2014广东高考数学分析
2014广东高考理科数学分析及历年知识点对比

2014广东高考数学理科试题分析纵观2014 年广东高考理科数学试题,我们发现高考试题整体的结构没有大的变化,知识点和往年有些出入,另外对知识的考查今年更灵活。
总之,今年广东理科数学是考点变化比例加大,上手易高分难。
一、总体趋势变化较大:思路灵活、运算量上升从总体情况看,试卷结构没有变化(8+6+6),但题目没有 13 年基础。
选择、填空题中考查了去年没有涉及的空间向量和解三角形,而且其中中档题的比例也加大了。
解答题中,考察内容除最后一题外,基本不变。
前三道难度与去年相比变化不大。
后三道解答题的思路不是很常规,计算量较大,且与去年不同的是,最后一道大题的求解并不需要导数。
二、试卷难度上升从整张试卷看,相较 2013 年广东高考理科数学试题而言,整体难度上升不少。
试题中中高档题目比例增大,且对计算的要求非常高,要求考生具备极强的耐心进行细致的运算。
尤其是后面三道大题,难度增加颇大。
三、考点分析:中档题比例增加以下表格是对广东省2014年高考理科数学考点的统计:题号考点难度题号考点难度1 集合低 16 (1)三角函数求值低2 复数低 (2)三角公式中3 线性规划中17 (1)频数、频率低4 圆锥曲线中 (2)直方图低5 空间向量低 (3)概率低6 概率统计低 18 (1)线面垂直低7 立体几何低 (2)二面角中8 集合创新题中 19 (1)数列基本概念中9 绝对值不等式低 (2)数列通项公式中11 概率中20 (1)圆锥曲线方程低12 解三角形中 (2)圆锥曲线切线难13 等比数列中 21 (1)函数的定义域中14 参数方程与极坐标中 (2)函数的单调性难15 平面几何低 (3)函数综合难从上表可以看出,1—18 题中,中档题的比例增加,而且考查了去年未涉及到的空间向量及解三角形。
这就要求考生在平时备考时,知识点必须悉数复习到位,不能有所遗漏。
以下对后三大题逐题点评:第 19 题:和去年考察内容一样,均为数列知识,但思路不太相同。
2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·广东(理科数学)

2014·广东卷(理科数学)1.[2014·广东卷] 已知集合M ={-1,0,1},N ={0,1,2,},则M ∪N =( )A .{0,1}B .{-1,0,2}C .{-1,0,1,2}D .{-1,0,1}1.C [解析]本题考查集合的运算.因为M ={-1,0,1},N ={0,1,2},所以M ∪N ={-1,0,1,2}.2.[2014·广东卷] 已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4iB .-3-4i C .3+4iD .3-4i2.D [解析]本题考查复数的除法运算,利用分母的共轭复数进行求解. 因为(3+4i)z =25,所以z =253+4i =25(3-4i )(3-4i )(3+4i )=3-4i.3.[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析]本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.4.[2014·广东卷] 若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等4.A [解析]本题考查双曲线的几何性质,注意利用基本量的关系进行求解. ∵0<k <9,∴9-k >0,25-k >0. 对于双曲线x 225-y 29-k =1,其焦距为225+9-k =234-k ;对于双曲线x 225-k -y 29=1,其焦距为225-k +9=234-k .所以焦距相等. 5.[2014·广东卷] 已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)5.B [解析]本题考查空间直角坐标系中数量积的坐标表示.设所求向量是b ,若b 与a 成60°夹角,则根据数量积公式,只要满足a ·b |a ||b |=12即可,所以B 选项满足题意.6.[2014·广东卷] 已知某地区中小学生人数和近视情况分别如图1-1和图1-2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )图1-1 图1-2A .200,20B .100,20C .200,10D .100,106.A [解析]本题考查统计图表的实际应用.根据图题中的图知该地区中小学生一共有10000人,由于抽取2%的学生,所以样本容量是10000×2%=200.由于高中生占了50%,所以高中生近视的人数为2000×2%×50%=20.7.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定7.D [解析]本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AB 是直线l 3,则DD 1是直线l 4,l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,CC 1是直线l 3,CD 是直线l 4,则l 1⊥l 4.故l 1与l 4的位置关系不确定.8.、[2014·广东卷] 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1308.D [解析]本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 25×23种方法;当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 35×22种方法;当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 45×2种方法.故总共有C 25×23+C 35×22+C 45×2=130种方法, 即满足题意的元素个数为130. 9.[2014·广东卷] 不等式|x -1|+|x +2|≥5的解集为________.9.(-∞,-3]∪[2,+∞) [解析]本题考查绝对值不等式的解法.|x -1|+|x +2|≥5的几何意义是数轴上的点到1与-2的距离之和大于等于5的实数,所以不等式的解为x ≤-3或x ≥2,即不等式的解集为(-∞,-3]∪[2,+∞).10.