(江苏专用)2017届高三数学一轮总复习第二章函数与基本初等函数Ⅰ第六节指数与指数函数课件文
高考数学一轮复习 第二章 基本初等函数、导数的应用 第6讲 指数与指数函数分层演练直击高考 文

第6讲 指数与指数函数1.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )=________.解析:由f (a )=3得2a +2-a =3,两边平方得22a +2-2a +2=9,即22a +2-2a =7,故f (2a )=7.答案:72.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系为________.解析:由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .答案:a >b >c3.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 解析:当a >1时,f (x )=a x -1在[0,2]上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3.当0<a <1时,f (x )=a x -1在[0,2]上为减函数,又因为f (0)=0≠2,所以0<a <1不成立.综上可知,a = 3. 答案: 34.⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42- ⎝ ⎛⎭⎪⎫-2323=________. 解析:原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2. 答案:25.已知函数f (x )=e x -e -x e x +e -x ,若f (a )=-12,则f (-a )=________. 解析:因为f (x )=e x -e -x e x +e -x ,f (a )=-12, 所以e a -e -ae a +e -a =-12. 所以f (-a )=e -a -e a e -a +e a =-e a -e -a e a +e -a =-⎝ ⎛⎭⎪⎫-12=12. 答案:126.若函数f (x )=a |2x -4|(a >0,a ≠1)且f (1)=9,则f (x )的单调递减区间是________.解析:由f (1)=9得a 2=9,所以a =3.因此f (x )=3|2x -4|,又因为g (x )=|2x -4|的递减区间为(-∞,2],所以f (x )的单调递减区间是(-∞,2]. 答案:(-∞,2]7.函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x +1在x ∈[-3,2]上的值域是________. 解析:因为x ∈[-3,2],若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8. 则y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57. 所以所求函数值域为⎣⎢⎡⎦⎥⎤34,57. 答案:⎣⎢⎡⎦⎥⎤34,57 8.已知函数f (x )=e|x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析:因为y =e u 是R 上的增函数,所以f (x )在[1,+∞)上单调递增,只需u =|x -a |在[1,+∞)上单调递增,由函数图象可知a ≤1.答案:(-∞,1]9.(2018·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.解析:由于f (x )=max{e |x |,e |x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ;当x <1时,f (x )>e.故f (x )的最小值为f (1)=e.答案:e10.若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析:令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a的图象只有一个公共点;若a >1,y =a x 与y =x +a 的图象如图所示有两个公共点.答案:(1,+∞)11.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围. 解:(1)因为f (x )=b ·a x 的图象过点A (1,6),B (3,24),所以⎩⎪⎨⎪⎧b ·a =6,①b ·a 3=24,② ②÷①得a 2=4,又a >0且a ≠1,所以a =2,b =3,所以f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x, 则g (x )在(-∞,1]上单调递减,所以m ≤g (x )min =g (1)=12+13=56, 故所求实数m 的取值范围是⎝⎛⎦⎥⎤-∞,56. 12.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值.解:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减, 而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1, 解得a =1,即当f (x )有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R )故a 的值为0.1.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >0,e x ,x ≤0,若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为________.解析:当x >0时,F (x )=1x+x ≥2; 当x ≤0时,F (x )=e x+x ,根据指数函数与一次函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以F (x )的值域为(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)2.若关于x 的方程|a x-1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是________.解析:方程|a x -1|=2a (a >0且a ≠1)有两个不同实数根转化为函数y =|a x -1|与y =2a 有两个交点.①当0<a <1时,如图(1),所以0<2a <1,即0<a <12. ②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12. 答案:⎝ ⎛⎭⎪⎫0,123.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0;②a <0,b ≥0,c >0;③2-a <2c ;④2a +2c <2.解析:画出函数f (x )=|2x -1|的图象(如图),由图象可知,a <0,b 的符号不确定,c >0.故①②错;因为f (a )=|2a -1|,f (c )=|2c -1|,所以|2a -1|>|2c -1|,即1-2a >2c -1,故2a +2c <2,④成立;又2a +2c >22a +c ,所以2a +c <1,所以a +c <0,所以-a >c ,所以2-a >2c,③不成立.答案:④5.(2018·苏锡常镇四市调研)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.解:(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1, 故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a <0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,所以a >0. 6.设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数.(1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值. 解:因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,即k =1.(1)因为f (1)>0,所以a -1a>0, 又a >0且a ≠1,所以a >1,f (x )=a x -a -x ,因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数.原不等式可化为f (x 2+2x )>f (4-x ),所以x 2+2x >4-x ,即x 2+3x -4>0,所以x >1或x <-4,所以不等式的解集为{x |x >1或x <-4}.(2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0, 所以a =2或a =-12(舍去), 所以g (x )=22x +2-2x -4(2x -2-x ) =(2x -2-x )2-4(2x-2-x )+2.令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=3,2所以原函数变为w(t)=t2-4t+2=(t-2)2-2,所以当t=2时,w(t)min=-2,此时x=log2(1+2).即g(x)在x=log2(1+2)时取得最小值-2.。
【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程课件 理

π 由于 cos(2+kπ)=0(k∈Z), π 而在2+kπ(k∈Z)的所有取值中, π 3π 5π 7π 9π 只有2, 2 , 2 , 2 , 2 满足在[0,16] 内,
故零点个数为1+5=6.
