青岛版(五四)数学八年级上--第一学期期中检测

合集下载

青岛版(五四)数学八年级上第1章检测题(word版,有答案)

青岛版(五四)数学八年级上第1章检测题(word版,有答案)

第1章检测题(全等三角形)一、选择题1.下列每组中的两个图形,是全等图形的是( )2.如图所示的是已知∠BAC,求作∠EDF的作图痕迹,则下列说法正确的是( )A.因为边的长度对角的大小无影响,所以BC弧的半径长度可以任意选取B.因为边的长度对角的大小无影响,所以DE弧的半径长度可以任意选取C.因为边的长度对角的大小无影响,所以FE弧的半径长度可以任意选取D.以上三种说法都正确3.如图,△ABC≌△ADE,已知在△ABC中,AB边最长,BC边最短,则△ADE中三边的大小关系是( )A.AD=AE=DEB.AD<AE<DEC.DE<AE<ADD.无法确定4.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于( )A.DCB.BCC.ABD.AE+AC5.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H两点之间6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A.50B.62C.65D.687.如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.1B.2C.3D.48.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为()A. BE=DF B. BF=DE C. AE=CF D.∠1=∠29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A. 1个 B. 2个 C. 3个 D. 4个10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B. AB=DC C.∠ACB=∠DBC D. AC=BD11.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B. BF=CF C. DF∥AC D.∠C=∠EDF12. 如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= ( )A.65°B.75°C.85°D.95°13. 如图,下列条件中,不能证明△ABC≌△DCB的是()A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠D D. AB=DC,∠A=∠D14. 如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=CD B. EC=BF C.∠A=∠D D. AB=BC15. 如图所示,已知∠1=∠2,若用“SAS”说明△ACB≌△BDA,还需加上条件( )A.AD=BCB.BD=ACC.∠D=∠CD.OA=OB16.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等( )A.△ACFB.△ADEC.△ABCD.△BCF二、填空题17.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= cm.18.如图所示,AD,BC相交于点O,△AOB≌△DOC,A,D为对应顶点,则∠C的度数为.19.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段 .20.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于点O,AB和CD相交于P,AC和BE相交于F,则∠DOE的度数是.21.如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D,给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;④点D在∠BAC的平分线上.其中正确的结论有(填写序号).三、解答题22.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠ACB的度数.23.如图,已知△ABC中,∠ABC=45°,AD是BC边上的高,(1)尺规作图:在∠ABC的内部作∠CBM,使得∠CBM=∠DAC(要求:只保留作图痕迹,不写作法和理由).(2)若射线BM与AC交于点E,与AD交于点F,且CD=3,试求线段DF的长.24.如图所示,甲、乙二人同时从O点以相同的速度出发,甲沿正东方向前进,乙沿东北方向前进,到某一时刻他们同时改变方向,甲沿正北方向前进,乙沿东南方向前进,他们的速度均保持不变,问他们相遇时在出发点的什么方向?答案一、选择题1.C2.A3.C4.C5.B6.A7.A8.C9.C 10.D 11.A 12.D 13.D 14.A 15.B 16.B二、填空题17.6 18. 30°19. AC=BD(或BC=AD或OD=OC或OA=OB,答案不唯一)20. 120°21.①③④三、解答题22.【解析】因为AC∥DF,所以∠A=∠FDE,又因为AD=BE,所以AB=DE,在△ABC 和△DEF 中{AC =DF,∠A =∠FDE,AB =DE,所以△ABC ≌△DEF,所以BC=EF. 23.【解析】(1)作图如图1:(2)如图2:因为AD ⊥BC,∠ABC=45°, 所以∠1=∠ABC=45°,所以AD=BD. 在△BDF 和△ADC 中,所以{∠2=∠3,BD =AD,∠BDF =∠ADC,所以△BDF ≌△ADC(ASA), 所以DF=DC=3.24.【解析】连接OC,由题意知,OA=OB,AC=BC.在△OAC和△OBC中,{OA=OB, AC=BC, OC=OC,所以△OAC≌△OBC(SSS),所以∠AOC=∠BOC.又∠AOB=45°,所以∠AOC=∠BOC=12∠AOB=22.5°,所以∠MOC=45°+22.5°=67.5°,即他们相遇时在出发点的北偏东67.5°方向上.初中数学试卷。

2020-2021学年二年级下册数学试题 - 期中试卷 青岛版(五四学制)(含解析)

2020-2021学年二年级下册数学试题 - 期中试卷   青岛版(五四学制)(含解析)