、[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________.10.y =-5x +3 [解析]本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.11.、[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.11.16 [解析]本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C 710种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C 36C 33种方法.故这七个数的中位数是6的概率P =C 36C 33C 710=16.12.[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .已知b cos C +c cos B =2b ,则ab=________.12.2 [解析]本题考查了正弦定理以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.利用正弦定理,将b cos C +c cos B =2b 化简得sin B cos C +sin C cos B =2sin B ,即sin(B +C )=2sin B .∵sin(B +C )=sin A ,∴sin A =2sin B ,利用正弦定理化简得a =2b ,故a b=2.13.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 [解析]本题考查了等比数列以及对数的运算性质.∵{a n }为等比数列,且a 10a 11+a 9a 12=2e 5,∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)= ln(a 10a 11)10=ln(e 5)10=lne 50=50. 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.14.(1,1) [解析]本题主要考查将极坐标方程化为直角坐标方程的方法.将曲线C 1的方程ρsin2θ=cos θ化为直角坐标方程为y 2=x ,将曲线C 2的方程ρsin θ=1化为直角坐标方程为y =1.由⎩⎪⎨⎪⎧y 2=x ,y =1,解得⎩⎪⎨⎪⎧x =1,y =1.故曲线C 1和C 2交点的直角坐标为(1,1).15.[2014·广东卷] (几何证明选讲选做题)如图1-3所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的面积△AEF 的面积=________.图1-315.9 [解析]本题考查相似三角形的性质定理,面积比等于相似比的平方. ∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ∽△CDF ,∴△CDF 的面积△AEF 的面积=⎝⎛⎭⎫CD AE 2=9.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.17.、[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.、[2014·广东卷] 如图1-4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.图1-419.、[2014·广东卷] 设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.、[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).。
2014年广东省高考数学试题与答卷分析

抽样29余万份得分情况
得分 人数 得分 人数 0分 125494 8分 317 1分 138408 9分 191 2分 14890 10分 43 3分 6524 11分 12 4分 7059 12分 10 5分 2068 13分 8 6分 577 14分 17 7分 238
缺乏换元思想,解一元二次方程或一元二次不等式时错误,计算能 力薄弱,基本功不扎实 思维灵活性不够,讨论函数单调性只想到求导没有想到基本的定义 法,由于所给函数的复杂性,缺乏解题思路
数学严谨性不够,不少人在设出切线方程 之前或之后没有充分论证切 线斜率不存在或等于0的情形 由于答案可以猜测或记背,考生罗列出一堆条件后在一片混沌的运算 过程中得到清晰准确的答案: x02 y02 13
你考我计算能力, 我考你评卷水平, 说不定还混满分!
学生的答卷情况
2014年理科第21题
对数基本概念、等比数列性质不清
书写不规范,式子变形出错
学生的答卷情况
2014年理科第17题
近8成的考生不能准确画出频率分布直方图 3 4 C25 不能正确理解抽样的概念,出现式子 C25
学生的答卷情况
2014年理科第19题 计算题里面还 会有证明? 抽样26余万份得分情况
得分 0分 1分 2分 3分 4分 5分 6分 7分
掌握
10, 18(2), 19(2-3), 20(2), 21(1-2)
50
33.3%
2014年数学知识目标结构(理科卷)
水平
了解 理解
题号 1,2,3,4,5,6,7,9,10,16(1),17(1)
11,12,13,14,15,16(2),17 (2-3), 18(1),19(1),20(1),
[精美版]2014年广东高考文科数学(逐题详解)
![[精美版]2014年广东高考文科数学(逐题详解)](https://img.taocdn.com/s3/m/f5b125f40242a8956bece4ac.png)