解析答案
1
x 2 -1, 3.已知函数 f(x)= 1+log2x,
2
3
4
5
6
7
f(b)<0 的函数y=f(x),通过不断地 对于在区间[a,b]上连续不断且 f(a)·
把函数 f(x) 的零点所在的区间一分为二 ,使区间的两个端点逐步逼 近 零点 ,进而得到零点近似值的方法叫做二分法.
答案
3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系 Δ>0 二次函数y= ax2+bx+c (a>0)的图象 Δ=0 Δ<0
1 1 解得4<m<2.
解析答案 返回
易错警示系列
易错警示系列
3.忽视定义域导致零点个数错误
典例
定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 016x+log2 016x,
则在R上函数f(x)的零点个数为________.
易错分析 得出当x>0时的零点个数后,容易忽略条件:定义在R上
解析答案
(2)若定义在 R上的偶函数 f(x)满足f(x+2) =f(x) ,且当x∈[0,1]时,f(x) =x,
4 则函数y=f(x)-log3|x|的零点个数是___.
解析 由题意知,f(x)是周期为2的偶函数. 在同一坐标系内作出函数y=f(x)及y=log3|x|的图象,如图: 观察图象可以发现它们有4个交点, 即函数y=f(x)-log3|x|有4个零点.
(江苏专用)2017届高三数学一轮总复习 第二章 函数与基本.

值的比较
存在一个x0,当x>x0时,有logax<xn <ax
3.解函数应用问题的四步骤 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初 步选择函数模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为 符号语言,利用数学知识,建立相应的函数模型; (3)解模:求解函数模型,得出数学结论; (4)还原:将数学结论还原为实际意义的问题. 以上过程用框图表示如下:
第九节
函数模型及其应用
1.几类函数模型
函数模型 一次函数模型 反比例函 数模型 函数解析式 f(x)=ax+b(a,b 为常数,a≠0) k f(x)=x+b(k,b 为常数且 k≠0)
函数模型 二次函数模型
函数解析式 f(x)=ax2+bx+c (a,b,c 为常数,a≠0) f(x)=bax+c (a,b,c 为常数,b≠0,a>0 且 a≠1) f(x)=blogax+c (a,b,c 为常数,b≠0,a>0 且 a≠1) f(x)=axn+b(a,b 为常数,a≠0)
1.函数模型应用不当,是常见的解题错误.所以要正确理解 题意,选择适当的函数模型. 2.要特别关注实际问题的自变量的取值范围,合理确定函数 的定义域. 3.注意问题反馈.在解决函数模型后,必须验证这个数学结 果对实际问题的合理性.
[小题纠偏] 1.据调查,某自行车存车处在某星期日的存车量为 4 000 辆次, 其中变速车存车费是每辆一次 0.3 元,普通车存 车费是每辆一次 0.2 元. 若普通车存车量为 x 辆次, 存 车费总收入为 y 元,则 y 关于 x 的函数关系式是 ____________________________________________.
考点一
【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数 理.

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数 理1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log m n a M =n mlog a M (m ,n ∈R ,且m ≠0). (2)对数的性质 ①log a Na=__N __;②log a a N=__N __(a >0且a ≠1).(3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)当x>1时,y>0当0<x<1时,y<0(5)当x>1时,y<0当0<x<1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若MN>0,则log a(MN)=log a M+log a N.( ×)(2)log a x·log a y=log a(x+y).( ×)(3)函数y=log2x及13log=3y x都是对数函数.( ×)(4)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.( ×)(5)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( √)(6)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.( √)1.(2015·湖南改编)设函数f(x)=ln(1+x)-ln(1-x),则有关f(x)的性质判断正确的是________.(填序号)①奇函数,且在(0,1)上是增函数;②奇函数,且在(0,1)上是减函数;③偶函数,且在(0,1)上是增函数;④偶函数,且在(0,1)上是减函数.答案①解析易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln1+x1-x=ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数.2.已知1213113log log232=,=,=,a b c则a,b,c的大小关系为________.答案a>b>c解析131131,0log log2log log3023322===1,==-,a b c><<<故a>b>c.3.函数f(x)=lg(|x|-1)的大致图象是________.(填图象序号)答案②解析由函数f(x)=lg(|x|-1)的定义域为(-∞,-1)∪(1,+∞),值域为R.又当x>1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a=log43,则2a+2-a=________.答案4 33解析23loglog3log3log3222222244--+=+=+a a=3+33=4 33.5.(教材改编)若log a34<1(a>0,且a≠1),则实数a的取值范围是________________.答案⎝⎛⎭⎪⎫0,34∪(1,+∞)解析当0<a<1时,log a34<log a a=1,∴0<a<34;当a>1时,log a34<log a a=1,∴a>1.∴实数a的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞).题型一对数式的运算例1 (1)设2a =5b=m ,且1a +1b=2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:1-log 632+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n=________.答案 (1)1 (2)12 解析 (1)原式 =1-2log 63+log 632+log 663·log 66×3log 64=1-2log 63+log 632+1-log 631+log 63log 64=1-2log 63+log 632+1-log 632log 64=21-log 632log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m=2,a n=3, ∴a2m +n=(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x<log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确. (2)构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是________.