(完整版)第1讲数与式中考第一轮复习教案(含答案)(可编辑修改word版)

合集下载

初三总复习教案_第一章《数与式》

初三总复习教案_第一章《数与式》

福鼎七中数学(北师大)初三复习教案周克锋福鼎七中数学(北师大)初三复习教案周克锋福鼎七中数学(北师大)初三复习教案 周克锋【解答】甲净收入=12000.4 ×(4.8-0.5)=(元);乙净收入=12000.3×(3.6-0.4)=(元) 丙净收入=12000.2 ×(2.5-0.3)=(元)所以正确答案是C 。

【相应习题】1.(06宁波)若家用电冰箱冷藏室的温度是4ºC ,冷冻室的温度比冷藏室的温度低22ºC ,则冷冻室的温度是( )A 、18ºCB 、-26ºC C 、-22ºCD 、-18ºC2.(05日照)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上, 300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元、252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( )A 、332元B 、316元或332元C 、288元D 、288元或316元考点7 利用计算器进行估值或探求规律例9.(05广州)用计算器计算22-12-1 ,32-13-1 ,42-14-1 ,52-15-1 ,……根据你发现的规律、判断P =n 2-1n -1 ,与Q =(n 2-1)-1(n -1)-1,(n 为大于1的整数)的值的大小关系为( )A 、P<QB 、P =QC 、P>QD 、与n 的取值有关 【相应习题】1.用计算器比较大小:317 - 6 ____0(填“>”“=”“<”)考点8 定义新运算例10.(05海淀区)用“”、“”定义新运算:对于任意实数a ,b ,都有ab=a 和a b=b ,例如32=3,32=2。

中考数学第一轮复习-数与式-教案

中考数学第一轮复习-数与式-教案

九年级第一轮复习----- 数与式第一部分《数学课程标准》的考查要求一、实数1..在具体环境中,理解实数及其运算的意义。

2..能用数轴上的点表示实数,会比较实数的大小。

3..借助数轴理解相反数和绝对值的意义,会求相反数与绝对值。

4.. 了解平方根,算术平方根,立方根,无理数和实数,近似数,有效数字的概念。

会求某些数(非负数)的平方根与某些数的立方根。

5..会估算一个无理数的范围。

6..能运用实数及其运算法则解决简单的实际问题。

二、代数式1..会根据实际问题列代数式,理解代数式的含义,能理解一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系。

2..理解合并同类项和去括号法则,并会进行运算。

3..会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律。

4..根据数量关系或图形关系寻找规律,分析,归纳,总结两变量间的关系。

5..整式加减在运算时要注意同类项的识别和合并同类项的方法;在整式的乘除运算中要注意理解和区分幂的运算性质,记住乘法公式,理解其特点和应用范围。

6..弄清因式分解与整式乘法的区别,并加强对基本类型的练习。

会用提公因式法,公式法进行因式分解。

7..会利用分式的基本性质进行约分和通分。

会进行简单的分式加,减,乘,除运算。

第二部分考点分析9 8 4 数与式是初中数学的基础,中考着重对基本概念和计算能力的考查,题型以选择、填空及简单的解答题为主。

题量一般在 3 个左右。

分值在 17 分左右,所占比例为 14%(指河南省)。

近几年,出现更多贴近学生生活实际、探究规律的开放型问题、估算无理数的大致范围等热点题目,强化了实数的应用和规律探索问题,并注意数形结合、分类讨论思想的应 用和创新意识的培养。

分式的化简求值常常在河南中招试卷中以解答题的形式考查,以探索 规律,写出公式是方式考查学生思维过程和数学思想方法的应用题目越来越成为热点。

第三部分 典型例题第一节 实数典例 1.把下列各数分别填入相应的集合里.作者:牛保中 高玉平22-1 π- -3 ,21.3,-1,1.234,-,0, sin 60 , - , -3, -, ,782( 2 - 3 ) 0 , 3-2,1.2121121112 …中无理数集合{} 负分数集合{ } 整数集合 { } 非负数集合{ }点拨: 实数分类不能只看表面形式,应先化简再根据结果去判断。

(完整版)中考总复习《数与式》教案

(完整版)中考总复习《数与式》教案

中考总复习教案 第一章 数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右) (一) 实数(一课时)(二) 整式与因式分解(一至两课时) (三) 分式与二次根式(两课时)(四) 数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容。