O xyA BCD2014 年广东高考文科数学逐题详解详解提供: 广东佛山市南海中学 钱耀周参考公式:椎体的体积公式 13V Sh = ,其中S 为椎体的底面积,h 为椎体的高.一组数据 12 ,,, nx x x L 的方差 ( ) ( ) ( )2222121 ns x x xxxx n éù =-+-++- êú ëûL ,其中x 表示这组数据的平均数.一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的.1.已知集合 { } 2,3,4 M = , { } 0,2,3,5 N = ,则M N = I ( )A .{ }0,2 B .{ }2,3 C .{ }3,4 D .{ }3,5 【解析】B ;M N = I { } 2,3 ,选 B .2.已知复数z 满足( ) 34i 25 z -= ,则z =( )A . 34i --B . 34i-+ C .34i- D .34i+ 【解析】D ; ( ) ( )( )2534i 2534i 34i 34i 34i z + ===+ --+ ,选 D . 3.已知向量 ( ) 1,2 = a , ( ) 3,1 = b ,则 -= b a ( )A .( )2,1 - B .( )2,1 - C .( )2,0 D .( )4,3 【解析】B ; ( ) ( ) ( ) 3,11,22,1 -=-=- b a ,选 B .4.若变量 , x y 满足约束条件 28 04 03 x y x y +£ ì  í ï ££ î,且 2 z x y =+ 的最大值等于( )A .7B .8C .10D .11【解析】C ;画出可行域如图所示,为一个五边形OABCD 及其内部区域,当直线 2 y x z =-+ 过点 ( )4,2 B 时,z 取得最大值 24210 z =´+= ,选 C . 5.下列函数为奇函数的是( )A . 12 2x x y =-B . 3 sin y x x =C . 2cos 1 y x =+D . 2 2xy x =+ 【解析】A ;设 ( ) 1 2 2 xx f x =-,则 ( ) f x 的定义域为R ,且 ( ) ( ) 11 22 22x xx x f x f x - - -=-=-=- ,所以 ( ) 12 2x x f x =- 为奇函数,选A .6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段间隔为( )A .50B .40C .25D .20【解析】C ;分段间隔为 100025 40= ,选 C .7.在 ABC D 中,角 ,, A B C 所对应的边分别为 ,, a b c ,则“a b £ ”是“sin sin A B £ ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件1l 2l 3l 4 l 4l 【解析】A ;结合正弦定理知sin sin 2sin 2sin A B R A R B a b £Û£Û£ ,选 A .8.若实数k 满足05 k << ,则曲线 22 1 165 x y k -= - 与曲线 221 165x y k -= - 的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等【解析】D ;因为05 k << ,所以两条曲线均为双曲线,且 2c 均为21 k - ,故选 D .9.若空间中四条两两不同的直线 1 l , 2 l , 3 l , 4 l ,满足 12 l l ^ , 23 // l l , 34 l l ^ ,则则下列结论一定正确的是()A . 14l l ^ B . 14// l l C . 1 l 与 4 l 既不垂直也不平行 D . 1 l 与 4 l 的位置关系不确定 【解析】D ;弄个正方体一目了然!10. 对任意复数 1 w , 2 w 定义 1212 w w w w *= ,其中 2 w 是 2 w 的共轭复数,对任意复数 123 ,, z z z ,有如下四个命题:① ( ) ( ) ( ) 1231323 z z z z z z z +*=*+* ; ② ( ) ( ) ( ) 1231213 z z z z z z z *+=*+* ; ③ ( ) ( ) 123123 z z z z z z **=** ; ④ 1221 z z z z *=* ;则真命题的个数是( ) A .1B .2C .3D .4【解析】B ;①( ) ( ) ( ) ( ) 12312313231323 z z z z z z z z z z z z z z +*=+=+=*+* ,故①为真命题;② ( ) ( )( ) ( ) 12312312312131213 z z z z z z z z z z z z z z z z z *+=+=+=+=*+* ,故②为真命题; ③左边 123 z z z = ,右边 ( )( ) ( )123123123 * z z z z z z z z z === ,左边¹ 右边,故③为假命题; ④左边 12 z z = ,右边 21z z = ,左边¹ 右边,故④为假命题.故只有①②为真命题,选B . 二、填空题:本大共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分) (一)必做题(11~13 题)11.曲线 53 xy e =-+ 在点( ) 0,2 - 处的切线方程为.【解析】520 x y ++= ;由 5 xy e ¢=- 得 0 5 x y = ¢ =- ,故切线方程为 25 y x +=- ,即520 x y ++= .12. 从字母 ,,,, a b c d e 中任取两个不同的字母,则取到字母a 的概率为_______.【解析】 2 5 ; 142 5 42 105C P C === .13. 等比数列{ } n a 的各项均为正数,且 15 4 a a = ,则 2122232425log log log log log a a a a a ++++=______. (二)选做题(14~15 题,考生只需从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线 1 C 和 2 C 的方程分别为 22cos sinr q q = 和 cos 1 r q = . 以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线 1 C 和 2 C 交点的直 角坐标为______.【解析】( ) 1,1 ;由 2 2cos sin r q q = ,可得 ( ) 22cos sin r q r q = ,即 2 2 y x = .由 cos 1 r q = ,可得 1 x = .曲线 1 C 和 2 C 交点的直角坐标为() 1,2 . 15.(几何证明选讲选做题)如图 1,在平行四边形ABCD 中,点E 在 AB 上且2 EB AE = , AC 与DE 交于F ,则CDF AEF D =D 的面积的面积.【解析】9;考查相似三角形性质的应用.