(2)设方程10x=|lg(-x )|的两个根分别为x 1,x 2,则________. ①x 1x 2<0 ②x 1x 2=1 ③x 1x 2>1④0<x 1x 2<1答案 (1)② (2)④解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②. (2)构造函数y =10x与y =|lg(-x )|, 并作出它们的图象,如图所示.因为x 1,x 2是10x=|lg(-x )|的两个根,则两个函数图象交点的横坐标分别为x 1,x 2,不妨设x 2<-1,-1<x 1<0,则0lg()111=--,x x 0lg()221=-,x x 因此()00lg 21121-1=,x x x x 因为000211-1,x x <所以lg(x 1x 2)<0,即0<x 1x 2<1,④正确. 题型三 对数函数的性质及应用 命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a 3-a=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log ()0-,,x x <若f (a )>f (-a ),则实数a 的取值范围是__________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2, ∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g 1>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,212log log a a >或⎩⎪⎨⎪⎧a <0,12log ()log ()2--,a a >解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,12log =,b π c =π-2,则a ,b ,c 的大小关系为____________.(3)已知log 3.4log 3.6log 0.3155()5243=,=,=,a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)33310log log 0.3log 0.331()55.5-===c 方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x为增函数,32410log log 3.4log 3.63555.∴>>即324log 0.3log 3.4log 3.615()55,>>故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是________(填序号).答案 ②解析 由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.①中,y =3-x=(13)x 在R 上为减函数,错误;②中,y =x 3符合;③中,y =(-x )3=-x 3在R 上为减函数,错误; ④中,y =log 3(-x )在(-∞,0)上为减函数,错误.2.已知x =ln π,y =log 52,12=e ,z -则x ,y ,z 的大小关系为____________. 答案 y <z <x解析 ∵x =ln π>ln e,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =12e-=1e>14=12,∴12<z <1.综上可得,y <z <x .3.若函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x x ≥4,f x +1 x <4,则f (log 23)=________.答案124解析 ∵1<log 23<log 24=2,∴3+log 23∈(4,5), ∴f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)22log 24log 24122-==⎛⎫ ⎪⎝⎭ 21log 2412.24== 4.设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0) 解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________. 答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=24log 51(2) 1.5-+=- 6.函数f (x )=log 2x(2x )的最小值为________.答案 -14 解析 显然x >0,∴f (x )=log 2x ·log(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14. 7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_________________________. 答案 (1,2] 解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧ a >1,3+log a 2≥4,∴1<a≤2. 9.已知函数212log ()=-+y x ax a 在区间(-∞,2)上是增函数,求a 的取值范围.解 函数212log ()=-+y x ax a 是由函数12log =y t 和t =x 2-ax +a 复合而成.因为函数12log =y t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a2)上单调递减,又因为函数212log ()=-+y x ax a 在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a2,22-2a +a ≥0,解得⎩⎨⎧ a ≥22,a ≤22+1,即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2.B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝ ⎛⎭⎪⎫13,f ⎝ ⎛⎭⎪⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时x =1,当f (x )=1时x =3或13,所以区间[a ,b ]的最短长度为1-13=23,所以b -a 的最小值为23. 14.已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫0,14 解析 由题意可知ln a 1-a +ln b1-b =0,即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值. 解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =132,- 此时f (x )取得最小值时,1332(2)=x --=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,[]321()2,82==,x - 符合题意,∴a =12.。
江苏专用版高考数学一轮复习第二章函数概念与基本初等函数I2.2函数单调性与最值文含答案.docx

设-1<
1<2<1,
x
x
则
f
(1)-
(
x
ax1
ax2
2)=2
-2
x
f
x1-1x2-1
2
2
+ax
a x-x
x x+1
ax x-ax-ax
x
2
1
1
2
1
2
1
2
1
2
=
x12-1
x22-1
=
x12-1
x22-1
,
∵-1<x1<x2<1,
22
∴x2-x1>0,x1x2+1>0,(x1-1)(x2-1)>0.
又∵a>0,∴f(x1)-f(x2)>0,
1
(1)当a=2时,求函数f(x)的最小值;
(2)
若对任意x∈[1,+∞),f
(x)>0
恒成立,试求实数
a的取值范围.
解
1
时,f(x)=x+
1
在[1,+∞)上为增函数,f(x)
7
(1)当a=2
2x+2
min
=f(1)=2.
5
a
(2)f(x)=x+x+2,x∈[1,+∞).
①当 ≤0时,
f
(
x
)在[1,+∞)内为增函数.
a]上是减函数,
在[
a,+∞)上是增函数.