二、课时教案第一课时 实数教学目的1.理解有理数的意义,了解无理数等概念.2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值. 3.会用科学记数法表示数.4.会比较实数的大小,会利用绝对值知识解决简单化简问题. 5.掌握有理数的运算法则,并能灵活的运用. 教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算.难点:利用绝对值知识解决简单化简问题,实数的大小比较. 教学方法:用例习题串知识(复习时要注意知识综合性的复习). 教学过程(一)知识梳理1.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧比较大小念平方根、算术平方根概绝对值相反数数轴实数的分类实数 2.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧科学记数法运算律乘方、开方乘、除法加、减法法则实数的运算(二)例习题讲解与练习例1 在3.14,1-5,0,2π,cos30°,722,38-,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数? (考查的知识点:有理数、实数等概念. 考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结) 【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数.注意:常见的无理数有三类①π,… ②3,5,… , (38-不是无理数) ③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(2π是无理数). 注:此题可以以其它形式出现,如练习题中2或12题等例2 (1)已知a -2与2a+1互为相反数,求a 的值;(2)若x 、y 是实数,且满足(x -2)2+3y x +-=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念. 考查层次:易)(这是基础知识,由学生解答,老师总结) 【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a 、b 互为相反数⇔a+b=0;a 、b 互为倒数⇔a ·b=1.(2)非负数概念:例3 (1)若数轴上的点A 表示的数为x ,点B 表示的数为-3,则A 与B 两点间的距离可表示为________________.(2)实数a 、b 在数轴上分别对应的点的位置如图所示,请比较a ,-b ,a-b ,a+b 的大小(用“<”号连接)___________________.(3)①化简=-π5_________;②347-=__________;③估计215-与0.5的大小关系是215- 0.5(填“ > ”、“=”、“<”) . (答案:(1)3x +;(2)a+b<a<-b<a-b ;(3)①7-π;②347-;③ >)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等. 考查层次:中)(这是一组较为基础的题,(1)与(2)题注意数形结合,(3)题注意讲解无理数与有理数大小比较的方法,由学生探讨,老师适当的点拨、总结、归纳,)【归纳】:(1)问题(1)若数轴上的点A 表示的数为x 1,点B 表示的数为x 2,则A 与B 两点间的距离可表示为AB=12x x -,要会由数轴上两点间的距离,上升到坐标平面内两点间的距离(例如练习第10题)——数形结合.(2)问题(2)应先由数轴判断字母所表示的数的符号及绝对值的大小关系,再紧扣实数运算法则进行解答.(3)绝对值的意义:(4)估算一个无理数的方法:平方法、被开方数法.(5)比较大小的方法:数轴图示法、作差法、平方法,其中第(2)小题还可以采用赋值法. 练习一:(供选用)1.21的相反数是_____;-3的倒数是_____;-5的绝对值是_____;9的算术平方根是____;-8的立方根是____.2.有四张不透明的卡片如图,它们除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 . 3.下列各式中正确的是( )2题图A .2)2(2-=-B .2121-=-C .()()22--=-+D .⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-2121 4.(1)写出一个小于2-的数: ;(2)绝对值小于5的所有整数的和是_____. 5.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )。