由题易知 CDF D ∽ AEF D 所以相似比为3:1 CD AE = ,故 CDF AEF D D 的面积的面积为相似比的平方,即为9. 三、解答题:本大题共 6 小题,满分 80 分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分 12分)已知函数 ( ) sin 3 f x A x p æö=+ ç÷ èø ,x ÎR ,且 532122f p æö =ç÷ èø . (1) 求A 的值; (2) 若 ( ) ( ) 3,0, 2 ff p q q q æö --=Î ç÷ èø ,求 6 f p q æö - ç÷ èø.【解析】(1) 依题意 553232 sin sin 12123422 f A A A pp p p æöæö=+=== ç÷ç÷èøèø ,解得 3 A = ; (2) 由(1)知, ( ) 3sin 3 f x x p æö=+ ç÷ èø,又 ( ) ( ) 3 ff q q --=,所以3sin 3sin 3 33 p p q q æöæö +--+= ç÷ç÷ èøèø ,展开化简得 3 sin 3 q = ,又 0, 2 p q æö Î ç÷ èø,所以 26cos 1sin 3q q =-= , 所以 3sin 3sin 3cos 6632 f p p p p q q q q æöæöæö-=-+=-= ç÷ç÷ç÷ èøèøèø6 = .17.(本题满分 13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191 28 3 29 3 30 5 31 4 323 401 合计20(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.【解析】(1) 这20名工人年龄的众数为30,极差为401921 -= ;(2) 作出这20名工人年龄的茎叶图如下:D ABCEF 图 11 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 2 4(3) 这20名工人年龄的平均数 192832933053143234030 20x +´+´+´+´+´+ = = ,方差 222222221 (11)3(2)3(1)50413210 20 s éù -+´-+´-+´+´+ =+´ ëû 1 (121123412100) 20 =+++++ 1 252 20=´ 12.6 = . 18.(本题满分 13分)如图 2 ,四边形 ABCD 为矩形, PD ^ 平面 ABCD , 1 AB = , 2 BC PC == ,作如图3 折叠,折痕// EF DC ,其中点 , E F 分别在线段 , PD PC 上,沿 EF 折叠后点 P 落在线段 AD 上的点记为M ,并且 MF CF ^ .(1) 证明:CF ^ 平面MDF ; (2) 求三棱锥M CDE - 的体积.【解析】(1) 因为PD ^平面 ABCD ,PD Ì 平面PCD ,所以平面PCD ^平面ABCD ,又平面PCD I 平面ABCD CD = ,MD Ì平面 ABCD ,MD CD ^ ,所以MD ^ 平面PCD , 又CF Ì平面PCD ,所以CF MD ^ ,又CF MF ^ ,MD MF M = I ,所以CF ^ 平面MDF . (2) 因为CF ^ 平面MDF ,DF Ì 平面MDF ,所以CF DF ^ , 又易知 060 PCD Ð= ,所以 030 CDF Ð= ,从而 11 22 CF CD == ,因为 // EF DC ,所以 DE CFDP CP= , 即 12 = 2 3DE ,所以 3 4 DE = ,所以 334 PE = , 13 28 CDE S CD DE D =×= ,222222 3336()() 442MD ME DE PE DE =-=-=-= , 所以 11362338216M CDE CDE V S MD - D =×=××= . 19.(本题满分 14分)设各项均为正数的数列{ } n a 的前n 项和为 n S ,且 n S 满足 ( ) ( )222 330 n n S n n S n n -+--+= , *n ÎN .(1) 求 1 a 的值;(2) 求数列{ }n a 的通项公式; ABCDP图 2PCBA DEF M 图 3(3) 证明:对一切正整数n ,有( ) ( ) ( ) 1122 11111113n n a a a a a a +++< +++ L .【解析】(1) 令 1 n = 得 211 60 S S +-= ,因为 1 0 S > ,所以 1 2 S = ,即 1 2 a = .(2) 由 () ()222330 n n S n n S n n -+--+= 得 2(3)()0 n n S S n n éù +-+= ëû ,因为 0 n a > ,所以 0 n S > ,从而 30 n S +> ,所以 2n S n n =+ ,当 2 n ³ 时, 221 (1)(1)2 n n n a S S n n n n n - éù =-=+--+-= ëû , 又 1 221 a ==´ ,所以 2 n a n = ,即数列{ } n a 的通项公式为 2 n a n = . (3) 当 2 n ³ 时,( ) ( ) ( )( ) 111111 1221212122121 n n a a n n n n n n æö=<=-ç÷ ++-+-+ èø所以( ) ( ) ( ) 1122 111 111 n n a a a a a a +++ +++ L 11111111 23235572121 n n æö <+-+-++- ç÷´-+ èøL 11111111 623216233n æö =+-<+´=ç÷ + èø 当 1 n = 时,( ) 11 11 13 a a < + ,故对一切正整数n ,有 ( ) ( ) ( ) 1122 11111113 n n a a a a a a +++< +++L .20.(本题满分 14分)已知椭圆C : 22 22 1 x y a b += ( 0 a b >> )的一个焦点为 ( )5,0 ,离心率为 53.(1) 求椭圆C 的标准方程;(2) 若动点 ( ) 00 , P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【解析】(1)由 5 c = 及 5 3 c e a == ,可得 3,952 a b ==-= ,故椭圆C 的标准方程为 22 1 94x y += .