2020-2021学年青岛五四版小学二年级下册数学期中试卷一.选择题(共8小题)1.一份试卷满分是100分,学生的得分不可能是()A.90分B.106分C.100分2.最大的三位数比最小的三位数多()A.99B.899C.9993.一枚一元的硬币的厚度约()A.2克B.2毫米C.2厘米4.学校组织一、二年级学生到操场看演出,一年级有296人,二年级有308人,大约要准备多少个座位?()A.500B.600C.7005.最大的三位数与最小的三位数的差是()A.1099B.899C.9896.用两个边长是1分米的正方形纸片拼成一个长方形,这个长方形的周长是()A.4分米B.6分米C.8分米7.780﹣()的结果可以掷中右边的靶面.A.105B.135C.1608.将两根长度都是40厘米的铁棒焊接成一根(如图),焊接处共用去30毫米.焊接后的铁棒的长度是()厘米.A.50B.74C.77二.填空题(共8小题)9.冷饮店有800个冰淇淋。

上年卖出235个,下午比上午多卖出108个。

下午卖出了个冰淇淋,这一天共卖出了个冰淇淋,还剩下个冰淇淋没有卖出。

10.李叔叔买了一架飞机模型,付给售货员250元,售货员将飞机模型价格中的“7”看成了“1”,找给李叔叔19元.算一算,一架飞机模型元,应找给李叔叔元.11.如图是用边长1厘米的小正方形组成的,它的周长是厘米。

12.笑笑用画图法计算122+77,她是先算,再算.13.算一算.(1)2米﹣8分米=分米(2)1厘米+6毫米=毫米(3)5千米﹣3000米=米(4)37毫米﹣7毫米=厘米14.量比较短的物体长度要求得精确时,可以用做单位.15.最小的四位数与最大的两位数的差是。

最大的两位数与最大的一位数的积是。

16.动脑筋:★=;●=.三.判断题(共5小题)17.820里有8个百2个十,也可以说有82个十..18.李明身高132分米..(判断对错)19.267+156=513.(判断对错)20.4个完全相同的正方形可以拼成一个大正方形。

2022-2023年青岛版初中数学(初二)八年级上册期末考试综合检测试卷及答案(共三套)

2022-2023年青岛版初中数学(初二)八年级上册期末考试综合检测试卷及答案(共三套)