中考数学第一轮复习教案——数与式

中考数学第一轮复习教案——数与式

第一章 数与式第1课时 实数的基本概念一、知识要点 1、实数分类①0⎧⎪⎨⎪⎩正实数:实数负实数:②⎧⎧⎪⎨⎨⎩⎪⎩整数:有理数实数分数:无理数:无限不循环小数: 2、数轴、相反数、绝对值、倒数①只有 的两个数互为相反数;若a 与b 互为相反数,则 . ②数轴:规定了 、 、 的直线;数轴上的点与 一一对应. ③绝对值:(ⅰ)代数意义:(0)(0)(0)a a a a >⎧⎪==⎨⎪<⎩(ⅱ)几何意义: . ④倒数:如果a 与b 互为倒数,则 ;特别注意: . 3、平方根、算术平方根、立方根 ①正数a 的平方根为 ,0的平方根是 ;②正数a 的平方根中正的那个平方根叫做a 的算术平方根,0的算术平方根是0; ③任意一个数r 的立方根记为 . 二、典例精析例1、(1)3-的倒数是 ; (22的绝对值是 ;(3)若1x =,2y =,且0xy >,则x y += .点评:实数的基本概念要准确理解,其中绝对值属于难点,当重点突破. 例2、把下列各数填到相应的集合中:13 3.140.1010010001π--、、、..22sin 30tan 4530.321 3.27︒︒---、、、、、. 整数集合{ }; 分数集合{ }; 无理数集合{ }.点评:对于实数的认识主要是理解无理数的意义,即对无限不循环小数的理解. 例3、已知实数a b 、在数轴上对应的点的位置如图所示,化简a b -点评:数轴作为重要的数学工具,它让数形有机结合,正确认识数轴上的点与实数的一一对应关系.例4、若21(0m -+=,求m n 、的值.点评:绝对值、偶次幂以及偶次方根的非负性,认识需要全面而且准确.三、中考链接 1、(2009梅州)12-的倒数为( ) A .12B .2C .2-D .1- 2、(2009抚顺)2-的相反数是( )A .2B .12-C .2-D .123、(2009枣庄)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -< 4、(2009包头)27的立方根是( ) A .3 B .3- C .9 D .9- 5、(2009郴州)-5的绝对值是( )A .5B .5-C .15D .15- 6、(2009中山)4的算术平方根是( )A .2±B .2C .D7.(2009肇庆)实数2-,0.3,17,π-中,无理数的个数是( )A .2B .3C .4D .5四、优化练习1、(2009南昌)写出一个大于1且小于4的无理数: . 2、(陕西省)零上13℃记作+13℃,零下2℃可记作( )A .2B .2-C .2℃D .-2℃3、(2009潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +CD 14、(2009恩施市)若3a =,则a 的值是( )A .3-B .3C .13D .3± 5、(2009长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -6、(2009烟台)如图,数轴上A B ,两点表示的数分别为1-B 关于点A 的对称点为C ,则点C 所表示的数为( )A .2-B .1-C .2-+D .1+7、(四川省资阳市)如图,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点8、(梅州)下列各组数中,互为相反数的是( ) A .2和21 B .-2和-21 C . -2和|-2| D .2和21ab第2课时 科学记数法及实数大小的比较一、知识要点1、科学记数法、近似数和有效数字 ① 科学记数法是指将一个数表示成为 的形式,其中1≤10a <,n 为整数;② 对于一个近似数,从左边第一个不为0的数开始到最末一个数为止,都是这个近似数的有效数字. 2、实数大小的比较①在数轴上表示两个数的点,右边的点表示的数比左边的点表示的数 ; ②正数大于 ,负数小于零;两个正数,绝对值大的数较大,两个负数,绝对值大的反而 ; ③设a b 、为任意两个实数,若0a b ->,则 ; 若0a b -=,则 ; 若0a b -<,则 . 3、零指数、负整指数的运算 ①01a =( ); ②1p p aa-=( ). 二、典例精析例1、①新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为( ) A .39110⨯ B .291010⨯ C .49.110⨯D .39.110⨯②2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156×10-5 B .0.156×105C .1.56×10-6 D .1.56×106 点评:科学记数法通常用于将较大(或较小)的数表示成相对简洁的形式,其中指数的确定是有规律可循的.例2、(2009年佛山市)黄金分割比是0.61803398=…,将这个分割比用四舍五入法精确到0.001为 . 例3、2008年我州旅游收入达52644.85万元,比2007年增长了40.7%.用科学记数法表示2008年我州的旅游收入是 ______ _ _元(保留三个有效数字). 点评:较大(较小)的数取近似值时通常要与科学记数法结合考虑,而取近似值时需遵守精确度或有效数字的要求.例4、计算 :01)2008(260cos π-++- .点评:零指数、负整指数的运算是一个重要的考点.