(2) 不妨设点P 引椭圆C 的两条切线对应的切点分别是 , A B ,且( ) ( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Ï---- ,设直线PA 为 ( ) 00 y y k x x -=- ,则PB 为 ( ) 00 1y y x x k-=-- . 由 ( ) 00 22 1 94y y k x x x x ì-=- ï í += ï î 消去 y 整理得( ) ( ) ( ) 2 220000 49189360 k x k y kx x y kx ++-+--= , 则 ()220000 9240x k x y k y D =-++-= 同理可得( )22 0000 11 9240 x x y y k k æöæö --+-+-= ç÷ç÷ èøèø.可知k 和 1 k- 是方程()220000 9240 x x x y x y -++-= 的两个实数根,则有20 4 1 1 9 y k k x - æö ×-=-= ç÷ - èø,整理得 22 00 13 x y += , 易知( )( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Î---- 也符合,故点P 的轨迹方程为 22 00 13xy += .21.(本题满分 14分)已知函数 ( ) 32 1 1 3f x x x ax =+++ ,其中a ÎR . (1) 求函数 ( ) f x 的单调区间;(2) 当 0 a < 时,试讨论是否存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèøU ,使得 ( ) 0 1 2 f x f æö = ç÷ èø. 【解析】(1)求导得 2()2 f x x x a ¢ =++ ,方程 220 x x a ++= 的判别式 44a D =- ,当 0 D £ 即 1 a ³ 时, ()0 f x ¢ ³ ,此时 ( ) f x 在( ) , -¥+¥ 上递增;当 1 a < 时,方程 220 x x a ++= 的两不等实根分别为 1 11 x a =--- , 2 11 x a =-+- , 由 ()0 f x ¢ > 得 11 x a <--- 或 11 x a >-+- ; 由 ()0 f x ¢ < 得 1 1 1 1 a x a ---< -+- < . 综上,当 1 a ³ 时, ( ) f x 的递增区间为( ) , -¥+¥ ;当 1 a < 时, ( ) f x 的递增区间为 ( ) ( ),11,11, a a -¥----+-+¥ , 递减区间为 ( )11,11 a a ----+- . (2) ( ) 3232 0000 111111 1()()()1 233222 f x f x x ax a æöéù -=+++-+++ ç÷ êú èøëû3322 000 1111()()() 3222x x a x éùéù =-+-+- êúêú ëûëû 2 0 00000 111111 ()()()()() 3224222x x x x x a x éù =-+++-++- êú ëû 2 00 00 111 ()() 236122 x x x x a =-+++++ 2 000 11 ()(414712) 122 x x x a =-+++ ,若存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø,必须 200 4147120 x x a +++= 在 11 0,,1 22 æöæö ç÷ç÷ èøèøU 上有解, 因为 0 a < ,所以 21416(712)4(2148)0 a a D =-+=-> , 方程 200 4147120 x x a +++= 的两根为 142214872148 84a a-±--±- = ,又 0 0 x > ,所以 0 72148 4 a x -+- =,依题意 7+2148 01 4a-- << ,即7214811 a <-< ,所以492148121 a <-< ,即 257 1212 a -<<- ,又由 7+21481 42 a -- = ,得 54a =- , 综上,当 257 1212 a -<<- 且 5 4 a ¹- 时,存在唯一的 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø, 当 2512 a <-或 7 12 a >- 或 5 4 a =- 时,不存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö = ç÷ èø.。
2004-2014广东省高考文科数学小题考点逐题分析

注:第 14、15 题为选做题,二题选做一题。
2010 年文数
2010 年 1、集合运算 2、函数定义域 3、函数奇偶性 主要知识(考)点
选择题 集合运算,并集 函数定义域,对数函数 函数奇偶性判断,指数函数
备注
5
4、等比数列 5、平面向量 6、直线与圆 7、椭圆离心率 8、充要条件 9、三视图 10、新信息题
等比数列,前 n 项和及等差中项,考查前 5 项和 平面向量运算,加减数乘及数量积 直线与圆,相切,考查圆的方程 椭圆,长轴短轴焦距成等差数列,考查椭圆离心率 充分必要条件,简单不等式知识 三视图,给图,考查正视图 新概念,定义两种运算,列表形式,求运算结果
填空题 11 流程图 12 统计 13 解三角形 14 几何证明 15 参数方程
备注
3
6、三角函数 7、立体几何 8、解析几何 9、算法 10、新概念题 11 函数 12 数列 13 概率与统计 14 极坐标与 参数方程 15 几何证明
解三角形,正弦定理 三视图知识,半球和圆锥的组合体,求体积 直线与圆,相交,求相交弦的弦长 主算法为奇数累乘 新概念,定义向量的运算,与向量的数量积相关的 填空题 函数的定义域,分式和根式简单结合 等比数列,等比中项或等比数列的性质 统计,考查平均数、中位数及标准差相关知识 考查参数方程,知直线与圆的参数两曲线方程,求交 点坐标
2013 年文数
2013 年 1、集合运算 2、函数的性质 3、复数 4、三角函数 5、算法 6、立体几何 主要知识(考)点
