An Analysis of Cancer Microarrays in the Pathway Context Using Bayesian Networks
乳腺球蛋白在乳腺癌诊治中的研究进展

有乳腺组织表达hMAM;又采用 免疫组织化学法分析了100例 腺管型乳腺癌,hMAM阳性表达 率80%,hMAM的表达与癌细胞 分化无相关性。hMAM的组织 特异性表达使其在乳腺癌临床 诊断及治疗上具有潜在的应用 价值。 hMAM属于上皮细胞分泌 蛋白中的子宫球蛋白家族/克拉 细胞蛋白家族,定位于1lql3,编
[7]Roncella
mRNA
cartoBr
S,Ferro
a
is
P,Bacigalupo B,et讲.Human mammaglobin reliable molecular Inai'kel"for detecting occult breast peripheral
cells in
blood[J].J
early
MAM在乳腺癌治疗中的研究 MGA特异表达于乳腺癌组织,并可诱导机体产
detection
of 59
of mi—
cancer:a
molecular study
patients
[J].Asian
Pac
J
Cancer
Prev,2006,7(3):396・398.
生CD4+T和CDs+T细胞,发挥细胞毒作用,成为乳腺 癌免疫疗法具有吸引力的目标。Jaramillo等¨钊报道 乳腺癌患者CD。+T细胞对MGA阳性细胞系有 HLA—A3限制性的细胞毒作用,对阴性则无该作用; 并发现4个HLA.A3限制性抗原决定簇,证明MGA 在乳腺癌免疫治疗和预防方面有很大的潜力。 Narayanan等¨刊在转基因动物模型中,发现hMAM- A2的DNA疫苗不仅能够显著诱导CDs+细胞毒性T 淋巴细胞,而且对hMAM阳性乳腺癌细胞具有识别 作用。将体外培养的hMAM诱导的CDs+细胞毒性T 淋巴细胞输入动物模型后,接种的乳腺肿瘤明显缩 小。Manna等¨副研究表明,MGA是作为乳腺癌免疫 治疗的新的潜在的抗原,但hMAM抗原决定簇具有 多态性,制备特异性较高的乳腺癌肿瘤疫苗仍有许 多问题尚待解决。Viehl等【l纠则在体外利用MGA免 疫激活的抗原递呈细胞成功诱导出CDfT细胞,为 MGA介导的免疫作用研究提供了一定的实验基础。
生物芯片技术

FGR
FES
ABL
INT2
PIK3CA
NMYC
AKT2
FGFR1
JUNB
AKT1
KRAS2
CDK4
AR
RDA Protocol
RNA extraction and cDNA preparation from archived tissue specimens(tester and driver) Generation of amplified cDNA fragments (‘amplicons’) Subtractive hybridization of amplicons Enrichment of cDNA fragments from differentially expressed genes
DNA Chip Technology
Solid support (glass, plastic, metal, silicon) Miniaturized array of DNA (genetic material) Work on the biochemical principle of DNA/DNA hybridization Hybridized probes (DNA molecules) are fluorescently labeled
应用之一 基因表达谱(gene expression pattern)
Research Use. Clinical Diagnostic Use.