例5、比较大小:①12 14点评:实数大小的比较,除了基本的比较原则外,常见的方法还有作差法、平方法等.三、中考链接1、(2009咸宁)温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数表表示“8500亿”为( ) A .108510⨯B .108.510⨯ C .118.510⨯D .120.8510⨯2、(2009常德)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字). A .2.34×108元 B .2.35×108元 C .2.35×109 元 D .2.34×109元 3、(2009荆州)1在-1,1,0,-2四个实数中,最大的是( )A .-1B .1C .0D .-2 4、(09长春)下列四个数中,小于0的是( )A .2-B .0C .1D .3 5、(2008巴中)下列各式正确的是( ) A .33--= B .326-=-C .(3)3--=D .0(π2)0-= 四、优化练习 1、(2009衡阳)已知空气的单位体积质量为31024.1-⨯克/厘米3,31024.1-⨯用小数表示为( )A .0.000124B .0.0124C .-0.00124D .0.00124 2、(2009凉山州)长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ) A .625.110-⨯米B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米 3、(2009河北)比较大小:-6 -8. (填“<”、“=”或“>”)4、实数a b ,在数轴上对应点的位置如图所示,则a b .(填“>”、“<”或“=”)5、0)12(3---= .6、计算:3120092-0⎛⎫+= ⎪⎝⎭.7、(2009湖州)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( ) A .40.2110-⨯B .42.110-⨯C .52.110-⨯ D .62110-⨯ 8、(2009湘西自治州)截止到2008年底,湘西州在校小学生中的少数民族学生数约为21.2万人,约占全州小学生总数的80%,则全州的小学生总数大致为 万. (保留小数点后一位)第3课时 实数的运算一、知识要点 1、运算律①加法交换律: ; ②加法结合律: ; ③乘法交换律: ; ④乘法结合律: ; ⑤分配律: . 2、实数的运算包括加、减、乘、除、乘方、开方;运算顺序为先 ,再 ,最后算 ,有括号的先算括号里面的. 二、典例精析例1、①2(3)-的值是( ) A .9 B.-9 C .6 D .-6 ②23-的值是( )A .6B .-6C .9D .-9 点评:乘方运算是要重点突破的. 例2、下列运算正确的是( ) A 、39±= B 、33-=-C 、39-=-D 、932=-例3、(2009年孝感)若m n n m -=-,且4m =,3n =,则2()m n += .例4、计算:①102(1cos 60-+-︒②103(tan 60)1(3.14)π-︒-+-. ③12--sin ()30π3++0°. 点评:实数的运算中,除了掌握基本的运算律、运算法则之外,涉及一些特殊形式的运算如特殊三角函数值等需要熟练掌握.例5、若()2240a c --=,则=+-c b a .三、中考链接1、(08宁夏)下列各式运算正确的是 ( )A .1122-=- B. 326=C. 236222⋅=D. 326(2)2=2、(2008江西)计算(-2)2-(-2) 3的结果是( )A .-4B .2C .4D .123、(2009淄博)如果2()13⨯-=,则“”内应填的实数是( ) A .32 B .23 C .23- D .32- 3、(2009成都)计算2×(12-)的结果是( )A .1-B . lC .2-D .2 4、(09宜昌)如果0ab <,那么下列判断正确的是( ). A .00a b <<, B .00a b >>, C .a ≥0,b ≤0D .00a b ><,或00a b <>, 5、(2009泰安)下列各式,运算结果为负数的是( )A .)3()2(----B .)3()2(-⨯-C .2)2(-- D .3)3(--6、(2008年湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A . 和为正数B . 和为负数C . 积为正数D . 积为负数 四、优化练习1、3(1)-等于( )A .-1B .1C .-3D .3 2、比1小2的数是( )A .1-B .2-C .3-D .13、(2009本溪)如果a 与1互为相反数,则|2|a +等于( )A .2B .2-C .1D .1- 4、(2009宜宾)在数轴上的点A 、B 位置如图所示,则线段AB 的长度为( )第 4 题 图-52BA .3-B .5C .6D .75、一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.6、①计算:3(2)⨯-= ; ②计算:2)5(0+-= ; ③计算:212221-+--= 7、计算:①121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.