2022-2023年青岛版数学八年级上册期末考试测试卷及答案(一)1.(3分)下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.2.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对3.(3分)下列分式中是最简分式的是()A.B.C.D.4.(3分)如图,要量湖两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时可得△ABC≌△EDC,用于判定全等的是()A.SSS B.SAS C.ASA D.AAS5.(3分)如果=,则=()A.B.C.D.6.(3分)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙7.(3分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的众数和中位数分别是()A.15,15 B.15,14 C.16,14 D.16,158.(3分)下列命题中假命题是()A.三角形的外角中至少有两个是钝角B.直角三角形的两锐角互余C.全等三角形的对应边相等D.当m=1时,分式的值为零9.(3分)下列运算正确的是()A.B.C.D.10.(3分)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定11.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°12.(3分)已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(本题共5个小题,每小题3分,共15分)13.(3分)分式,的最简公分母是.14.(3分)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为分.15.(3分)若==,则的值为.16.(3分)若分式方程有增根,则m=.17.(3分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动秒时,△DEB与△BCA 全等.三、解答题(本大题共8小题,共69分)18.(12分)计算(1)•(2)•(3)﹣(4)x﹣y+.19.(10分)解分式方程:(1)=1﹣.(2)﹣=.20.(5分)先化简,再求值:(﹣)÷,其中x=3.21.(8分)(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)(2)在(1)中,作OM⊥AC于M,ON⊥BC于N,连结AO、BO.求证:△OMA≌△ONB.22.(8分)甲、乙两个工程队参与某小区7200平方米(外墙保温)工程招标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务,求甲队在投标书上注明的每天完成的工程量.23.(6分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线,求证:DF∥AB证明:∵BE是∠ABC的角平分线∴∠1=∠2又∵∠E=∠1∴∠E=∠2∴AE∥BC∴∠A+∠ABC=180°又∵∠3+∠ABC=180°∴∠A=∠3∴DF∥AB.24.(8分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲 6 7 7 8 6 8乙 5 9 6 8 5 9分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?25.(12分)(1)请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,判断这一逆命题是真命题还是假命题,如果是真命题给出证明,如果是假命题,说明理由.(2)若一个三角形经过它的某一定点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.①画出等边△DEF的一个生成三角形,并标出生成三角形的各个角的度数;(不用尺规作图,画出简图即可)②若等腰△ABC有一个内角等于36°,那么请你画出简图说明△ABC是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)参考答案:1.(3分)下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的性质对各选项分析判断即可得解.【解答】解:A、是轴对称图形,B、不是轴对称图形,C、是轴对称图形,D、是轴对称图形,所以,B与其他三个不同.故选:B.2.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对【考点】O2:推理与论证.【专题】16:压轴题.【分析】分别假设甲说的对和乙说的正确,进而得出答案.【解答】解:若甲对,即只参加一项的人数大于14人,不妨假设只参加一项的人数是15人,则两项都参加的人数为5人,故乙错.若乙对,即两项都参加的人数小于5人,则两项都参加的人数至多为4人,此时只参加一项的人数为16人,故甲对.故选:B.3.(3分)下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、分子分母含有公因式(x﹣1),故A错误;B、含有公因式2,故B错误;C、分子,分母中不含有公因式,故C正确;D、含有互为相反数的因式,故D错误;故选:C.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.4.(3分)如图,要量湖两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时可得△ABC≌△EDC,用于判定全等的是()A.SSS B.SAS C.ASA D.AAS【考点】KE:全等三角形的应用.【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(3分)如果=,则=()A.B.C.D.【考点】S1:比例的性质.【分析】根据比例式的性质求解即可求得答案.【解答】解:∵a:b=2:3,∴(a+b):b=.故选:B.【点评】本题考查了比例的基本性质,关键是根据比例的性质求解.6.(3分)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.(3分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的众数和中位数分别是()A.15,15 B.15,14 C.16,14 D.16,15【考点】W4:中位数;W5:众数.【分析】把这组数据按照从小到大的顺序排列,第4、5个数的平均数是中位数,在这组数据中出现次数最多的是15,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列为:13,14,15,15,15,16,16,17,第4、5个两个数的平均数是(15+15)÷2=15,所以中位数是15,在这组数据中出现次数最多的是15,即众数是15,故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(3分)下列命题中假命题是()A.三角形的外角中至少有两个是钝角B.