数值分析试卷10计科专升本(B)卷 参考答案

合集下载

数值分析试题与答案

数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

数值分析试题及答案汇总

数值分析试题及答案汇总

数值分析试题及答案汇总TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】数值分析试题一、 填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]=0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 (B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

《数值分析》参考答案

《数值分析》参考答案

参考答案第1章一、选择题1. D2. C3. A4. B5. B二、填空题1. 函数题头 H1行 帮助信息 函数体 注释部分 函数题头2. nargin varargin3. A=rand(4)4. 单引号三、解答题1. for 语句和while 语句均可以实现循环执行的功能。

二者的区别在于,for 循环语句一般适用于已知道循环次数,而不知道循环运算的目标的问题,而while 循环语句则相反,一般适用于已知循环目标,而循环次数未知的问题。

2. 程序如下:function [highavg,weightavg]=avg_high_weight(varargin) n=length(varargin); highsum=0; weightsum=0; for i=1:n highsum=highsum+varargin{i}(1);weightsum=weightsum+varargin{i}(2);endhighavg=highsum/n; weightavg=weightsum/n;第2章一、选择题1. A2. B3. A4. C5. D二、填空题1. 1.7 1.73 1.7322. 3 13. 5%4. 3三、解答题1. 解:1*()()nn x nxx x ε-≈-1***()()n nr nxx x x x x nnxxε---≈=()0.02r ne x n ==2数值分析2. 解:*1 1.1021x =有五位有效数字;*20.031x =有两位有效数字;*3385.6x =有四位有效数字;*47 1.0x =⨯有一位有效数字。

3. 解:(1)*******124124()()()()x x x x x x εεεε++≤++433111101010222---=⨯+⨯+⨯3*1.0510ε-=⨯=(2)*********123231113()()x x x x x x x x x ε⋅⋅≈⋅-+⋅****221233()()x x x x x x -+⋅-*0.197ε≈=(3)******2242244**2441(/) |()()|()x x x x x x x xx ε≤---****2224**44|()()|r r x x x x xxεε=-***224*4||[|()||()|]r r x e x e x x≤+331110100.0312256.4800.03156.480--⎡⎤⨯⨯⎢⎥=+⎢⎥⎢⎥⎣⎦5*10ε-≤=4. 解:33**34433()43r R RV Rππεπ-=*2**2R R R R R RRR R-++=⋅*223R R R RR-≈⋅*3R R R-=⋅1%=故*1300R R R-=5. 解:设Y =*27.983Y =,*31102Y Y δ-=-≤⨯,028Y =,*028Y =,*0000Y Y δ=-=*111282827.983100Y Y ⎛⎛⎫-=---⨯ ⎪⎝⎝⎭1100δ≤,**22111127.983100100Y Y Y Y ⎛⎛⎫-=-⨯--⨯ ⎪⎝⎝⎭**111()()100Y Y Y Y =---112100100100δδδ≤+=仿此可得:*100n n n Y Y δ-≤则*31001001001101002Y Y δδ--≤==⨯即计算100Y 的误差界不超过31102-⨯参考答案 36. 解:解方程25610x x -+=得:28282x =±±由第5题知27.983具有五位有效数字,故可取:1282827.98355.983x =++=21280.0178655.983x =-≈=7. 解:设正方形的边长为x ,则其面积为2y x =。

数值分析习题集及答案

数值分析习题集及答案

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多大误差7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字.8. 当N 充分大时,怎样求211Ndx x +∞+⎰9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝210. 设212S gt =假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大这个计算过程稳定吗12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量 a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nkkj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.24. 给定数据表如下:试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小r 是否唯一 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积19. 用许瓦兹不等式估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A fh --≈-++⎰;(2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. 用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-⎰;(2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式和辛普森公式当n →∞时收敛到积分()ba f x dx ⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)8.1xedx-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nnnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =,和处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

(2020年7月整理)数值分析试题集.doc

(2020年7月整理)数值分析试题集.doc

数值分析试题集(试卷一)一(10分)已知3409.1*1=x ,0125.1*2=x 都是由四舍五入产生的近似值,判断*2*1x x +及*2*1x x -有几位有效数字。