②12--sin ()30π3++0°. ③11|2|20093tan 303-⎛⎫-+--+ ⎪⎝⎭°.|2|(2π)+-.⑤101()(20094sin 302--+º-2-A BO -3第4课时 整式概念及加减运算一、知识要点 1、代数式①像3(1)2sa x t-+、等式子都是代数式,单个一个数或字母也是 .②一般地,用 代替代数式里的字母,按照代数式中的运算关系,计算得出结果,叫做代数式的值. 2、整式的分类比较(通过举例进行)①单项式的次数: ; ②多项式的次数: . 3、同类项:所含 相同,且 也相同的项叫做同类项. 4、合并同类项:只把系数 ,所含字母及字母的指数不变. 5、整式的加减运算:实际就是 . 6、幂的运算性质(k l m n 、、、均为整数) ①同底数幂的乘法:k la a ⋅= ; ②幂的乘方:()m na = ; ③积的乘方:()m ab = ; ④同底数幂的除法:mna a ÷= . 二、典例精析例1、代数式322x b xm n mn p π-+-、、、、中,单项式有( )A .1个B .2个C .3个D .4个点评:对于整式概念的理解,包括系列概念的理解,其中最为重要的就是单项式与多项式.例2、(2009年烟台市)若523m xy +与3nx y 的和是单项式,则mn = . 点评:需要准确理解同类项与合并同类项的本质.例3、(2008乌鲁木齐)若0a >且2xa =,3y a =,则x y a -的值为( )A .1-B .1C .23D .32点评:幂运算的难点在于逆向变形运用.例4、代数式2346x x -+的值为9,则2463x x -+的值为 .点评:求代数式的值,在目前主要是采用直接代入和整体代入两种方式.例5、如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成,图中,第1个黑色L 形由3个正方形组成,第2个黑色L 形由7个正方形组成,……那么第6个黑色L 形的正方形个数是( ) A .22 B .23 C .24 D .25三、中考链接 1、(2008咸宁)化简()m n m n +--的结果⎧⎧⎧⎪⎨⎪⎪⎨⎩⎨⎪⎩⎪⎪⎩单项式整式有理式多项式代数式分式无理式为( )A .2mB .2m -C .2nD .2n - 2、(2008龙岩)下列计算正确的是( ) A .3232a a a =+ B .428a a a =÷C .623·a a a = D .623)(a a =3、(2008宁波)下列运算正确的是( ) A .336x x x += B .23236x x x = C .33(2)6x x = D .2(2)2x x x x +÷= 4、(2008嘉兴)若23a b =,则ab= .5、下列运算正确的是( )A .336a a a +=B .2()2a b a b +=+C .22()ab ab --=D .624a a a ÷= 四、优化练习1、(2008芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 2、(2008嘉兴)下列运算正确的是( ) A .235a a a = B .22()ab ab = C .329()a a =D .632a a a ÷=3、 (2009济宁)下列运算中,正确的是A .39±=B .()a a 236=C .a a a 623=⋅D .362-=- 4、(2008双柏县)下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷=5、(2009太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x + 6、(2008宜昌)2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a -1)米,三峡坝区的传递路程为(881a +2309)米.设圣火在宜昌的传递总路程为x 米. (1)用含a 的代数式表示s ; (2)已知a=11,求s 的值. 7、(2008泰州)让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3;…………依此类推,则a 2008=_____________.第5课时 整式的乘除运算一、知识要点1、整式的乘法(各举一例)①单项式乘以单项式: ②单项式乘以多项式: ③多项式乘以多项式: 2、整式的除法(各举一例)①单项式除以单项式: ②多项式除以单项式: 3、乘法公式:①平方差公式: ②完全平方公式: 二、典例精析 例1、计算:①()()2121x x ++-= .②31(2)(1)4a a -⋅-= .点评:熟练掌握整式的乘法运算.例2、先化简,再求值:3(2)(2)()a b a b ab ab -++÷-;其中1a b ==-点评:准确熟练地进行整式的运算,是准确求值的前提;合理的化简对于求值而言往往可以起到事半功倍的效果.例3、(2009内江市)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=- D .222))(2(b ab a b a b a -+=-+点评:用图形的方式解释公式,既直观,又蕴含重要的数学思想.例4、(2009北京)已知2514x x -=,求()()()212111x x x ---++的值.例5、先化简式子,再选取一个合适的x 的值,求出此时代数式的值。