直角三角形的两锐角互余C.全等三角形的对应边相等D.当m=1时,分式的值为零【考点】O1:命题与定理.【分析】根据三角形的外角、直角三角形的性质、全等三角形的性质、分式的值为0逐个判断即可.【解答】解:A、三角形的内角最少有两个锐角,即最少也有两个外角是钝角,是真命题,故本选项不符合题意;B、直角三角形的两个锐角互余,是真命题,故本选项不符合题意;C、全等三角形的对应边相等,是真命题,故本选项不符合题意;D、当m=1时,分母为0,只有当m=﹣1时,分式的值为0,是假命题,故本选项符合题意;故选:D.【点评】本题考查了三角形的外角、直角三角形的性质、全等三角形的性质、分式的值为0、命题和定理等知识点,能灵活运用知识点进行判断是解此题的关键.9.(3分)下列运算正确的是()A.B.C.D.【考点】65:分式的基本性质.【分析】根据分式的基本性质逐项进行判断,选择正确答案.【解答】解:A、,故A错误;B、C分式中没有公因式,不能约分,故B、C错误;D、=,故D正确.故选:D.【点评】对分式的化简,正确理解分式的基本性质是关键,约分时首先要把分子、分母中的式子分解因式.10.(3分)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定【考点】KK:等边三角形的性质;PA:轴对称﹣最短路线问题.【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE =AD=5,即BF+EF=5.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵,∴△ADB≌△CEB(AAS),∴CE=AD=5,即BF+EF=5,故选:B.【点评】本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.11.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【考点】JA:平行线的性质.【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.12.(3分)已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD =180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【考点】KD:全等三角形的判定与性质.【专题】1:常规题型.【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即③正确,根据③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.二、填空题(本题共5个小题,每小题3分,共15分)13.(3分)分式,的最简公分母是6x3(x﹣y).【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.14.(3分)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为92 分.【考点】W2:加权平均数.【分析】根据体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,甲同学的体育成绩是:96×50%+85×20%+90×30%=92(分).则甲同学的体育成绩是92分.故答案为:92.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.15.(3分)若==,则的值为﹣.【考点】S1:比例的性质.【分析】可以设===k,则x=3k,y=4k,z=5k,把这三个式子代入所要求的式子,进行化简就可以求出式子的值.【解答】解:设===k(k≠0),则x=3k,y=4k,z=5k,则===﹣.故答案为﹣.【点评】本题考查了比例的性质.解题的关键是先设===k,可得x=3k,y=4k,z=5k,从而降低计算难度.16.(3分)若分式方程有增根,则m= 2 .【考点】B5:分式方程的增根.【专题】11:计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x﹣3),得m=2+(x﹣3),∵方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=2.故答案为2.【点评】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.(3分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动2,6,8 秒时,△DEB与△BCA全等.【考点】KB:全等三角形的判定.【分析】此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AC=BE进行计算即可.【解答】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:2,6,8.【点评】本题考查三角形全等的判定方法,关键是熟记判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本大题共8小题,共69分)18.(12分)计算(1)•(2)•(3)﹣(4)x﹣y+.【考点】6C:分式的混合运算.【分析】(1)对分式进行约分,然后求解即可;(2)先将分式进行化简,然后结合分式混合运算的运算法则进行求解;(3)将各分式的分子进行合并求解即可;(4)先将x﹣y变形为,然后结合分式混合运算的运算法则进行求解.【解答】解:(1)•=.(2)•=×=﹣.(3)﹣===x﹣y.(4)x﹣y+=+==.【点评】本题考查了分式的混合运算,解答本题的关键在于熟练掌握分式混合运算的运算法则.19.(10分)解分式方程:(1)=1﹣.(2)﹣=.【考点】B3:解分式方程.【专题】11:计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1=x﹣4+x﹣3,解得:x=4,经检验x=4是增根,原分式方程无根;(2)去分母得:2﹣2x﹣3﹣3x=9,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.(5分)先化简,再求值:(﹣)÷,其中x=3.【考点】66:约分;6A:分式的乘除法;6B:分式的加减法;6D:分式的化简求值.【专题】11:计算题.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.【点评】本题综合考查了分式的加减法则、乘除法则,约分等知识点的应用,关键是考查学生的运算能力,培养学生的解决问题的能力,题目比较典型,是一道很好的题目.21.(8分)(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)(2)在(1)中,作OM⊥AC于M,ON⊥BC于N,连结AO、BO.求证:△OMA≌△ONB.【考点】KB:全等三角形的判定;KF:角平分线的性质;KG:线段垂直平分线的性质;N3:作图—复杂作图.【专题】12:应用题.【分析】(1)作∠ACB的平分线和线段AB的垂直平分线,它们的交点即为点O;(2)根据角平分线的性质得到OM=ON,根据线段垂直平分线的性质得到OA=OB,则根据“HL”可证明△OMA≌△ONB.