二(10三(15分)设],[)(4b a C x f ∈,H (x )是满足下列条件的三次多项式)()()(,)()(,)()(,)()(b c a c f c H c f c H b f b H a f a H <<'='===求)()(x H x f -,并证明之。

四(15分)计算dx x⎰+10312,210-=ε。

五(15分)在[0,2]上取2,1,0210===x x x ,用二种方法构造求积公式,并给出其公式的代数精度。

六(10分)证明改进的尢拉法的精度是2阶的。

七(10分)对模型0,<⋅='λλy y ,讨论改进的尢拉法的稳定性。

八(15分)求方程017423=--+x x x 在-1.2附近的近似值,310-=ε。

-----------------------------------------------------------------------------------------------------------------------------(试卷二)一 填空(4*2分)1 ∞=0})({k k x φ是区间[0,1]上的权函数为2)(x x =ρ的最高项系数为1的正交多项式族,其中1)(0=x φ,则=⋅⎰10)(dx x x φ-------------------,=)(1x φ------------------。

2 ⎪⎪⎭⎫ ⎝⎛-=4112A ,则=∞A -----------, =)(A ρ-----------------。

3 设⎪⎪⎭⎫⎝⎛-+=4121a A ,当a 满足条件----------------时,A 可作LU 分解。

数值分析练习题附答案

数值分析练习题附答案

1
2-3 对矩阵 A 进行 LDLT 分解和 GGT 分解,求解方程组 Ax=b,其中
16 4 8
1
A=( 4 5 −4) , b=(2)
8 −4 22
3
解:(注:课本 P26 P27 根平方法)
设 L=(l i j ),D=diag(di),对 k=1,2,…,n,
其中������������=������������������-∑������������=−11 ���������2��������� ������������
������31=(������31 − ∑0������=1 ������3������������1������ ������������)/ ������1=186=12
������32=(������32

∑1������=1
������3������������2������
������������ )/
6.6667
,得 ������3 = 1.78570
−1 209
������4
0
������4
0.47847
(
56
−1
780 (������5) 209)
(200)
(������5) ( 53.718 )
1 −1
4
1 −4
15
������1
25
������2
6.6667再由1源自− 15561
− 56
209

x (k1) 1

1 5
(12

2 x2( k )

x (k) 3
)


2 5
x (k) 2

数值分析参考答案

数值分析参考答案

1、确定参数p 、q 、r,使得迭代212512,,,...k k k kqa ra x px k x x +=++==(16分) 解:迭代方程225(),1,2,...qa ra x px k x xϕ=++== 2'3625(),qa ra x p x x ϕ=-- 2''47630(),qa ra x x x ϕ=+ 利用局部收敛性与收敛阶定理4知要使收敛的阶尽可能高,需满足'*''*()0()0x x ϕϕ== 又知 **()x x ϕ= 则可得到以下式子:22235027609qa ra p qa ++=--==......1 ......2 ......3 由以上三式可解得:2539p r a==- 收敛的阶数为3。

题外话:解这样比较复杂的方程组,不太适合手算,最好自己利用MATLAB 编写一个小程序:附带自编小程序:syms p q r a ;s1='sqrt(3)*p+(q*a)/3+(r*a^2)/(9*sqrt(3))=sqrt(3)';s2='p-(2*q*a)/(3*sqrt(3))-(5*r*a^2)/27=0';s3='(6*q*a)/9+(30*r*a^2)/(27*sqrt(3))=0';[p,q,r]=solve(s1,s2,s3,p,q,r)2、用MATLAB编程求著名的Van Der Pol 方程210()x x x x '''+-+= 的数值解并绘制其时间响应曲线和状态轨迹图(给出源程序)(14分)解:先建立一个函数文件fname.m :function xdot=fname(t,x)xdot=zeros(2,1);xdot(1)=(1-x(2)^2)*x(1)-x(2);xdot(2)=x(1);调用函数文件fname.m 求Van Der Pol 方程的数值解并绘制时间响应曲线和状态轨迹图:ts=[0 30]; %设置仿真时间30秒x0=[1;0]; %设置仿真初值[t,x]=ode45('fname',ts,x0);subplot(1,2,1),plot(t,x)subplot(1,2,2),plot(x(:,1),x(:,2))3、试确定常数A ,B ,C ,使得数值求积公式)1()()0()(110Cf x Bf Af dx x f ++≈⎰具有尽可能高的代数精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析2012-2013第1学期10计算专升期末试卷B 参考答案及评分标准一、判断题(每小题2分,共20分) 1、T2、F3、T4、T5、T6、T7、T8、T9、T10、T二、计算题(每题8分,共40分)1、设有微分方程()⎪⎩⎪⎨⎧=-=102'y y x y y 。