选择题 结合一元二次方程,考查集合的交集运算 结合对数函数及分式,考查函数的定义域 考查复数的乘法运算及复数的模(长度)的计算 考查三角函数中诱导公式的运用,正弦与余弦互变的 结合程序框图,考查算法的基本知识,主算法:累加 给合三棱锥的三视图,考查体积的计算
解读2014年广东高考理科数学卷

解读2014年广东高考理科数学卷作者:黄均振来源:《学习导刊》2014年第06期2014年高考已经落下帷幕,结合2014年高考考试说明,我们对今年的广东理科数学卷进行认真解读,得出如下认识:1. 逐年增加的高考报名人数导致今年的高考命题趋向于稳定,特别是稳定的平均分能极大地稳定考生心态,也有利于进一步深化高考招生改革与新课改的深入.(1)近3年的客观题得分率均在75%左右,今年客观题部分不存在难度很大的试题,主要强调基本概念和基本方法的考查,创新题难度有所减弱.(2) 三角函数是一类函数,主要考查函数性质与基本变换,并综合简单的恒等变换. 稳定的命题模式是由三角函数的新课标定位来决定的,有利于稳定平均分.(3)统计概率的考查还是维持了前几年的模式,整张试卷统计概率的分值达到33分,加强了对统计图表及数字特征的阅读与理解,但是绘画频率分布直方图估计难倒不少基础薄弱的学生。
研究新课标八年的命题,我们以为统计与概率是今后高考命题需要改变的。
2007—2010年的高考命题与现实结合较为紧密,符合新课标的要求,应用比较高。
2011—2013的统计概率似乎有点保守。
实际上,随机思想和数据处理的考查方法非常丰富,对平均分的影响不大,与其通过阅卷规范去调整分数,不如通过考查数学理解来真实反应学生的水平,因此复习时要提高学生对数字特征的意义及概率意义的理解. 今年考查根据频率分布表,画出样本频率分布直方图,其实这也是一个创新!(4)立体几何考查常见的几何体,线面关系明确,有助于建立空间坐标系,几何法主要渗透等面积的转化思想,计算量估计比向量法大。
明年高考立体几何应该不会有大的调整,仍然会研究基本的几何体的线面位置关系。
因此我们在备考过程中抓住常规几何体,通过常规几何体的线面位置关系熟悉定理和推论的套路和方法,有效的解决相关角度问题。
此外,推理要严密:如证明直线平面时,没写“ 平面”扣1分,即使是证到直线l的方向向量与平面的法向量垂直,也有说明这一点;写成也扣1分,用几何法求二面角时,要遵循“作图——证明——求角”的套路,用向量坐标法建坐标系时,要先证明三条轴所在直线两两垂直.(5)数列的递推式和前两年相似,考查重心前移,更加注重考查代数变换,不考放缩法,这是一大“亮点”,主要考查数学归纳法的证明。
2014年高考文科数学广东卷及答案解析

数学试卷 第1页(共10页) 数学试卷 第2页(共10页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据1x ,2x ,…,n x 的方差2222121[()()()]n s x x x x x x n=-+-++-…, 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,3,4}M =,{0,2,3,5}N =,则M N =( ) A .{0,2} B .{2,3}C .{3,4}D .{3,5} 2.已知复数z 满足(34i)25z -=,则z =( ) A .34i -- B .34i -+ C .34i - D .34i + 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a( ) A .(2,1)-B .(2,1)-C .(2,0)D .(4,3)4.若变量x ,y 满足约束条件28,04,03,x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤则2z x y =+的最大值等于( ) A .7B .8C .10D .11 5.下列函数为奇函数的是( ) A .122x x-B .3sin x xC .2cos 1x +D .22x x +6.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20 7.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a b ≤”是“sin sin A B ≤”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等 9.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定10.对任意复数1ω,2ω定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数1z ,2z ,3z ,有如下四个命题:①1231323()*(*)(*)z z z z z z z +=+; ②1231213*()(*)(*)z z z z z z z ++=+ ③123123(*)**(*)z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------数学试卷 第3页(共10页) 数学试卷 第4页(共10页)A .1B .2C .3D .4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.曲线5e 3x y y =-+在点(0,2)-处的切线方程为 .12.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 . 13.等比数列{}n a 的各项均为正数,且154a a =,则212223log log log a a a +++2425log log a a += .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为2cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中, 点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF =△的周长△的周长 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()3f x A x =+,x ∈R ,且5π()122f =. (Ⅰ)求A 的值;(Ⅱ)若()()f f θθ--=,π(0,)2θ∈,求π()6f θ-.17.