【解答】解:(1)如图1,(2)如图2,∵OC平分∠ACB,OM⊥AC,ON⊥CN,∴OM=ON,∵点O在线段AB的垂直平分线上,∴OA=OB,在Rt△△OMA和△ONB中,,∴△OMA≌△ONB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.22.(8分)甲、乙两个工程队参与某小区7200平方米(外墙保温)工程招标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务,求甲队在投标书上注明的每天完成的工程量.【考点】B7:分式方程的应用.【分析】设甲队每天完成x米2,乙队每天完成1.5x米2.则依据“乙队单独干比甲队单独干能提前15天完成任务”列出方程.【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.23.(6分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线,求证:DF∥AB证明:∵BE是∠ABC的角平分线∴∠1=∠2 (角的平分线的定义)又∵∠E=∠1∴∠E=∠2 等量代换∴AE∥BC内错角相等,两直线平行∴∠A+∠ABC=180°两直线平行,同旁内角互补又∵∠3+∠ABC=180°∴∠A=∠3 同角的补角相等∴DF∥AB同位角相等,两直线平行.【考点】JB:平行线的判定与性质.【分析】根据角平分线的定义以及平行线的判定定理和性质定理即可解答.【解答】解:证明:∵BE是∠ABC的角平分线∴∠1=∠2(角的平分线的定义),又∵∠E=∠1∴∠E=∠2 (等量代换)∴AE∥BC(内错角相等,两直线平行),∴∠A+∠ABC=180°(两直线平行,同旁内角互补),又∵∠3+∠ABC=180°∴∠A=∠3 (同角的补角相等),∴DF∥AB(同位角相等,两直线平行).故答案是:角的平分线的定义;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点评】本题考查了平行线的性质定理和判定定理,正确理解定理是关键.24.(8分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲 6 7 7 8 6 8乙 5 9 6 8 5 9分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?【考点】W1:算术平均数;W7:方差.【分析】先根据平均数的定义分别计算出甲和乙的平均数,甲=乙=7;再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出它们的方差,然后根据方差的意义即可确定答案.【解答】解:∵甲=(6+7+7+8+6+8)=7,乙=(5+9+6+8+5+9)=7;∴S2甲=[(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]=,S2乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定.【点评】本题考查了方差的定义和意义:数据x1,x2,…x n,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.25.(12分)(1)请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,判断这一逆命题是真命题还是假命题,如果是真命题给出证明,如果是假命题,说明理由.(2)若一个三角形经过它的某一定点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.①画出等边△DEF的一个生成三角形,并标出生成三角形的各个角的度数;(不用尺规作图,画出简图即可)②若等腰△ABC有一个内角等于36°,那么请你画出简图说明△ABC是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)【考点】K7:三角形内角和定理;K8:三角形的外角性质;KH:等腰三角形的性质;KY:三角形综合题.【专题】15:综合题.【分析】(1)先写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,再根据等腰三角形的性质得出∠A=∠ACD,∠BCD=∠B,根据三角形的内角和定理得出∠BCD+∠B+∠A+∠ACD=180°,代入即可求出∠BCD+∠ACD=90°,即∠ACB=90°,即可推出答案;(2)①延长△DEF的边EF至G,使得FG=DF,连接DG,△DEG即为所求;②若等腰三角形的顶角是36°,可画底角的角平分线,可得答案;若等腰三角形的顶角是108°,把顶角分成36°和72°两部分,可得答案.【解答】解:(1)逆命题是:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.已知,如图,△ABC中,D是AB边的中点,且CD=AB.求证:△ABC是直角三角形.证明:∵D是AB边的中点,且CD=AB,∴AD=BD=CD,∵AD=CD,∴∠ACD=∠A,∵BD=CD,∴∠BCD=∠B,又∵∠ACD+∠BCD+∠A+∠B=180°,∴2(∠ACD+∠BCD)=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形.(2)①如图所示,△DEG即为所求,其中∠E=60°,∠G=30°,∠EDG=90°;②如图所示,等腰△ABC是生成三角形.【点评】本题属于三角形综合题,主要考查了等腰三角形的判定与性质以及三角形的内角和定理的运用.解题时注意:等角对等边是判定等腰三角形的方法;三角形内角和是180°.2022-2023年青岛版数学八年级上册期末考试测试卷及答案(二)一、选择题(共12小题,每小题3分)1.(4分)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的()A.平均数是2B.众数是3C.中位数是1.5D.方差是1.252.(4分)某工厂为了选择1名车工参加加工直径为10MM的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你比较s甲2、S乙2的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S甲2>S乙2B.S甲2=S乙2C.S甲2<S乙2D.S甲2≤S乙2 3.(4分)已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数4.下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角5.下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形6.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.47.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义9.(3分)化简的结果是()A.B.C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3。