设步长为0.1,用Euler 方法,计算()()()()4.0,3.0,2.0,1.0y y y y 的近似值:4.03.02.01.0,,,y y y y 解:记步长为1.0=h 。

Euler 方法是以()n n y x ,为起点,以nnn n y x y y 2'-=为切线,构造直线,并以所构造直线在1+n x 点处的值1+n y 作为()1+n x y 的近似,写成表达式有⎪⎪⎭⎫⎝⎛-+=+n nn n n y x y h y y 21 (4分)依次计算的结果3582.1,2774.1.0,1918.1,1000.1,14.03.02.01.00=====y y y y y (8分) 2、设()x x f ln =,已知()()()()()2231.08.0,3578.07.0,5108.06.0,6931.05.0,9163.04.0-=-=-=-=-=f f f f f试用线性插值及二次插值计算54.0ln 的近似值,并估计误差。

解:(1)因为0.54介于0.5与0.6之间,为了进行内插值,所以选取6.0,5.010==x x 为插值节点,构造插值基函数: ()()()()5.0106.01001011010-=--=--=--=x x x x x x l x x x x x x l插值函数为:()()()5.0108.56.0931.61---=x x x L并有余项:()()()()6.0,5.0,211021∈---=ξξx x x x x R所以()()()()()()0.00486.054.05.054.05.0*2154.0-0.620185.054.0108.56.054.0931.654.054.0ln 211=--≤=-⨯--⨯=≈R L (4分)(2)选取节点6.0,5.0,4.0210===x x x ,构造二次插值基函数()()()()()()()()()()()()()()()()()()()()()6.04.0506.04.01006.05.050120210221012012010210--=----=---=----=--=----=x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l 有插值函数:()()()()x l x l x l x L 21020.5108-0.6931--0.9163= 有余项:()()()()()6.0,4.0,!3121032∈---=ξξx x x x x x x R所以()()()()()0.0008756.054.05.054.04.054.04.06154.0-0.6152720.143024-0.582204-0.10995654.054.0ln 322=---⨯≤==≈R L (8分) 3、设有实验数据963.20475.18844.16094.1428.295.173.136.1i i y x试求y 与x 的函数关系。

解:由图上可以看出y 与x 大致呈线性关系。

设 b ax y += 记()[]∑=-+=412,i i i y b ax b a ϕ,现在的目标是确定b a ,使()b a ,ϕ达到最小。

为此,令()[]()[]⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛-+=-+=∂∂=⎪⎭⎫⎝⎛-+=-+=∂∂∑∑∑∑∑∑∑=======0422,022,414141414141241i i i i i i i i i i i i i i i i i i y b x a y b ax bb a x y x b x a x y b ax a b a ϕϕ 写成矩阵的形式有 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛376.7012985.132432.732.78434.13b a (5分) 解之,得4626.7,9374.3==b a ,即y 与x 的函数关系大致为4626.79374.3+=x y (8分) 4、用Newton 迭代法求方程()12--=x x x f 在[]2,1上的一个根,并用5.10=x 做4次迭代计算。

解:对()x f 求导,有()12'-=x x f ,构造Newton 迭代格式()()⎪⎩⎪⎨⎧=----=-=+5.1121'021x x x x x x f x f x x k k k k k k k k (4分)作4次迭代的结果为91.6180339812191.6180339812161.618055551211.625012133234222231121200201=----=----=----=----x x x x x x x x x x x x x x x x (8分) 5、用LU 分解的方法求下列两个方程组的解⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---1233303021112321x x x 与⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---1213303021112321x x x 解:记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛---=1213123330302111221b b A ,则原方程组可表示为2211,b AX b AX ==对A 作LU 分解有LU A =⎪⎪⎪⎪⎭⎫ ⎝⎛---⨯⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=5212311211231211303021112 (4分) 记11Y UX =,解得TY ⎪⎭⎫⎝⎛-=152331,求解11Y UX =,得()3211=X 。