Biological Sample
Functional Information
One Disease——One Gene Expression Pattern
Prototype AmpliOnc™ I Biochip
microRNA-361-5p在人类恶性肿瘤中的研究进展

2021,25(2):117-121.实用临床医药杂志Journal of Clinical Medicine in Practice-117-microRNA-361-5p在人类恶性肿瘤中的研究进展齐媛,郭宝良(哈尔滨医科大学附属第二医院乳腺外科,黑龙江哈尔滨,150000)摘要:研究表明,microRNA(miRNA)在恶性肿瘤的发生、发展中起重要作用。
miRNA通过各种机制参与细胞基因转录调控,其中与下游靶基因mRNA的特异性结合并使其降解为经典的调控机制。
近年来,miR-367-5p在恶性肿瘤中的表达失调得到了验证,通过调节与肿瘤生长、转移、上皮-间质转化(EMT)等方面相关的靶基因,进一步参与恶性肿瘤的增殖、凋亡、转移以及耐药性等相关生物学过程,并为恶性肿瘤的诊断及预后预测提供重要依据。
作者对miR-367-3p在不同肿瘤中的作用及相关机制进行综述,并展望其应用前景。
关键词:微小核糖核酸;恶性肿瘤;基因调控;靶基因中图分类号:R730.2;R329.2文献标志码:A文章编号:1672-2353(2027)02-177-35D0I:10.7619/jcmp.20201614Research progress of microRNA-311-5pin human malignant tumorsQI Yuan,GUO Baoliang(Department of'Breast Surgery,the Second^filiated Hospital of'Harbin MedicalUniversity,Harbin,Hedongjiaag,173000)Abstroch:Studids have showa thai microRNA(miRNA)plays ca inponaai aid in thd occao-naca ani deyelopmeat of tumors.MiRNA pdnicipdtds R thd resulatiou of callulao gess traa-scnptiou throorU diRenat mectanisms,amoo-which tha speciRc binCina ant dearaVatioo of dowa-stream tar-el geac mRNA is tha most classic reaulato—mechanism.Ia receai years,tha dysreaulatioo of miR-261-3p expnssioa in malinnaat tumors has baa yaified.By reaulatina tarad relatea to-tUat associatea with tumon growth,eaitUelial-meseachymai transitioo(EMT)and otUcn aspects,miR-361-3p furthen iavolve in tha relevaai bRlooical processas of rmainridat tumom,iacUrRa proliRratioo, dpoptosis,metastasis,v V drug resistaaca,v V R proviavs aa iRportaai basis foe tha diaaaosis ana prooaosis of mpin—vt tumoia.This卩1^>reviewea tha roles anC relatea mechanisms of miR-371-3p in diRereat tumors,and R s aaplicatiou prospect is prospectea.Key worCs:microRNA;malinnaat tumoo;uiv reaulatiou;tarael uiv1背景microRNA(miRNA)是一种非编码RNA,在进化中高度保守,人类基因2%的miRNA可通过调控网络影响机体近43基因的表达⑴。
MicroRNAs在恶性肿瘤分子诊断和预后预测中的应用

刘 巾男 任洁钏
应斌武
要 】 微 小 R A( co NA, R A) 近 年 来 发 现 的 一 类 长 度 为 1 ~2 个 核 苷 酸 的非 编 码 小 分 N mi R r miN 是 8 6
子R NA, 它在转 录后水平 调控 基因的表达 , 表达情况 与机体众多生理病理状态密切相 关。 目前发现 , 其 恶性 肿瘤组织和血液循环 中存在不 同于正 常机体 的特征性 miNA表达谱 , 过测定这些 miNA的表达变化可 R 通 R 能可 以成为恶性肿瘤早期诊 断和预后预测 的重要 手段 。本文 总结了 miNA在恶性肿瘤性疾 病分子诊 断领 R 域的研究进展 , 为疾病分子诊断学研究及 临床实践提供参 考。
[B T A ] Mi o N ( R s, n w mi f ma o cdn NAs a po i tl 1- 6 A S R CT c R As r miNA )ak o n f l o ln n o igR a y s l (p rxmae 2 y 8
n c oie n hh, a e enso nt rglt g nt x rs o i a s t nln iio r se gr ul t s nl g t h v e h w euae e ece pes nva rnl i a ih t no sn e e d i e ) b o i i t ao b i me