青岛版数学八年级第一学期中测试题及答案(三)

青岛版数学八年级第一学期中测试题及答案(三)

青岛版数学八年级第一学期中测试题(三)(时间:120分钟分值:100分)一、选择题(共10小题,每小题3分,满分30分)1.(3分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.(3分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS3.(3分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS4.(3分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处5.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处6.(3分)等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线7.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义9.(3分)已知,则的值等于()A.6B.﹣6C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(3分)等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是.12.(3分)小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为.13.(3分)已知=,则的值为.14.(3分)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.(3分)分式,,﹣的最简公分母是.16.(3分)已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.23.(10分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案一、选择题(共10小题,每小题3分,满分30分)1.(4分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ【考点】KB:全等三角形的判定.【分析】仔细观察图形,验证各选项给出的条件是否符合全等的判定方法,符合的是全等的不符合的则不全等,题目中D选项的两个三角形符合SAS,是全等的三角形,其它的都不能得到三角形全等.【解答】解:A选项中条件不满足SAS,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足SAS,不能判定两三角形全等;D选项中条件满足SAS,能判定两三角形全等.故选:D.2.(4分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS【考点】KB:全等三角形的判定.【分析】由于∠B=∠D,∠1=∠2,再加上公共边,则可根据“AAS”判断△ABC≌△ADC.【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(AAS).故选:A.3.(4分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS【考点】KB:全等三角形的判定.【专题】11:计算题.【分析】由于BE=ED,AE=EC,再加上对顶角相等,则可根据“SAS”判断△ABE≌△CDE.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(SAS).故选:B.4.(4分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选:C.5.(4分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处【考点】KF:角平分线的性质.【专题】12:应用题.【分析】根据角平分线上的点到角的两边的距离相等,分点P在三条公路相交的三角形地带和地带之外作出图形即可得解.【解答】解:如图,可选择的地址有四处.故选D.【6.(4分)等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线【考点】KH:等腰三角形的性质;P2:轴对称的性质.【分析】本题除了要根据等腰三角形的性质进行求解外,还要注意图形的对称轴是直线,而不是线段.【解答】解:根据等腰三角形的性质可知:顶角平分线、底边的中、底边的高所在的直线是等腰三角形的对称轴.故选:D.7.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的x,y的值变为原来的100倍,则此分式的值100倍,故选:B.8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义【考点】64:分式的值.【专题】11:计算题.【分析】根据分式的分母不为0求出x不能为1,且不能为﹣1,故a=﹣1代入分式无意义.【解答】解:根据题意得:a2﹣1≠0,即a≠1且a≠﹣1,则a=﹣1时,分式无意义.故选:D.9.(3分)已知,则的值等于()A.6B.﹣6C.D.【考点】65:分式的基本性质;6B:分式的加减法.【专题】11:计算题.【分析】由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.【解答】解:已知可以得到a﹣b=﹣4ab,则==6.故选:A.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意可得等量关系:180吨÷实际每天生产化肥(x+3)吨=120吨÷原计划每天生产化肥x吨,根据等量关系列出方程即可.【解答】解:原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意得:=,故选:A.【点评】此题主要由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题4分,满分16分)11.(3分)等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是90°或36°.【考点】KH:等腰三角形的性质.【分析】根据已知条件,根据比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故答案为:36°或90°.12.(3分)小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为15:51.【考点】P4:镜面对称.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与15:51成轴对称,所以此时实际时刻为15:51.故答案为:15:51.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.13.(3分)已知=,则的值为﹣.【考点】S1:比例的性质.【分析】根据两内项之积等于两外项之积可得x=3y,然后代入比例式进行计算即可得解.【解答】解:∵=,∴x=3y,∴==﹣.故答案为:﹣.14.(3分)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(﹣2,0).【考点】D5:坐标与图形性质;KA:全等三角形的性质.【分析】根据全等三角形对应边相等可得OD=OB,然后写出点D的坐标即可.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).15.(3分)分式,,﹣的最简公分母是36a4b2.【考点】69:最简公分母.【分析】找出系数的最小公倍数,字母的最高次幂,即可得出答案.【解答】解:分式,,﹣的最简公分母是36a4b2,故答案为36a4b2.【点评】本题考查了最简公分母,掌握因式分解是解题的关键.16.(3分)已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为1.【考点】S2:比例线段.【分析】根据四条线段成比例,列出比例式,再把a=4,b=2,c=2,代入计算即可.【解答】解:∵线段a、b、c、d是成比例线段,∴=,∵a=4,b=2,c=2,∴=,∴d=1.故答案为:1.三、解答题(共7小题,满分54分)17.(6分)计算:.【考点】6B:分式的加减法.【分析】先通分,然后计算分式的加法.【解答】解:原式=﹣===.18.(8分)计算:()•.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式括号中先计算除法运算,再计算减法运算,约分即可得到结果.【解答】解:原式=(﹣•)•=•=1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:()+,其中x=6.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=6代入原式进行计算即可.【解答】解:原式=[﹣]•=•=x﹣4.当x=6时,原式=4﹣6=﹣2.20.(6分)解方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】首先两边同乘2x﹣5去掉分母,然后解整式方程即可求解.【解答】解:两边同乘2x﹣5得x﹣5=2x﹣5,∴x=0,检验当x=0时,2x﹣5≠0,∴原方程的根为x=0.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【考点】8A:一元一次方程的应用.【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.22.(10分如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.【考点】KD:全等三角形的判定与性质.【专题】14:证明题.【分析】由AB∥DE,BF=CE,易得∠B=∠E,BC=EF,然后利用SAS即可判定△ABC ≌△DEF,继而证得AB=DE.【解答】证明:∵AB∥DE,BF=CE,∴∠B=∠E,BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.23.(10分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.【考点】KD:全等三角形的判定与性质;KL:等边三角形的判定.【专题】2B:探究型.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠P AC=60°,∴∠P AQ=∠CAQ+∠P AC=60°,∴△APQ是等边三角形.。

青岛版八数学3单元测试

青岛版八数学3单元测试
∴∠CAN=∠MCB
∴△ACN≌△MCB---------------------------------4分
∴AN=BM-------------------------------------------5分
(2)∵△ACN≌△MCB-
∴∠ENC=∠FBC
∴△ENC≌△FBC---------------------------------------8分
三、解答题:本大题共6小题,共60分.
31.(满分12分,每小题4分)
解:(1)化简:原式=3a-1---Байду номын сангаас--------------------------------3分
求值=0-------------------------------------------------------------------4分
八年级数学第三单元质量检测试题
(时间120分钟;姓名——成绩等级------)
第 卷(选择题)
一、选择题(本大题共15小题,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确选项的代号填写在第Ⅱ卷的表格中.)
1.下列说法正确的是()
A.面积相等的两个三角形全等。
B.底边和顶角对应相等的两个等腰三角形全等。
A.3对B.4对C.5对D.6对
4、在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P的个数为()
A.3个B.4个C.6个D.7个
5.举反例说明“一个角的余角大于这个角”是假命题,错误的是()
即∠EBC=_∠BCF_________
所以BE∥CF(内错角相等,两直线平行。)

一年级上数学期中综合测评卷-学期追踪-13-14青岛版(部分答案,PDF版)

一年级上数学期中综合测评卷-学期追踪-13-14青岛版(部分答案,PDF版)