(本小题满分13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 1 28329 3 30 5 31 4 32 3 40 1 合计20(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (Ⅲ)求这20名工人年龄的方差. 18.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF DC ∥,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(Ⅰ)证明:CF ⊥平面MDF ; (Ⅱ)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足22(3)n n S n n S -+--23()0n n +=,*n ∈N .(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有11221111+(1)(1)(1)3n n a a a a a a +++++…<.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点数学试卷 第5页(共10页) 数学试卷 第6页(共10页)P 的轨迹方程.21.(本小题满分14分)已知函数321()1()3f x x x ax a =+++∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.{2,3,4}{0,2,3,5}={2,3}N =D 2525(34i)25(3=34i (34i)(34i)+==--+【答案】B【解析】(3,1)b a -=-【答案】C,a b ,,【解析】05k <<)21k -=-【答案】D312313231323)()()()()()z z z z z z z z z z z z ++===+,故①是真命题;12312312312131213()()()()()()()z z z z z z z z z z z z z z z z +=+=+=+=+,②对;()()()z z z z z z z z z z z z =*==,右边,≠左边右边,③错;(2)茎叶图如下图(1928329330531432340)+⨯+⨯+⨯+⨯+⨯+CD PD D=,所以MF AD M=,所以CF⊥平面ADF,DFBC PC==60,30CDF∠,38CD DE=,211111111111()()()(1)2323525722121n na a n n++<+-+-++-+⨯-+数学试卷第7页(共10页)数学试卷第8页(共10页)数学试卷 第9页(共10页) 数学试卷 第10页(共10页)1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,使得1124⎛+-+ ⎝ 1,12⎫⎛⎫⎪⎪⎭⎝⎭上有解1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有解,1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解;11a -+-1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解57,412⎫⎛⎫--⎪ ⎪⎭⎝⎭时1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,。
2014年高考数学广东卷(理科B卷)+解析

2014年普通高等学校招生全国统一考试(广东卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=( ) A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案B2、已知复数z 满足(34)25,i z +=则z =( ) A .34i - B. 34i + C. 34i -- D. 34i -+ 答案A.考查复数的运算,()()()25342534343434i z i i i i ⋅-===-++⋅- 3、若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -= ( )A .8 B.7 C.6 D.5答案 C.考查线性规划,求出三条直线的交点为()111,1,(2,1),,22⎛⎫--- ⎪⎝⎭,故3,36m n m n ==--=,4、若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的( ) A .离心率相等 B.虚半轴长相等C. 实半轴长相等D.焦距相等答案D.考查双曲线,注意到两条双曲线的22234c a b k =+=-相等,故而选D. 5、已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是( ) A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)答案B.考查向量的夹角与运算,将ABCD 四个选项代入1cos ,cos602a b a b a b⋅===⋅即可选出正确答案6、已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 100,10B. 200,10C. 100,20D. 200,20答案 D.考查分层抽样.总人数为10000人,100002%200⋅=,其中高中生抽取20002004010000=⋅人,故抽取的高中生近视人数为4050%20⋅=人7、若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是( )A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 答案D.考查空间直线的位置关系.可利用正方体来判断,易得答案. 8、设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( ) A.130 B.120 C.90 D.60答案A.考查分类计数原理、排列组合.