记22Y UX =,解得⎪⎭⎫⎝⎛=52532Y ,求解22Y UX =,解得()1232=X 。

(8分)三、综合计算题(每题16分,共16分)1、设有线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--36332012361114238321x x x试求(1)给出解线性方程组的Jacobi 迭代、Gauss-Seidel 迭代矩阵(2)判断解线性方程组的Jacobi 迭代、Gauss-Seidel 迭代的收敛性; (3)选取收敛速度较快的一种迭代方法,取()TX 1,1,10=进行四次迭代计算解:(1)分别记Jacobi 迭代与Gauss-Seidel 迭代矩阵为G J ,,则⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0000.30000.35000.204121111011441830J f J⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=2273.10909.25000.20.0795460.15341-00.1818180.13636-00.25-0.3750G f G (6分)(2)系数矩阵是严格对角占优的,所以Jacobi 迭代、G-S 迭代都是收敛的。

(10分)(3)J 的三个特征值为:i i J J J 3245.01541.03245.01541.03082.0321-=+==λλλ所以J 的谱半径为()3592.0=J ρG 的三个特征值为i i G G G 1274.00284.01274.00284.00321--=+-==λλλ所以G 的谱半径为()1306.0=G ρ 由于()()G J ρρ>所以Gauss-Seidel 迭代收敛速度快于Jacob 迭代的收敛速度,取Gauss-Seidel 迭代,以()TX 1,1,10=为初始向量,计算四次的结果为()()()()()TT T TT X X X X X 0000.1,0000.2,9999.20003.1,0000.2,9995.29979.0,9971.1,0057.39913.0,0093.2,0128.31534.1,1364.2,6250.254321===== (16分)四、应用题(每题12分,共24分)1、尝试只用加、减、乘、除四种运算,计算0,>c c 的近似值,并以实例说明。

解:(1)因为c 是方程02=-c x 的根,所以可以用求根的方法求c 的近似值,记()c x x f -=2,则()x x f 2'=,构造迭代格式()()kk k k k k k k k x c x x c x x x f x f x x 222'21+=--=-=+ 这个算法中只含有乘法、除法与加法运算。

另外,由此构造的序列{}k x ,满足⎪⎪⎭⎫⎝⎛-=-k kq q c c x k 2212 其中cx c x q +-=00,显然当00>x 时,总有1||<q ,所以c x k k =∞→lim (8分)(2)取1,20==x c ,用上述迭代法,计算5次的结果为21.414213561221.414213561261.414215681271.4166666612 1.500001214453342231120010=+==+==+==+==+==x x x x x x x x x x x x x x x x (12分)2、试用数值积分的方法计算1,ln >x x 的近似值。

解:(1)因为⎰≡xdt tx 11ln ,于是可以利用数值积分算法计算x ln 的近似值。

如果用龙贝格算法,其算法过程为:将区间],1[x 分为n 等分,计算:()()[]()()()n ab h x f x f x f h x f x f h T n n i i n i i i n -=⎪⎭⎫ ⎝⎛++=+=∑∑-=-=-,222110101计算 n n n n n n n n n C C R S S C T T S 631636415115163134222-=-=-=并以n R 作为x ln 的近似值。

(8分) (2)以2=x 为例,采用复化梯型求积公式,其过程如下: ⎰=2112ln dx x, 记()xx f 1=,[][]2,1,=b a ,做4等分,节点为2,75.1,5.1,25.1,143210=====x x x x x ,对应的函数值为()()()()()5.0,5714.0,6667.0,8.0,143210=====x f x f x f x f x f 所以()()()()[]()()()()()()[]()[]0.6970255.05714.06667.08.021125.02222ln 432103113211=++++=+++++=+-≈==∑∑⎰⎰=++=+x f x f x f x f x f hx f x f x x dx x f dx x f i i i ii i x x i i其误差为 ()()()0.01042m a x 25.01212ln 21244=''≤-=≤≤x f T T R x (12分)。

相关文档
最新文档