五 ㊁填一填 .( 第2题4分, 其余每空 1 分 , 共2 1 分)
( ) 请你给从右边数起的第 6 个图形涂上你喜欢的颜色 . 2 ( ) 共有 ( 个㊀. 3 ㊀㊀ )
一年级上学期期中综合测评卷
3.在
3+6
里填上 > 7
4.在 3 7
1 0-4
9㊀㊀㊀7+2 9-0
< 或 = . 9
8㊀㊀㊀2+5 9-6
7㊀㊀㊀6+2 4
2=5㊀㊀㊀㊀4 3=1 0 9
里填上 + 或 - .
1 0-6
8-1
4+3
6=1 0㊀㊀㊀㊀8 8=1
六 ㊁连一连 .( 共 4 分) 3+2 4-1 2-2 9-3
1 0
5=3
1 0=0
0 5 3 6
㊀㊀㊀㊀㊀㊀㊀
把同一类的用线连起来 . 1.分一分 ,
七 ㊁分一分 .( 第1题4分, 第2题3分, 共 8 分)
一年级上学期期中综合测评卷
时间 : 6 0 分钟 ㊀㊀ 满分 : 1 0 0分 看谁写的最漂亮 . 1.从 0 写到 9, 2.看图写数 .
������������ ������������ ������������ ������������ ������������ ������������ ������������
一 ㊁写一写 .( 每空 1 分 , 共1 8 分)
������������������������������������������������������������������������������������������������������������������������ ������������ ������������ ������������

初中数学青岛版八年级上册第1章 全等三角形1.1全等三角形-章节测试习题(1)

初中数学青岛版八年级上册第1章 全等三角形1.1全等三角形-章节测试习题(1)

章节测试题1.【答题】如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A. 15°B. 20°C. 25°D. 30°【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°.∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.选B.2.【答题】如图,△ABC≌△AED,那么图中相等的角有()A. 3对B. 4对C. 5对D. 6对【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:图中相等的角有5对.理由如下:∵△ABC≌△AED,∴∠B=∠E,∠BAC=∠EAD,∠ACB=∠ADE,∴∠BAD=∠EAC,∠ACD=∠ADC;图中相等的角有5对.选C.3.【答题】已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A. 30°B. 40°C. 50°D. 60°【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△A′B′C′,∴∠B=∠B′=180°,∴∠C=180°-∠A-∠B=50°.选C.4.【答题】如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A. ∠1=∠2B. CA=ACC. ∠D=∠BD. AC=BC【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,D、AC=BC错误.选D.5.【答题】如图所示,图中的两个三角形能完全重合,下列写法正确的是()A. △ABE≌△AFBB. △ABE≌△ABFC. △ABE≌△FBAD. △ABE≌△FAB【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:要把对应顶点写在对应位置.∵B和B对应,A和A对应,E和F对应,故△ABE≌△ABF.选B.6.【答题】如图所示.在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C≌△ABC,则∠BCA′:∠BCB′等于()A. 1:2B. 1:3C. 2:3D. 1:4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠B:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′﹣∠B′CB′=10k﹣8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4,选D.7.【答题】下列命题中不正确的是()A. 全等三角形的对应边相等B. 全等三角形的面积相等C. 全等三角形的周长相等D. 周长相等的两个三角形全等【答案】D【分析】根据全等三角形的性质解答即可.【解答】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,选D.8.【答题】如图,△ABC≌△A'B'C,∠ACB90°,∠A'CB20°,则∠BCB'的度数是()A. 60°B. 70°C. 80°D. 90°【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△A'B'C,∴∠A′CB′=∠ACB90°,∵∠A'CB20°,∴∠BCB'=∠A′CB′-∠A′CB=90°-20°=70°,选B.9.【答题】图中的两个三角形全等,则等于().A.B.C.D.【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:由图中两三角形全等,知.故选.10.【答题】如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A. ∠A=∠BB. AO=BOC. AB=CDD. AC=BD【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,∴AB≠CD,选C.方法总结:根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.11.【答题】如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C 为对应顶点,D,E为对应顶点,下列结论不一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,选A.12.【答题】如图,两个三角形为全等三角形,则的度数是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】根据三角形内角和可得∠1=180°-50°-50°=72°,因为两个全等三角形,所以∠α=∠1=72°,选A.13.【答题】如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A. 50°B. 60°C. 100°D. 120°【答案】A【分析】根据全等三角形的性质和角的平分线解答即可.【解答】根据全等三角形的性质求出∠B=∠EDF=20°和∠C=∠F=60°,根据三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=100°,根据角平分线定义求出∠DAC=∠BAC=50°,选A.14.【答题】若△ABC与△DEF全等,且,,则的度数不可能是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC与△DEF全等,∴∠D的度数可能是选A.15.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. AC=DBD. BE=10【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A=60°,∠ABC=80°,∴∠ACB=40°,∵△ABC≌△DCB,∴∠D=∠A=60°,∠DBC=∠ACB=40°,AC=BD,故A,B,C正确,选D.16.【答题】如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,且△A′B′C≌△ABC,则∠BCA′∶∠BCB′等于()A. 1∶2B. 1∶3C. 2∶3D. 1∶4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠ABC:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′-∠B′CB′=10k-8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4选D.17.【答题】如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A. 3B. 4C. 7D. 8【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△EFD,∴AC=DE,∵EC=4,CD=3,∴DE=7,∴AC=7,选C.18.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. BE=10D. AC=DB【答案】C【分析】根据全等三角形的性质解答即可.【解答】△ABC≌△DCB,所以∠A=∠D=60°,A正确.∠ABC=80°,∠A=60°,所以∠ACB=∠DBC=40°.B正确.所以AC=DB,D正确.所以选C.19.【答题】如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=32°,∠E=96°,∠EAB=20°,则∠BAD等于()A. 75°B. 57°C. 62°D. 72°【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠D=∠B=32°,∵∠E=96°,∴∠EAD=180°-∠E-∠D=52°,∴∠BAD=∠BAE+∠EAD=20°+50°=72°,选D.20.【答题】如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于()A. 100°B. 53°C. 47°D. 33°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DF和AC,FE和CB是对应边,∴∠A=∠FDE,又∵∠A=100°,∴∠FDE=100°;∵∠F=47°,∠FDE+∠F+∠DEF=180°,∴∠DEF=180°﹣∠F﹣∠FDE=180°﹣47°﹣100°=33°;选D.方法总结:本题主要考查的是全等三角形的对应角相等,以及三角形的内角和定理.根据相等关系,把已知条件转到同一个三角形中然后利用三角形的内角和来求解是解决这类问题常用的方法.。