证明
方法一
任意取
x
1>
2>0,则
x
aa
f(x1)-f(x2)=x1+x1-x2+x2
1
2
)+
a
(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程 文

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I 2.8 函数与方程文1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( ×)(3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ×)(4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=e x+3x 的零点个数是________. 答案 1解析 ∵f (-1)=1e -3<0,f (0)=1>0,∴f (x )在(-1,0)内有零点,又f (x )为增函数,∴函数f (x )有且只有一个零点.2.若x 1,x 2是方程2x=(12)11x -+的两个实根,则x 1+x 2=________.答案 -1解析 ∵2x=(12)11x -+,∴2x=211x -,∴x =1x-1即x 2+x -1=0,∴x 1+x 2=-1.3.函数f (x )=2x|log 0.5 x |-1的零点个数为________. 答案 2解析 由f (x )=0得|log 0.5x |=⎝ ⎛⎭⎪⎫12x,作出函数y =|log 0.5x |和y =⎝ ⎛⎭⎪⎫12x的图象,由图象知两函数图象有2个交点, 故函数f (x )有2个零点.4.(2015·天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y=f (x )-g (x )的零点个数为________. 答案 2解析 当x >2时,g (x )=x -1,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=3-x ,f (x )=2-x ; 当x <0时,g (x )=3-x 2,f (x )=2+x .由于函数y =f (x )-g (x )的零点个数就是方程f (x )-g (x )=0的根的个数.x >2时,方程f (x )-g (x )=0可化为x 2-5x +5=0,其根为x =5+52或x =5-52(舍去); 当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =3-x ,无解;当x <0时,方程f (x )-g (x )=0可化为x 2+x -1=0,其根为x =-1-52或x =-1+52(舍去).所以函数y =f (x )-g (x )的零点个数为2.5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.题型一 函数零点的确定 命题点1 函数零点所在的区间例1 (2015·长沙四月调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是(k ,k +1) (k ∈Z ),则k =________. 答案 2解析 ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点.当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 命题点3 求函数的零点例3 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为______________. 答案 {-2-7,1,3}解析 当x ≥0时,f (x )=x 2-3x ,令g (x )=x 2-3x -x +3=0,得x 1=3,x 2=1. 当x <0时,-x >0,∴f (-x )=(-x )2-3(-x ), ∴-f (x )=x 2+3x ,∴f (x )=-x 2-3x . 令g (x )=-x 2-3x -x +3=0, 得x 3=-2-7,x 4=-2+7>0(舍),∴函数g (x )=f (x )-x +3的零点的集合是{-2-7,1,3}.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是________.①(0,1) ②(1,2) ③(2,4)④(4,+∞)(2)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.答案 (1)③ (2)1解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)方法一 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y =⎝ ⎛⎭⎪⎫12x的图象,可得交点只有一个,所以零点只有一个. 方法二 ∵f (0)=-1,f (1)=12,∴f (0)f (1)<0,故函数f (x )在(0,1)至少存在一个零点, 又f (x )显然为增函数,∴f (x )零点个数为1. 题型二 函数零点的应用例4 若关于x 的方程22x+2xa +a +1=0有实根,求实数a 的取值范围. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-2 2 ]. 方法二 (分离变量法)由方程,解得a =-22x+12x +1,设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决,解的个数可化为函数y =f (x )的图象和直线y =a 交点的个数.(1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是__________.答案 (1)(0,3) (2)(0,1)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1. 题型三 二次函数的零点问题例5 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0,即a 2+a -2<0,∴-2<a <1. 方法二 函数图象大致如图, 则有f (1)<0,即1+(a 2-1)+a -2<0, ∴-2<a <1.故实数a 的取值范围是(-2,1).思维升华解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.若关于x的方程x2+ax-4=0在区间[2,4]上有实数根,则实数a的取值范围是________.答案[-3,0]解析如果方程有实数根,注意到两个根之积为-4<0,可知两根必定一正一负,因此在[2,4]上有且只有一个实数根,设f(x)=x2+ax-4,则必有f(2)f(4)≤0,所以2a(12+4a)≤0,即a∈[-3,0].3.忽视定义域导致零点个数错误典例定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 016x+log2 016x,则在R上函数f(x)的零点个数为_____________________________.易错分析得出当x>0时的零点个数后,容易忽略条件:定义在R上的奇函数,导致漏掉x<0时和x=0时的情况.x.作出函数y 解析当x>0时,由f(x)=2 016x+log2 016x=0得2 016x=-log2 016x=log12016x的图象,可知它们只有一个交点,所以当x>0时函数只有一个=2 016x与函数y=log12016零点.由于函数为奇函数,所以当x<0时,也有一个零点.又当x=0时y=0,所以共有三个零点.答案 3温馨提醒(1)讨论x>0时函数的零点个数也可利用零点存在性定理结合函数单调性确定.(2)函数的定义域是讨论函数其他性质的基础,要给予充分重视.[方法与技巧]1.函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合:函数y=f(x)-g(x)的零点,就是函数y=f(x)和y=g(x)图象交点的横坐标.(3)解方程.2.二次函数的零点可利用求根公式、判别式、根与系数的关系或结合函数图象列不等式(组).3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法.[失误与防范]1.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.2.判断零点个数要注意函数的定义域,不要漏解;画图时要尽量准确.