p y i lg c l o ah l g c l c aa t rsis h so o ia r p t o o ia h r ce it .Re e t su i s h v e e ld t a RNAs h ie s p c f c c n t d e a e r v ae h tmi ,t e d s a e s e i c i e p e so fwh c a e f u d i h i s e o l o ic l t n o a c r , r mie t a e a mp c n x r s i n o ih c n b o n n t e t u r b o d c r u ai fc n e s p o s o h v n i a to s o lb r t r d cn se r i g o t n r g o tcma k r l n n m o s Ou ri l u ma i e e a o ao me ii e a a l d a n si a d p o n si r e si mai a tt y y c n g u r . ra t e s m c rz d t h r c n r g e so n t e r s a c ed o i e e tp o r s in o h e e r h f l f m RNA n t s o ito t a c r d a n ss a d p o n si i a d i a s ca i n wi c n e ig o i n r g o t s h c e au to r e r v d aa f r v l ai n i o d r op o i e d t o l c lrd a n ss n l i a r c ie . n t mo e u a i g o i d ci c l a t s a n p c
MicroRNA在肿瘤分子诊断中的应用

MicroRNA在肿瘤分⼦诊断中的应⽤MicroRNA 在肿瘤分⼦诊断中的应⽤欧志英 夏慧敏[摘 要] MicroRNA (miRNA )在⼤多真核⽣物中表达,通过抑制翻译或诱导靶mRNA 降解。
miRNA 是⼀种新的转录后基因表达调控模式,在复杂疾病形成过程中发挥着重要作⽤,调节了多种⽣物学过程,包括⽣长发育、信号转导、免疫调节、细胞凋亡、增殖及肿瘤发⽣等。
越来越多的证据表明异常表达的miRNA 是⼈类疾病的标志,包括肿瘤。
差异表达的miRNA 可能作为疾病早期诊断、分⼦分型及预后判断的指标,同时也可能成为多种肿瘤耐药新的治疗靶标。
因此,miRNA 在肿瘤中可能作为诊断、预测和治疗的⽣物标志。
[关键词] 肿瘤;MicroRNA (miRNA );分⼦诊断;治疗;预测;⽣物标志物Application of microRNA in cancer molecular diagnosisOU Zhiying ,XIA Huimin(Molecular Biology Lab, Guangzhou Women and Children's Medical Center, Guangdong, Guangzhou 510623, China) [ABSTRACT] MicroRNA (miRNA) is a new mode of post-transcriptional regulation of gene expression. It is expressed in most of the eukaryotes, which can inhibit translation or induce target mRNA degradation. miRNA plays an important role in the formation of complex diseases and regulates a variety of biological processes, including growth and development, signal transduction, immune regulation, apoptosis, proliferation and tumor genesis and so on. More and more evidences show that the abnormal expression of miRNA is a sign of human diseases, including cancer. Differentially expressed miRNA may be used as the indicators of early diagnosis, molecular typing and prognosis. It may also be a variety of tumor-resistant new therapeutic targets. Therefore, miRNA may be used as cancer biomarkers for diagnosis, prediction and treatment.[KEY WORDS] Tumor ;MicroRNA(miRNA);Molecular diagnosis ;Therapy ;Prediction ;Biomarker基⾦项⽬:⼴东省⾃然科学基⾦(20121054);⼴州市重⼤民⽣科技专项(2010U1-E00741)作者单位:⼴州市妇⼥⼉童医疗中⼼分⼦⽣物学实验室,⼴东,⼴州 510623通讯作者:欧志英,E-mail: ouzhiying@/doc/5e6817334.htmlmiRNA 作为⼀类重要的参与基因表达调控的分⼦,代表了⼀种新的基因表达调控模式,它在细胞中调节约30%的蛋⽩编码基因,在致病过程中起着重要作⽤。
under editorial consideration cancer research

under editorial consideration cancer research Under Editorial Consideration: Cancer ResearchIn the realm of medical research, Cancer research holds a significant place. It is a complex field that involves the exploration of various factors that lead to the development and growth of cancer cells in the human body. Cancer research strives to provide better understanding of the disease, identify potential therapeutic targets, and develop effective treatment strategies.Editorial consideration is a crucial aspect of Cancer