青岛版(五四制)2020-2021第一学期小学四年级数学期中模拟测试题2(附答案)

青岛版(五四制)2020-2021第一学期小学四年级数学期中模拟测试题2(附答案)
(2)当a=2时,2分钟后,速度是多少千米/分?
29.水果店运来梨和苹果各6筐,梨每筐重56千克,苹果每筐重44千克,水果店共运来水果多少千克?
30.用字母表示长方形的周长和面积
C=______________
S=______________
31.用计算器计算
仓库存有水泥19800千克,沙子4600千克,白灰3798千克.仓库共存多少千克建筑用料?
x×x×1=1x2=x2
故答案为:B
【点睛】
本题是用字母表示数类型的题目,解决本题的关键是明确含有字母的乘法算式的简便写法。
5.C
【解析】
【详解】

6.C
【解析】
【详解】

7.B
【形的含义:两组对边分别平行的四边形是平行四边形;如果两组对边分别平行、有4个直角的四边形是长方形或正方形;
3.B
【解析】
【分析】
解答此题,要求乙数是多少,要弄清甲数和乙数的关系,根据题意,甲数a﹣b正好是乙数的3倍,进而又根据“已知一个数的几倍是多少,求这个数用除法计算”即可列式解答。
【详解】
由分析知:甲数是a,比乙数的3倍多b,乙数是(a﹣b)÷3,
故选B
【点睛】
此题考查了用字母表示数,解答此题要认真题意,理清数量关系,然后进行解答。
6.下列哪一句话是正确的( )。
A.平行线延长也可能相交。B.梯形是特殊的平行四边形。
C.平行四边形两组对边分别平行。
7.两组对边分别平行没有直角的图形是( )
A.长方形B.平行四边形C.梯形
8.工人师傅加固一个平行四边形框架,最牢固的是( )
A. B. C.
9.(125+a)×8=1000+8a应用了( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014--2015学年度第一学期期中检测
八 年 级 数 学(时间:120分钟)
等级: 教师评语:
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.
2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上。

3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效. 第I 卷
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 如图,下列图案是我国几家银行的标志,其中轴对称图形有
2. 如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=
110°.那么∠BCD 的度数等于
A.40°
B.50° C .60° D.70°
3. 已知△ABC 在直角坐标系中的位置如图所示,如果△A B C '''与△ABC 关于y 轴对称,那么点A 的对应点A '的坐标为
A .(-4,2)
B .(-4,-2)
C .(4,-2)
D .(4,2)
4. 下列各式中正确的是
A .11m m n n +=+
B .()()()()
21x a x b b x a x b +-+=++ C .22b a b a a b -=--- D.22
x x y y ÷⨯= 5. 对二次三项式243x x -+分解因式,结果为
A . ()43x x -+
B . ()()13x x --
C . ()()13x x -+
D . ()()13x x +- (第2题图)
(第3题图)。

相关文档
最新文档