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,因此m 的取值范围是(0,1).2.已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N *),则k 的值为___________________________________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln 3-1>0,f (4)=ln 4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x-1, x ≤1,1+log 2x , x >1,则函数f (x )的零点为________.答案 0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0.4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法)∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是__________. 答案 [-1,0)解析 当x >0时,f (x )=2x -1.令f (x )=0,解得x =12;当x ≤0时,f (x )=e x+a ,此时函数f (x )=e x +a 在(-∞,0]上有且仅有一个零点,等价转化为方程e x=-a 在(-∞,0]上有且仅有一个实根,而函数y =e x在(-∞,0]上的值域为(0,1],所以0<-a ≤1,解得-1≤a <0.6.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________. 答案 (-2,0)解析 ∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________. 答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0, 解集为{x |-32<x <1}.8.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1) 解析 画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点, 结合图象得:0<m <1,即m ∈(0,1).9.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ,1],1-1x ,x,+,故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 10.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 方法一 设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,则应有f (2)<0, 又∵f (2)=22+(m -1)×2+1, ∴m <-32.②若f (x )=0在区间[0,2]上有两解,则 ⎩⎪⎨⎪⎧Δ≥0,0<-m -12<2,f ,∴⎩⎪⎨⎪⎧ m -2-4≥0,-3<m <1,4+m -+1≥0. ∴⎩⎪⎨⎪⎧ m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1. 由①②可知m 的取值范围是(-∞,-1].方法二 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x, 又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x在(0,2]的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].B 组 专项能力提升(时间:15分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧ 1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是____________.答案 (-∞,1]∪[2,+∞)解析 当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x=m ,解得m ≥2.即实数m 的取值范围是(-∞,1]∪[2,+∞).12.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 答案 2解析 由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.13.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧ a x , x ≥0,kx +1, x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.答案 (0,1)解析 函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y=f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.14.(2015·湖南)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.15.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤34,45 解析 当0<x <1时,f (x )=[x ]x-a =-a , 当1≤x <2时,f (x )=[x ]x-a =1x -a , 当2≤x <3时,f (x )=[x ]x -a =2x -a ,….f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,通过数形结合可知a ∈(34,45].。
【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.7 函数的图象课件 理

答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.( × ) (2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.( × ) (3)函数y=f(x)与y=-f(x)的图象关于原点对称.( × ) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1 对称.( √ ) (5)将函数y=f(-x)的图象向右平移1个单位得到函数y=f(-x-1)的图 象.( × )
例2
边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD 与DA运动,记∠BOP=x.将动点P到A,B两点距离之和 表示为x的函数f(x),则y=f(x)的图象大致为___.(填序号)
解析答案
(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x) 的图象为____.(填序号)
1
2
3
4
5
解析答案
④ 填序号). 3.已知函数f(x)=e|ln x|,则函数y=f(x+1)的大致图象为_____(
当x≥1时,f(x)=eln x=x,其图象为一条直线; 1 ln x - 当0<x<1时, f(x)=e = . x 解析 函数y=f(x+1)的图象为函数y=f(x)图象向左平移1个单位长度后得到的. 故④正确.
思维升华
解析答案
跟踪训练2
(1)现有四个函数:①y=xsin x;②y=xcos x;③y=x|cos x|;④y=x· 2x的 图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序 号正确排序是______.
解析答案
(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)热点探究课1 函数的图象与性质教师