research. It involves the evaluation of scientific manuscripts submitted for publication in journals or conferences. During editorial consideration, manuscripts undergo rigorous scrutiny by expert reviewers and editors to assess their scientific validity, originality, and significance. This process ensures that only the most meritorious and reliable research findings are published, thereby upholding the reputation of the journal or conference.Under editorial consideration, Cancer research manuscripts are evaluated for their scientific soundness, methodological robustness, and contribution to the field. The reviewers assess whether the research question is appropriately formulated, the experimental design is well-justified, the data analysis is rigorous, and the conclusions are supported by the findings.By undergoing editorial consideration, Cancer research manuscripts have the opportunity to be refined and improved before publication. The feedback received from reviewers and editors can help authors address any shortcomings in their research and enhance the overall quality of their submission. This process ultimately benefits the scientific community, as it fosters the dissemination of accurate and reliable information that can inform future research and improve patient outcomes.In conclusion, editorial consideration plays a crucial role in Cancer research. It ensures that only high-quality and trustworthy research findings are published, thereby advancing our understanding and treatment of this complex disease.。
3-芯片数据的基本处理和分析

王丹 蒋 琰 阮陟
浙江加州国际纳米技术研究院(ZCNI)
课程内容
实习一 实习二 基因组数据注释和功能分析 核苷酸序列分析
基因组学 系 统 生 物 学
实习三
实习四 实习五 实习六
芯片数据的基本处理和分析
蛋白质结构与功能分析 蛋白质组学数据分析
转录物组学
蛋白质组学
待状态栏显示“Converting is successful”后, 格式转换完 成。此时在原genepix存放的文件夹中会出现文件名相同 但扩展名不同的.mev和.ann的文件。
input
output
程序运行前
程序运行结果
MEV文件:MEV格式的芯片数据
MEV注释文件(后缀名为.ann)
课堂练习
系统生物学软件实习
芯片数据分析的一般流程:
1. 芯片杂交实验 ,芯片数据采集(读取扫描图) 2. 数据基本处理 3. 数据提交公共数据库 4. 数据生物信息学分析
实习内容:
• TIGR TM4 软件的介绍和使用 • GenMAPP软件的介绍和使用 • GEO数据库的介绍
常见的双通道(dual channel)实验流程:
GenMAPP基本概念
• MAPP:描述了模式生物的代谢途径图。 目 前 MAPP 数 据 库 中 包 含 了 人 (H.sapiens) 、 小 鼠 (M.musculus)、大鼠 (R.norvegicus)、酵母 (S.cerevisiae)、 线虫 (C.elegans)、狗 (C.familiaris)、鸡 (G.gallus)、牛 (B.taurus)、果蝇 (D.melanogaster)和斑马鱼 (D.rerio)等 模式生物。
重大疾病相关数据库分析

复杂疾病与多基因、染色体区段及基因-环境的相互 作用有关
基因的多态性位点 基因表达的改变 基因表达调控的异常 生物学通路的失活 表观遗传修饰 非编码RNA 基因-环境互作
Genes
◦ OMIM ◦ GAD ◦ CGAP ◦ GeneCards
miRNAs
◦ miR2Disease ◦ HMDD
聚类的目的
基于物体的相似性将物体分成不同的组
对基因进行聚类
✓识别功能相关的基因 ✓识别基因共表达模式
对样本进行聚类
✓质量控制 ✓检查样本是否按已知类别分组 ✓发现亚型
基因
样本 基因表达谱
距离尺度函数
◦ 欧式距离 ◦ Pearson相关系数 ◦ Spearman秩相关系数 ◦ 互信息
聚类算法
◦ 这些对象的观察值称为截尾值,常用符号“+”表示。如 140+天。
生存时间
◦ 即随访观察持续的时间,按失效事件发生或失访前最后一 次的随访时间记录,常用符号t表示。
◦ 某病人1990年2月1日进入随访,1992年4月间发生失效事 件,他的生存时间为t=26月。
◦ 某白血病患者化疗3月后失去联系,他的随访结果为一截 尾值,生存时间记为t=3+月。
.
.
.
.
.
.
.
.
.
am2
…
amn
Time
t1 t2 . . .