中考第一轮复习--第一章数与式

中考第一轮复习--第一章数与式

第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

中考数学第一轮复习教案

中考数学第一轮复习教案

一、实数与整式【课标要求】1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. (2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值. (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的实际问题.(6)能对含有较大数字的信息作出合理的解释和推断.2、实数(1)了解无理数和实数的概念,知道实数与数轴上的点一一对应.(2)能用有理数估计一个无理数的大致范围.(3)了解近似数与有效数字的概念;在解决实际问题中,知道计算器进行实数计算的一般步骤,能按问题的要求对结果取近似值.3、代数式(1)在现实情境中进一步理解用字母表示数的意义.(2)能分析简单问题的数量关系,并用代数式表示.(3)能解释一些简单代数式的实际背景或几何意义.(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数.(2)了解整式的概念,会进行简单的整式加、减、乘、除运算.(3)会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,能用图形的面积解释乘法公式,并会用乘法公式进行简单计算;了解乘法公式(a+b)( a2-ab+b2)=a3+b3;(a-b)( a2+ab+b2)=a3-b3.第1课时有理数一、知识点1.有理数的意义:数轴,相反数,倒数,绝对值,近似数与有效数字。

2.有理数的运算:加减乘除,乘方,有理数的大小比较,科学记数法.二、中考课标要求1、有理数的有关概念要准确把握有理数的概念,特别是负数和绝对值的概念是难点,要深刻理解,并结合数轴理解这两个概念,用数形结合的思想,使抽象的概念具体化,再就是近似数的有效数字的概念也是非常重要的,要理解透彻。

数学中考第一轮复习整套教案(完整版)

数学中考第一轮复习整套教案(完整版)
最后再向大家介绍一些考场技巧:要保持适度的紧张,先把选择题拿下来,让心里有个底,接下来按部就班地做。切记,不要挑着题做,遇到难题不要慌,想想平时学过的知识,一点一点做下去,实在做不出来也不要灰心,跳过去,千万不要因小失大,影响了大局。做到最后大题时,更要一步一步去推,能写几步写几步,即使拿不了全分,拿一半分,就很不错了。最后,做完了一定要检查,检查时要一道一道地查,一点也不要遗漏,切忌浮躁。
A.2.5B.2 C. D.
5.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )
A.15B.25C.55 D.1225
(1)正有理数集合:{…};
(2)有理数集合:{…};
(3)无理数集合:{…};
(4)实数集合:{…}.
2.(2011陕西)计算:| -2| =(结果保留根号).
3.设a为实数,则|a|-a的值( )
A.可以是负数 B.不可能是负数 C.必是正数 D.正数、负数均可
4.(2011贵阳)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
第八章 统计与概率
第1讲 统计
第2讲 概率
第八部分 中考专题突破
专题一 归纳与猜想
专题二 方案与设计
专题三 阅读理解型问题
专题四 开放探究题
专题五 数形结合思想
第九部分基础题强化提高测试
中考数学基础题强化提高测试
中考数学基础题强化提高测试

初三总复习教案-第一章《数与式》

初三总复习教案-第一章《数与式》

【分析】分析题意可知,要比较利润的大小,先要求出每种包装的销售收入,再扣除包装成本费用,再将净收入比较大小。

【解答】甲净收入=12000.4 ×(4.8-0.5)=129000(元);乙净收入=12000.3×(3.6-0.4)=128000(元)丙净收入=12000.2 ×(2.5-0.3)=132000(元)所以正确答案是C 。

【相应习题】1.(06宁波)若家用电冰箱冷藏室的温度是4ºC ,冷冻室的温度比冷藏室的温度低22ºC ,则冷冻室的温度是( )A 、18ºCB 、-26ºC C 、-22ºCD 、-18ºC2.(05日照)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上, 300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元、252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( )A 、332元B 、316元或332元C 、288元D 、288元或316元考点7 利用计算器进行估值或探求规律例9.(05广州)用计算器计算22-12-1 ,32-13-1 ,42-14-1 ,52-15-1 ,……根据你发现的规律、判断P =n 2-1n -1 ,与Q =(n 2-1)-1(n -1)-1,(n 为大于1的整数)的值的大小关系为( )A 、P<QB 、P =QC 、P>QD 、与n 的取值有关 【相应习题】1.用计算器比较大小:317 - 6 ____0(填“>”“=”“<”)考点8 定义新运算例10.(05海淀区)用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和ab=b ,例如32=3,32=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学辅导教案知识点梳理【实数】1.实数的有关概念及分类:①实数的分类②数轴:规定了原点、单位长度和正方向的直线叫做数轴,实数与数轴上的点一一对应;③相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数;④倒数:如果两个数的乘积为 1,那么这两个数互为倒数;⎧a(a ≥ 0)⑤绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值;去绝对值:a =⎨-a(a < 0)⎩绝对值的几何意义:在数轴上,a -b表示 a 对应的点到 b 对应的点的距离。

⑥非负数:a2,a,a2.科学计数法和近似数:①科学计数法:a ⨯10n,1 ≤a < 10 ;②近似数:与实际接近的数称为近似数。

精确度:一个近似数的精确度可用四舍五入法表述,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

3.实数的大小比较:数轴法,绝对值法。

实数的运算:实数的运算顺序,运算律。

【整式】1、代数式:由数、表示数的字母和运算符号组成的数学表达式称为代数式。

单独一个数或者一个字母也称代数式。

①列代数式;②求代数式的值。

2、整式:单项式和多项式统称为整式①单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或一个字母也叫单项式。

单项式中的数字因数叫做这个单项式的系数。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

②多项式:由几个单项式相加组成的代数式叫做多项式。

在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,次数最高的项的次数就是这个多项式的次数。

③同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

所有的常数项也看做同类项。

把多项式中的同类项合并成一项,叫做合并同类项。

a a ab b a b aba 2b a b⎨ ()± 合并同类项的法则是:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