热点探究课(一) 函数的图象与性质[命题解读] 函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.热点1 函数图象的应用利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题的能力.已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为________. 【导学号:62172064】⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 [画出函数f (x )的图象,如图,当0≤x ≤12时,令f (x )=cos πx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34,故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74.][迁移探究1] 在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,某某数k 的取值X 围.[解] 由函数f (x )的图象(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值X 围是k =0或k >1.[迁移探究2] 在本例条件下,若函数y =f (x )-k |x |恰有两个零点,某某数k 的取值X 围.[解] 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图象与y =k |x |的图象恰有两个交点,借助函数图象(图略)可知k ≥2或k =0,即实数k 的取值X 围为k =0或k ≥2.[规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右X 围对应定义域,上下X 围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或X 围.3.有关不等式的问题常常转化为两个函数图象的上、下关系来解. [对点训练1] (2017·某某期中)已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x +22x,x ≥2,若0<a <b <c ,满足f (a )=f (b )=f (c ),则abf c的X 围是________.(1,2) [如图所示,∵0<a <b <c ,且f (a )=f (b )=f (c ), ∴-log 2a =log 2b ,即ab =1, 又由图可知12<f (c )<1,故1<1f c<2,∴ab f c =1f c∈(1,2).] 热点2 函数性质的综合应用对函数性质的考查,以单调性、奇偶性和周期性为主,同时融合函数的零点问题,重在考查学生的等价转化能力及数形结合意识,难度中等.熟练掌握上述性质是解此类题的关键. ☞角度1 单调性与奇偶性结合(2016·某某高考改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值X 围是________.⎝ ⎛⎭⎪⎫12,32 [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.]☞角度2 奇偶性与周期性结合(2017·某某二模)已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为________.7[由f(x+2)=f(x)可知,f(x)在[0,+∞)上是周期为2的函数,又x∈[0,2)时,f(x)=|x2-x-1|,且f(x)为偶函数,故f(x)在[-2,4]上的图象如图所示.由图可知y=f(x)与y=1有7个交点,故函数y=f(x)-1在区间[-2,4]上有7个零点.]☞角度3 单调性、奇偶性与周期性结合已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.f(-25)<f(80)<f(11) [因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).][规律方法]函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.热点3 函数图象与性质的综合应用函数的零点、方程的根和函数图象的交点横坐标之间的等价转化思想和数形结合思想是解答此类问题的关键所在.因此在处理此类问题时,务必要结合题设信息实现知识转化.以填空题压轴题据多,求解时务必细心.(2015·某某高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为______.4 [令h (x )=f (x )+g (x ), 则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.][规律方法] 解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值X 围的界定,代入相应的解析式求解零点,注意取值X 围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.[对点训练2] 已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值X 围是________.【导学号:62172065】(-∞,1) [函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0的图象如图所示,当a <1时,函数y =f (x )的图象与函数f (x )=x +a 的图象有两个交点,即方程f (x )=x +a 有且只有两个不相等的实数根.]热点探究训练(一)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·某某期中)函数f (x )=12-lg x 的定义域是________. (0,10] [由12-lg x ≥0得lg x ≤12,即0<x ≤10.]2.(2017·某某期末)函数f (x )=log 2(-x 2+22)的值域为________.【导学号:62172066】⎝⎛⎦⎥⎤-∞,32 [∵-x 2+22≤22,且y =log 2x 在(0,22]上单调递增,故log 2x ≤log 222=log 2232=32.]3.(2017·如皋中学高三第一次月考)若函数f (x )=x 2e x +me x-1(e 为自然对数的底数)是奇函数,则实数m 的值为________.1 [由f (-x )=-f (x )得x 2e -x +me -x-1=-x 2e x +me x-1,即1+m e x=e x+m ,故m =1.]4.若函数f (x )=a sin 2x +b tan x +1,且f (-3)=5,则f (π+3)=________.【导学号:62172067】-3 [令g (x )=a sin 2x +b tan x ,则g (x )是奇函数,且最小正周期是π,由f (-3)=g (-3)+1=5,得g (-3)=4,则g (3)=-g (-3)=-4,则f (π+3)=g (π+3)+1=g (3)+1=-4+1=-3.]5.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________.1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]6.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值X 围是________.[-1,2) [由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a .因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解.由x =2,得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 由x ≤a ,得a ≥-1.综上,a 的取值X 围为[-1,2).]7.(2017·某某第一次学情检测)已知f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤6的解集是________. 【导学号:62172068】[-2,4] [∵f (x )为R 上的偶函数, ∴当x <0时,-x >0, ∴f (-x )=2-x-2, 即f (x )=2-x -2. ∵f (x -1)≤6,∴当x -1≥0,即x ≥1时, 2x -1-2≤6,解得1≤x ≤4; 当x -1<0,即x <1时,21-x-2≤6,解得-2≤x <1.综上可知,f (x -1)≤6的解集为[-2,4].]8.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]9.