进一步放大,以提高电平和传播距离。
放大器的功率将根据不同的应用需求进行选择,通常需要满足法规对无线电发射功率的限制。
超再生接收电路及无线电发射器工作原理

超再生接收电路及无线电发射器工作原理超再生接收电路是一种能够提高接收灵敏度和增强抗干扰能力的电路。
它可以在非常弱的信号条件下工作,并能够成功接收到远处传输的无线电信号。
在本文中,将详细介绍超再生接收电路的工作原理和无线电发射器的工作原理。
1.放大器:接收到的无线电信号经过放大器进行增益。
放大器可以是一个单管放大器或多级放大器。
其目的是将非常微弱的信号增加到足够大的幅度,以便后续的信号处理。
2.反馈回路:在放大器的输出信号中,一部分信号通过反馈回路送回到放大器的输入端。
这个反馈回路提供了一个自激励的机制,通过控制信号的相位和幅度来增强放大器的整体性能。
3.频率选择:超再生接收电路中的一个重要组成部分是频率选择器。
频率选择器通过选择特定频率范围内的信号来抑制其他不必要的频率分量。
这样可以增强接收到的信号,并减少干扰。
4.鉴频:超再生接收电路使用一个鉴频器来将调频(FM)信号转换为调幅(AM)信号。
鉴频器可以是一个经过线性化处理的非线性元件,例如二极管或晶体管。
这一步骤将调频信号的频率变化转换为幅度的变化,方便后续的解调和信号处理。
5.解调和信号处理:接收到的调幅(AM)信号经过解调器进行解调,将其转化为基带信号。
这个基带信号可以进一步被处理,例如音频放大、滤波和解码。
无线电发射器的工作原理:无线电发射器是一种能够将声音、图像或其他信息转化为无线电信号并传输的设备。
它是无线电通信的关键组成部分之一、无线电发射器的工作原理如下:1.调制信号:无线电发射器首先将要传输的信息信号进行调制。
调制是指将信息信号变化的其中一种特性(例如幅度、频率或相位)与载波信号相结合。
常见的调制方式包括调幅(AM)、调频(FM)和调相(PM)等。
2.放大:调制后的信号经过放大器进行增益,以便将其转化为足够大的幅度,以供后续的无线传输使用。
放大器可以是一个单级功放或多级功放。
3.频率选择:发射器中通常设置频率选择器,用于选择特定频率范围内的信号。
超再生原理

超再生接收和ASK发射电路原理超再生接收是编解码电路最常见的一种形式,成本低廉,灵敏度高,电气性能满足一般的应用环境。
除此之外如超外差等也较多见,从根本上说也是一种发展取代的方向。
有一个很重要的概念:超再生接收电路全称“自息/他息灭式再生检波电路”,从这个定义上可以知道1:它归属检波电路的一类;2:它是一个工作在间歇状态的检波电路;3:这个检波电路利用了再生原理。
上图是再生检波的基本图,其中C2起正反馈(再生)作用,R3R2R1共同决定N的工作点。
电路调好时,该检波电路有很高的灵敏度指标。
但当这个检波电路再生分量过强时就会产生高频振荡。
在60、70年代该电路直接用于民用中波收音,该段加上音频放大复用成“再生来复式收音机”。
不敢用于短波,那时的管子fT太低--现在FT大于1G的管子一抓一大把,直接检波效果我看比那些粗制滥造的什么“十波段全球牌收音机”灵敏度指标差不到哪去?(增益值大家可以算出)那时候,不敢用到短波,因是直接检波,故对几M--几十M的信号而言,性能大打折扣。
可以这么理解:干脆把这个电路调到振荡去(增益很高),然后在A点加入个频率低得多的电压,让电路(N)的工作点随该电压的变化简歇振荡工作---这就是超再生电路,这个外加的电压称为熄灭电压。
超再生式接收电路在无信号输入时,由于外界或内在的噪音电压的激发,会产生不规则的杂乱振荡,导致输出极大的噪声,这是超再生电路的一个主要特点。
其原理如下图所示。
超再生电路按熄灭电压来源的不同,可分为他熄式和自熄式两种,这个外加或自生的电压决定了超再生的熄灭频率。
前者采用独立的振荡电路来产生熄灭电压,后者有管子本身兼产生熄灭电压。
自熄式电路简单、经济效率也高相对使用得更为广泛。
以下也主要介绍这种电路形式。
(图2图3图4图6电路参数为对应27MHz,图5对应266MHz频率)。
图2是超再生的祖宗级电路,特点:灵敏度很高,相当于一台有独立本机振荡、一级混频、两级中放的标准超外差接收电路;对晶体管要求不严,允许很低的工作电压(譬如3V)环境仍保持差不多的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求教!!无线接收电路分析
谁能帮我分析一下这张电路图,是一个超再生接收电路,图是网上的,但没什么具体分析(搜无线发射接收电路,或PT2262/2272电路等可找到)。
我想知道这个电路是怎么解调信号的,接收的应该是ASK调制的信号。
前面两个三极管的电路分别有什么做用,还有那个LM358(是一个运放的芯片)这样接有什么作用,最后就是从LM358的1号脚输出到2272芯片,这个就不用管它了,就是求前面电路的分析,谢谢
ASK指的是振幅键控方式。
这种调制方式是根据信号的不同,调制信号的幅度。
此处的LM358的123脚及外围下称后比较器(同相滞回电压比较器),LM358的567脚及外围下称前放大器。
超再生接收电路原理:它实际上是一个受间歇振荡控制的高频振荡器(自熄振荡器),这个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。
而间歇振荡又是在高频振荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。
自熄振荡器通俗的说就是有一点震荡,然后马上熄灭,过一会又振荡,这个周期频率一般有上百Khz。
这样脆弱的环境容易让其跟着外加同频率信号的幅度一起增大减小,因此灵敏度高。
但是调试起来就相当麻烦了,可以试试看。
只要工作点找准了,还是好用的。
此电路有很高的增益,在未收到控制信号时,由于受外界及自身,产生一种特有的超噪声,这个噪声的频率范围为0.3~5kHz之间。
在无信号时,超噪声电平很高,经滤波放大后输出噪声电压,该电压作为电路一种状态的控制信号。
当有控制信号到来时,电路谐振,超噪声被抑制,高频振荡器开始产生振荡。
而振荡过程建立的快慢和间歇时间的长短,受接收信号的振幅控制(是信号的幅度)。
接收信号振幅大时,起始电平高,振荡过程建立快,每次振荡间歇时间也短,得到的控制电压也高,后比较器输出1电平;反之,得到的控制电压也低,后比较器输出0电平。
这样,在电路的负载上便得
到了与控制信号一致的低频电压,这个电压便是电路状态的另一种控制电压。
详解:
Q1进行选频放大,滤除无用频率信号;Q2与C6、C7、L2等元件组成超再生高频接收电路,微调L2改变其接收频率,使之严格对准发射频率。
当L1收到调制波时,经Q1调谐预放大,再经Q2检波调制信号送入前放大器放大。
C11相对于自激频率来讲是个大电容,充电完成后自激熄灭导致放电(R9、C10、C11起自熄作用),之后继续下一个自激过程。
ASK信号的检波解码是靠后比较器来完成的,据噪声电压的平均值与电压本身(R11和R12分压2.5V),用比较器比较出1或者0的信号,从1脚输出给2272。