先分成3类,4个0、3个0、2个0 (1)4个0①4个0,1个1:155C =②4个0,1个-1:155C = (2)3个0:①3个0,2个1:2510C =②3个0,1个1,1个-1:115420=C C ⋅ ③3个0,2个-1:2510C =小学初中高中年级O(3)2个0①2个0,3个1:3510C =②2个0,2个1,1个-1:215330C C ⋅= ③2个0,1个1,2个-1:215330C C ⋅= ④2个0,3个-1:3510C =综上所述,所有的可能性有130种二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、不等式125x x -++≥的解集为答案(][),32,-∞-⋃+∞.考查简单的绝对值不等式,用几何意义很快得出答案. 10、曲线52x y e -=+在点(0,3)处的切线方程为答案53y x =-+.考查复合函数求导、切线方程.'5'05,|5x x y e y -==-=-,故切线方程为53y x =-+.本题易错点在符合函数求导忘记乘以5-.11、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 答案16.考查分步技术原理和古典概型.基本事件731010120C C ==种,包括6且6为中位数的,前3个数从0—5六个数中选3个,后三个数只能是7、8、9,故满足题意的事件有3620C =种,从而概率为16.本题主要分析准确6为7个数的中位数这个条件就可以很快做出来. 12、在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则ab= 答案2.考查正余弦定理,边角互化.222222222a b c a c b b c b ab ac+-+-⋅+⋅=,化简即可.13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=答案50.考查等比数列的基础知识.依题意有51011a a e ⋅=,所求等式左边()10501011ln ln 50a a e =⋅==(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________答案()1,1.考查极坐标方程.212:,:1C y x C y ==,联立方程很快得出结果15、(几何证明选讲选做题)如图3,在平行四边形ABCD中, 点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF 答案9.考查相似三角形面积比等于相似比的平方.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭, (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年广东高考数学试卷分析
2014年广东高考数学试卷延续2012,2013的风格,试卷的命题稳中有变,重视基础,突出主干内容,体现教学本质,凸显数学思想,强化思维,控制运算量,突出综合能力考查,重视学生心理素质的培养,大部分学生以好心态面对都能够发挥正常、甚至超长水平。
一、试卷总体分析
(1)强化主干内容,凸显基础知识
不刻意追求知识点的覆盖率,不回避重点知识,主干知识的考查,这是近几年高考数学试题的一个重要特色,今年高考主干知识的分值继续保持稳定。
2014年的考点依旧主要分布在导数与函数,数列与不等式,平面向量,解析几何,立体几何和概率统计等高中数学知识体系中的六大知识板块中,文理科分值达135分。
数列,几何与概率统计三大主干课程:文理科试题分值都在110分以上。
其他分值为历年考试内容:集合、复数、线性规划、参数方程和几何证明。
知识点分布情况表
2014年数学目标结构(文科)
2014年数学目标结构(理科)
基础题分布(文科)
基础题分布(理科卷)
命题选材方面源于教材,历年真题,很多题目都可在找到原型。
解答题第一题还是雷打不动的三角函数,这个题绝大部分学生是能得满分的。
第二个大题也是千年老二的概率统计问题,文科在概率和统计方面考察比较容易,因为相对理科而言,文科没有学排列组合与分布列,所以难度小很多。
这个题也是送分题。
第三个题是必考题型—立体几何。
立体几何这个只是相对来说比较独立,它的考察每年也是非常固定,一般文科是两问,理科三小问,理科比文科多一个二面角的问题。
这个题稍微有点区分度了,因为空间位置关系是很多学生的弱点,空间想象能力不太强导致此次失分。
第四个大题区分度明
显增大,虽然数列的难度有所降低,但瘦死的骆驼比马大,再降低难度他也比一般考点难,但今年的此题解法在我的课上是经常提到的,冰哥的考生此题应该难不倒。
第五题是圆锥曲线问题,这个是压轴题第一题,第一问是送分题,主要目的是要大家的分数不要太难堪。
第二问的轨迹问题,我在课上专门讲到切点切线问题用什么方法求解问题,希望考生考场没有忘记,最后一题,同学们还记得冰哥的葵花宝典第九条是什么吗?见到字母要讨论。
如果记得,第一问就这么解决,5分左右拿到手,心里可以窃喜一下。
第二问有点难了,是个方程问题,要讨论单调性求解问题。
(2)重视数学思想方法,能力的考查
重视考查考生的数学思想方法是广东命题组一贯的优良传统,今年也不例外,如文理第19题,文理第20题,文理第21题等,考查了转化思想,函数方程思想,数形结合思想,分类讨论思想等数学思想方法。
今年试题对考生数学能力的考查也很到位,如理科第17题,第18题,第19题,文科第9题,第18题,第19题,第17题等考查了空间想象能力,推理论证能力,数据处理能力等数学能力。
(3)巧设试题,注重知识点的交汇
“在知识点的交汇处设计试题”这一高考数学试题命制的理论,在今年的高考试卷中得到了贯彻和体现,如第20,21题,考查了椭圆的方程,直线的方程,导数的应用,函数与方程等,综合性较强,较好地拉开了考生的距离。
又如理科第10题,将不等式,排列组合与集合巧妙地融合在一起,是试卷的一大亮点。
二、2015年数学备考建议
基于2012-2014近三年试卷难度趋于稳定的大趋势,对2015年的数学复习备考提出如下建议:
1、认真务实“三基”。
(1)重视课本,落实基础
突出主干知识板块的复习!一定要做好打基础工作,复习备考对课本的利用主要是挖掘与整合课后练习。
(2)研究历年高考真题
研究新课标,研究高考大纲及其说明,研究历年高考题,研究数学知识、能力、思想方法的考查方向。
(3)以广东省的模拟题为主要练习题,时刻不忘夯实解题基本功。
2、合理规划“三轮复习”
(1)第一轮:全面复习
系统知识整理,查漏补缺,优化结构,培养思维。
(2)第二轮:专题复习
突出重点,深化结构,落实思想方法,合理知识整合。
(3)第三轮:模拟训练
提高学生的应试能力和综合能力,调整心态,回归基础,喜迎2015高考!。