已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =f ⎝ ⎛⎭⎪⎫14,c =f (2),则a ,b ,c 的大小关系是________. b >a >c [由函数y =f (x +2)的图象关于直线x =-2对称,得函数y =f (x )的图象关于y 轴对称,即y =f (x )是偶函数.当x ∈(0,1)时,f (x )=f ⎝ ⎛⎭⎪⎫1x=|log 2x |,且x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f ⎝ ⎛⎭⎪⎫14=f (4),所以b >a >c .] 10.(2017·某某一模)设f (x )是定义在R 上的奇函数,且f (x )=2x+m2x ,设g (x )=⎩⎪⎨⎪⎧f x ,x >1,f -x ,x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值X 围是________.⎣⎢⎡⎦⎥⎤-32,32 [由f (x )为R 上的奇函数可知,f (0)=0,即1+m =0,m =-1,∴f (x )=2x-12x ,∴g (x )=⎩⎪⎨⎪⎧2x-12x ,x >1,12x-2x,x ≤1.又当x >1时,g (x )为增函数, ∴g (x )>g (1)=2-12=32,当x ≤1时,g (x )为减函数, ∴g (x )≥g (1)=-⎝ ⎛⎭⎪⎫2-12=-32. 要使g (x )-t =0有且只有一解,即函数y =g (x )与y =t 的图象只有一个交点(图略),故-32≤t ≤32.]二、解答题11.(2017·某某期中)已知函数f (x )=log 2x4log 22x .(1)解不等式f (x )>0;(2)当x ∈[1,4]时,求f (x )的值域.[解] (1)函数f (x )=log 2x4·log 22x =(log 2x -log 24)(log 22+log 2x )=(log 2x )2-log 2x -2,x ∈(0,+∞). 令f (x )=(log 2x )2-log 2x -2>0, 则log 2x >2或log 2x <-1,故x >4或0<x <12.(2)若x ∈[1,4],则0≤log 2x ≤2,f (x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎫log 2x -122-94,当log 2x =12即x =2时,f (x )min =-94;当log 2x =2即x =4时,f (x )max =0.故f (x )值域为⎣⎢⎡⎦⎥⎤-94,0. 12.(2017·启东中学高三第一次月考)已知函数f (x )=-2x+m2x +1+n (其中m ,n 为参数).(1)当m =n =1时,证明:f (x )不是奇函数; (2)如果f (x )是奇函数,某某数m ,n 的值;(3)已知m >0,n >0,在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集. [解] 证明:(1)f (x )=-2x+12x +1+1,∴f (1)=-2+122+1=-15,f (-1)=-12+12=14,∵f (-1)≠-f (1),∴f (x )不是奇函数. (2)由f (x )是奇函数得f (-x )=-f (x ),即-2-x+m 2-x +1+n =--2x+m2x +1+n 对定义域内任意实数x 都成立,化简整理得关于x 的恒等式(2m -n )·22x+(2mn -4)·2x+(2m -n )=0,∴⎩⎪⎨⎪⎧2m -n =0,2mn -4=0,即⎩⎪⎨⎪⎧m =-1,n =-2或⎩⎪⎨⎪⎧m =1,n =2.(3)由题意得m =1,n =2,∴f (x )=-2x+12x +1+2=12⎝ ⎛⎭⎪⎫-1+22x +1,易判断f (x )在R 上递减,∵f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0, ∴f (f (x ))<-f ⎝ ⎛⎭⎪⎫14=f ⎝ ⎛⎭⎪⎫-14,∴f (x )>-14,∴2x<3,∴x <log 23,即所求不等式的解集为(-∞,log 23).B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为________.⎝ ⎛⎭⎪⎫1e ,e [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fln x +f ln x|2=|f (ln x )|,即原不等式可化为|f (lnx )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e<x <e.]2.(2017·某某中学高三摸底考试)对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值X 围是________.⎝⎛⎭⎪⎫1,1+1e [由题意得lnx +x =kx 有两个不同的解,k =ln x x +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝ ⎛⎭⎪⎫-∞,1+1e ,当x >e 时,k ∈⎝ ⎛⎭⎪⎫1,1+1e ,从而要使ln x+x =kx 有两个不同的解,需k ∈⎝⎛⎭⎪⎫1,1+1e .] 3.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.[解] (1)由⎩⎪⎨⎪⎧f8=2,f1=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x . (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).∵x 2x -1=x -12+2x -1+1x -1=(x -1)+1x -1+2≥2x -1·1x -1+2=4.当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1. 4.已知函数f (x )=x 2-1,g (x )=a |x -1|.(1)若当x ∈R 时,不等式f (x )≥g (x )恒成立,某某数a 的取值X 围; (2)求函数h (x )=|f (x )|+g (x )在区间[0,2]上的最大值.[解] (1)不等式f (x )≥g (x )对x ∈R 恒成立,即x 2-1≥a |x -1|(*)对x ∈R 恒成立. ①当x =1时,(*)显然成立,此时a ∈R ;②当x ≠1时,(*)可变形为a ≤x 2-1|x -1|,令φ(x )=x 2-1|x -1|=⎩⎪⎨⎪⎧x +1,x >1,-x +1,x <1.因为当x >1时,φ(x )>2,当x <1时,φ(x )>-2, 所以φ(x )>-2,故此时a ≤-2.综合①②,得所某某数a 的取值X 围是(-∞,-2]. (2)h (x )=⎩⎪⎨⎪⎧-x 2-ax +a +1,0≤x <1,0,x =1,x 2+ax -a -1,1<x ≤2.①当-a2≤0,即a ≥0时, (-x 2-ax +a +1)max =h (0)=a +1, (x 2+ax -a -1)max =h (2)=a +3. 此时,h (x )max =a +3. ②当0<-a2≤1,即-2≤a <0时,(-x 2-ax +a +1)max=h ⎝ ⎛⎭⎪⎫-a 2=a 24+a +1,(x 2+ax -a -1)max =h (2)=a +3.此时h (x )max =a +3. ③当1<-a2≤2,即-4≤a <-2时,(-x 2-ax +a +1)max =h (1)=0,(x 2+ax -a -1)max =max{h (1),h (2)}=max{0,3+a }=⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.此时h (x )max =⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.④当-a2>2,即a <-4时,(-x 2-ax +a +1)max =h (1)=0, (x 2+ax -a -1)max =h (1)=0. 此时h (x )max =0.word11 / 11 综上:h (x )max =⎩⎪⎨⎪⎧ 3+a ,a ≥-3,0,a <-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
1 t∈a,a;
所以 y=(t+1)2-2, 其关于 t 的函数图象在[-1,+∞)上单调递增. 当 a>1 时,f(x)在 t=a 处取得最大值 a2+2a-1=14, 得 a=3.