tm
Dead 1 0
. . . 1
“死亡”事件或失效事件
◦ 表示观察到随访对象出现了我们所规定的结局,是反映处 理因素失败或失效的特征。
◦ 注意:失效事件应当由研究目的而定,并非一定是死亡, 而死亡也并非一定是失败事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Genome Informatics 13:373–374(2002)373An Analysis of Cancer Microarrays in the PathwayContext Using Bayesian NetworksYohsuke MinowaSusumu Goto Minoru Kanehisa minowa@kuicr.kyoto-u.ac.jp goto@kuicr.kyoto-u.ac.jp kanehisa@kuicr.kyoto-u.ac.jpBioinformatics Center,Institute for Chemical Research,Kyoto University,Gokasho,Uji,Kyoto 611-0011,JapanKeywords:Bayesian networks,gene expression,gene network,multifactorial disease,cancer cell line 1IntroductionGenetic analysis of multifactorial diseases caused by complicated interactions of two or more genetic and environmental factors is one of the most important themes in the current genetics.But it is difficult to detect such factors,because each independent factor has small effects on phenotype,which is caused by complicated interactions among multiple factors.Therefore,it is meaningful to analyze molecular pathologies of such diseases in the context of genetic networks that can also represent effects of such factors.In this research,we try to detect candidate genes of such diseases by analyzing quantitative whole-genome gene expression data (DNA microarrays)using the Bayesian network method.2MethodsWe consider two Bayesian network models (Fig.1).The first model consists of a continuous node (circle)and a discrete node (square).The continuous node has a vector of gene expression ratios which is assumed to follow the binary mixture Gaussian distribution (Fig.1a)(e.g.one for cancer,and the other for normal).The dicrete node defines proportions of these binary states.The second model additionally includes relationships between continuous nodes (Fig.1b).In these models,a discrete node represents extrinsic factors (e.g.mutation,environment factor,or other genes which are not included in this experiment),and our purpose is to estimate the effect of such factors in the network context.The inter-gene relations in the network context are determined as work context. The inter-gene relations in the network context are determined as foQ,(x x N X ,(,|y y x N i Q x X Y ,(x x N X (a) (b)1:Bayesian network models.To construct the second model (Fig.1b),we first defined relationships between genes by adding parent nodes Xs to each node Y according to the mutual information scores I(X,Y)[1].The number of parent nodes is ranging from 0to 9.To calculate this score,we first assumed the first model (Fig.1a)for each node,and performed EM iteration (independently three times,and used average of the parameters)to infer the parameters (µ,σ,proportion of mixture,and probability where each data point belongs to a particular distribution).We can construct probability vectors P N 1and P N 2for each distribution N1and N2contained in the binary mixture distribution.Then,we can define I(X,Y)as follow:I (X,Y )=2 i =12 j =1P (X ∼N i ,Y ∼N j )log P (X ∼N i ,Y ∼N j )P (X ∼N i )P (Y ∼Y j )374Minowa et al. where P(X∼N i)=p1i+......+p ni/n for n data points,p ni is the probability of n’th data point belonging to i’th distribution,P(Y∼N j)is the same as X,and P(X∼N i,Y∼N j)=p1i p1j+...+ p ni p nj/n.Next,we assumed the second model(Fig.1b)for each node using the network structure inferred from mutual information scores,and performed parameter inference using EM algorithm(indepen-dently three times,same as before).We then tested significant difference between the size of mixture of each node,assuming each node has only one status(null hypothesis)or mixture of two status(alternative hypothesis).We rejected null hypothesis at global p-value<0.05.In this research,we used NCI60cancer cell line DNA microarrays[2],which contained64cell lines from9different tissues(CNS,renal,ovarian,leukaemia, colon,melanoma,breast,prostate,and non-small-lung)with about8,000genes.We used the gene set which contained1,156genes with at least sevenfold variations relative to the reference in at least4 cell lines(4/64).We also performed this analysis with partial samples,excluding each cell line sample to determine causation of binary status for each node.We used the Bayes Net Toolbox software package[3]written by MATLAB to construct Bayesian networks.3Results and DiscussionFig.2a shows the difference of the number of significant nodes with various values of the number of parent nodes.Significant hits without network context were largely reduced as parent nodes are included.In contrast,some genes are turned out to become significant,when considering the network context(Fig.2b).Biological significance of these genes will be discussed individually.(a) (b)Figure2:(a)The number of significant nodes plotted against the number of parent nodes(0-9)with the number of hits(0-3)in EM iterations.(b)The number of significant nodes plotted against the numbers of hits with(x-axis)or without(y-axis)network context.AcknowledgmentsThis work was partially supported by Grant-in-Aid for JSPS fellows,14061432,from the Ministry of Education,Culture,Sports,Science and Technology of Japan.References[1]Pe’er,D.,Regev,A.,and Tanay,A.,Minreg:Inferring an active regulator set,Bioinformatics,18(Suppl.1):S258–S267,2002.[2]Ross,D.T.et al.,Systematic variation in gene expression pattern in human cancer cell lines,Nature Genet.,24:27–235,2000.[3]/~murphyk/Bayes/bnt.html。