3、整式的运算:①多项式与多项式乘法法则:②幂的运算: a m · a n = a m +n , (a m )n = a mn , (ab )n = a n b n (m ,n 都是正整数); a m ÷ a n = a m -n ( a ≠ 0 ,m ,n 都是正整数,且 m>n );零指数幂: a 0 = 1 ( a ≠ 0 );负整数指数幂: a - p = 1ap( a ≠ 0 )③乘法公式: (a + b )(a - b ) = a 2 - b 2 ; (a + b )2 = a 2 + 2ab + b 2 ; (a - b )2 = a 2 - 2ab + b 2 。

【因式分解】因式分解:把一个多项式转化为几个整式的积的形式,叫做因式分解,也叫分解因式。

因式分解的常用方法:①提取公因式法;②公式法:平方差公式,完全平方公式;③分组分解法;④十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

其实就是运用乘法公式(x + a )(x + b ) = x 2 + (a + b )x + ab 的逆运算来进行因式分解。

注意:整式的化简结果仍是整式,因式分解结果是几个整式相乘。

【分式】(1) 分式:表示两个整式相除,且除式中含有字母,这样的代数式叫做分式。

A(B ≠ 0)B(2) 分式的基本性质: A B= A ⨯ M , A = B ⨯ M B A ÷ M B ÷ M(其中 M 是不等于零的整式)①约分;②通分。

a b (3) 分式的运算:①分式的加减法: c c= a ± b c . ②分式的乘除法: a ⋅ c b d = ac ;bd a ÷ c b d = a ⋅ d b c = ad .bc③分式的乘方: ( b )n a= b n a n④分式的混合运算(4) 分式的化简与求值:分子、分母没有公因式的分式叫做最简分式。

【二次根式】(1) 二次根式的概念:表示算术平方根的代数式(a>0)叫做二次根式。

(2) 二次根式的性质:≥ 0 ,( a )2= a ,= a ⨯ ,= (a ≥ 0, b > 0); = a = ⎧ a (a ≥ 0) ;⎩(3) 最简二次根式:根号内不含分母,不含开得尽方的因数或因式,这样的根式我们就说它是最简二次根式。

(分母有理化)(4) 二次根式的运算:①加减法;②乘除法: a ⨯= ab (a ≥ 0, b ≥ 0);= a (a ≥ 0, b > 0).b(5) 平方根、算术平方根、立方根:①平方根:如果一个数的平方等于 a ,那么这个数叫做 a 的平方根,也叫做 a 的二次方根。