12 2 1 1 当 0<a<1 时,f(x)在 t=a处取得最大值 a +a-1=14,得 a= . 3 1 综上所述,a=3 或 . 3
第六节
指数与指数函数
1.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:a = am(a>0,m,n∈N*,且n>1). ②负分数指数幂:a = m = (a>0,m,n∈N*,且n>1). a n n am
m n
m n
n
1
1
③0 的正分数指数幂等于 0 ,0 的负分数指数幂 没有意义 . (2)有理数指数幂的性质
3 2 2
3
4 3
其中正确命题的序号是________.
解析:①∵a<0时,(a ) >0,a3<0,故①是错误的; ②∵a2-a+1>0恒成立, ∴(a2-a+1)0=1,故②是正确的; ③ x4+y3=(x4+y ) ,故③是错误的; ④∵2x=16, 1 ∴x=4,∵3 = =3-3, 27
3.已知 0.2m<0.2n,则 m______n(填“>”或“<”).
答案:>
4.(1)2 3× 1.5× 12=________. (2) 2a b -6a b ÷ =________. -3a b
答案:(1)6 (2)4a
3
6
2 3
1 2
1 2
1 3
y
1 3 3
3 2 2
3
∴y=-3, ∴x+y=4+(-3)=1, 故④是错误的.故填②. 答案:②
4.如果函数 f(x)=a2x+2ax-1(a>0,a≠1)在[-1,1]上的 最大值为 14,则 a=________.
解析:令 t=a ,若 a>1,则 若 0<a<1,则
1 t∈ a,a,
n
n
n
2a,n是奇数, = -2a,n是偶数.
2a,n是奇数, 答案: -2a,n是偶数
3.有下列命题: ①当 a<0 时,(a ) =a3; ②若 a∈R,则(a2-a+1)0=1; ③ x4+y3=x +y; 1 ④若 2 =16,3 = ,则 x+y=7. 27
x y
1 6
5 6
1.在进行指数幂的运算时,一般用分数指数幂的形式表示, 并且结果不能同时含有根号和分数指数幂,也不能既有分 母又含有负指数. 2.指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有关, 要特别注意区分 a>1 或 0<a<1.
[小题纠偏] 1.指数函数 y=(2-a)x 在定义域内是减函数,则 a 的取值 范围是__________.
1 答案:3 或 3
考点一
指数幂的化简与求值基础送分型考点——自主练透 [题组练透]
求值与化简:
1 3 1 2 2 -(0.01)0.5; (1)250+2-2· 4
1 2 1 5 1 2 - 3 -3a 2 b-1÷ 4a 3 · ; (2)(易错题) a 3 · b- 2 · b 6
r+s a ①a a = (a>0,r,s∈Q);
r s
②(ar)s= ars(a>0,r,s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
2.指数函数的图象与性质
y= ax a>1 0<a<1
图象
定义域
R
y=ax 值域
a>1
(0 ,+∞) ________
0<a<1
(0,1) 过定点____
(3)
a · b
2 3
1 2 -1
· a · b
1 2Βιβλιοθήκη 1 36.
a· b5
1 1 1 4 1 解:(1)原式=1+ ×9 2 -100 2 4
1 2 1 1 1 16 = 1 + × - = 1+ - = . 4 3 10 6 10 15
2 5 1 - - (2)原式=- a 6 b 3÷ (4a 3 · b 3) 2 1 2
-
解析:当 x=3 时,f(3)=a3-3+3=4,所以 f(x) 恒过定点(3,4). 答案:(3,4)
2.(教材习题改编)函数 f(x)=(a2-1)x 是 R 上的减函数,则 实数 a 的取值范围是________.
解析: 由 0<a2-1<1, 得 1<a2<2, 所以 1<|a|< 2, 即- 2<a< -1 或 1<a< 2. 答案:(- 2,-1)∪(1, 2)
当 x>0 时, y>1 ; 当 x>0 时, 0<y<1 ; x<0 性质
0<y<1 x<0 时,______
y>1 时,____
在区间(-∞,+ 在区间(-∞, +∞)上是 ∞)上是增函数 ______
减函数 _______
[小题体验] 1.(教材习题改编)函数 f(x)=ax 3+3 恒过定点________.
答案:(1,2)
2.化简: a-b + a+bn(a<b<0,n>1,n∈ N)=______________.
n
n
n
解析:当 n 为奇数时,原式=(a-b)+(a+b)=2a. 当 n 为偶数时,∵a<b<0,∴a-b<0,a+b<0, ∴原式=-(a-b)-(a+b)=-2a. ∴ a-b + a+b n
1 3 1 3 5 1 5 5 1 5 ab 6 -3 3 2 2 2 =- a b ÷ (a b )=- a · b =- · 3=- . 4 4 4 ab 4ab2
1 1 1 1 5 1 + a b · a b 1 3 2 6 3 6 2 (3)原式= =a · b + =a. 1 5 a6 b6
1 3
1 2
1 2
1 3
[谨记通法 ] 指数幂运算的一般原则 (1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数, 底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示, 运用指数幂的运算性质来解答. [提醒 ] 运算结果不能同时含有根号和分数指数, 也不能既 有分母又含有负指数.如“题组练透” 第(2)题易错.