② 算术平方根:正数的正平方根称为算术平方根,0 的算术平方根是 0。

③立方根:一个数的立方等于 a ,这个数就叫做 a 的立方根,也叫做 a 的三次方根。

教案一、基础知识重温】【实数】a a 2 ab a a b ab⎨- a (a < 0)7. 整式的除法⑴ 单项式除以单项式的法则:把系数、相同字母分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以单项式,再把所得的商相加.【因式分解】1. 因式分解:就是把一个多项式化为几个整式的乘积的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴提公因式法,⑵ 公式法,(3)十字相乘法.3. 提公因式法: ma + mb + mc = m(a+b+c).4. 公式法: ⑴a 2 -b 2 = (a+b)(a-b) ⑵ a 2 + 2ab + b 2 = (a+b)2,⑶ a 2 - 2ab + b 2 = (a-b)2.5. 十字相乘法: x 2+(p + q )x + pq = (x+p)(x+q).6. 因式分解的一般步骤:一“提”(取公因式),二“用”(公式).【分式】A A A1. 分式:整式 A 除以整式 B ,可以表示成 B 的形式,如果除式 B 中含有字母,那么称 为分式.若 B≠0,则 有意义;若 B=0,则B BA A无意义;若 A=0 且 B≠0,则 =0. B B2. 分式的基本性质: 分式的分子与分母都乘以( 或除以) 同一个不等于零的整式, 分式的值不变. 用式子表示为A = A ⋅ C (C ≠ 0) A = A ÷ C (C ≠ 0) .B B ⋅ CB B ÷ C3. 约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.4. 通分:根据分式的基本性质,把异分母的分式化为同分母的分式,这一过程称为分式的通分.5. 分式的运算⑴ 加减法法则:① 同分母的分式相加减:分母不变,分子相加减 .② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 .⑵ 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方. ⑶ 除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.【二次根式】1. 二次根式的有关概念⑴ 式 子a (a ≥ 0) 叫做二次根式.注意被开方数 a 只能是非负数.(要使二次根式 a 有意义,则 a ≥0.)⑵ 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2. 二次根式的性质(1)≥ 0( a ≥0);(2) ( a )2 = a (a ≥ 0) ;(3) = a = ⎧ a (a ≥ 0);⎩(4)= • b (a ≥ 0, b ≥ 0) ;(5)= (a ≥ 0, b ≥ 0)二、例题分析21.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20 厘米卖价10 元,乙种煎饼直径30 厘米卖价15 元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定【答案】B.2.(2015·湖北荆门)下列计算正确的是()A.a2+a3=a5B.a2⋅a3=a6C.(a2 )3=a5D.a5÷a2=a3【答案】D.3.下列运算正确的是(A. (x3)3= x9)B. (-2x)3=-6x3C. 2x2- x = xD. x6÷ x3= x2【答案】A.4.(2015·贵州遵义)如果单项式-xy【答案】1.b+1 与12x a-2 y 3是同类项,那么(a -b) 2015 = .5.若-5x2 y m 与x n y 是同类项,则m + n 的值为()A.1 B.2 C.3 D.4【答案】C.6.(2015·湖南常德)计算:b(2a + 5b) +a(3a - 2b) =【答案】5 b2+3 a2.7.若⨯3xy = 3x2y ,则内应该填的单项式是()A. xy【答案】C.B. 3xyC. xD. 3x8.(2015·湖南长沙)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中 x= (3-p)0,y=2.【答案】xy-y2;-2.9.化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x= +1.【答案】﹣3.10.(2015·贵州铜仁)请看杨辉三角(1 ),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.11.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为.【答案】(2n+1)2﹣(2n﹣1)2=8n522 2302 -x2 22 212.下列计算正确的是()A.2x2-4x2=-2 B.3x+x=3x2C.3x·x=3x2D.4x6÷2x2=2x3【答案】C13.计算(-3x)2的结果是()A.6x2B.- 6x2C.9x2D.- 9x2【答案】C14.下列说法中,正确的是()3 3A.-x 的系数是3 3B.p a 的系数是4 4 2 22 2C.3a b 的系数是3a D.x y 的系数是5 5【答案】D15.若a 2n= 5 ,b 2n= 16 ,则(ab)n= .【答案】±4 .16.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7 个单项式为.【答案】﹣13x8.17.先化简,再求值:(x + 3)(x - 3) + 2(x2+ 4) ,其中x =.【答案】3x2-1 ,5.*18.(2016 嘉兴市第1 题) 38 的算术平方根是()A.2B. ±2C.D. ±【答案】C*19.(2016 金华市第8 题)如图,四个实数m,n,p,q 在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【答案】A*20. (2014 年浙江台州4 分)下列整数中,与最接近的是( )A. 4B. 5C. 6D. 7【答案】B.*21. (2014 年浙江杭州4 分)2012 年末统计,杭州市常住人口是880.2 万人,用科学记数法表示为▲.【答案】8.802×106.*22.(2016 义乌市第6 题)二次根式有意义,则x 的取值范围是( )A.x > 2【答案】DB.x < 2C.x ≥ 2D.x ≤ 223.(2015·义乌市第 6 题 4 分)化简x 2x -1+11 -x的结果是( ), x -2,x -3x -2 x -3A.x +11B. C.x + 1x -1xD.x - 1【答案】A*24. (2014 年浙江杭州3 分)若(4+1a2- 4 2 -a) ⋅w =1,则w=()A. a +2(a ≠-2)B. -a + 2(a ≠ 2)C. a - 2(a ≠ 2)D. -a - 2(a ≠-2)【答案】D.*25. (2014 年浙江金华3 分)在式子1,1x - 2 x -3中,x 可以取2 和3 的是()1 1A.B.C.D.x - 2【答案】C.x - 3【考点】二次根式和分式有意义的条件.*26.(2016 温州市第13 题)要使代数式有意义,则x 的取值范围是.【答案】x≥﹣1 且x≠0*27.(2016 嘉兴市第17 题)将m3(x﹣2)+m(2﹣x)分解因式的结果是.【答案】m(x﹣2)(m﹣1)(m+1)*8.(2016 衢州市第17 题)若a2+ 5ab -b2= 0, 则b-a的值为。

相关文档
最新文档