2016年上海市奉贤区高考数学一模试卷(文科)
2016年上海市高考文科数学试卷及参考答案与试题解析

2016年上海市高考文科数学试卷及参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x∈R,则不等式|x-3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=.7.(4分)若x,y满足,则x-2y的最大值为.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C117.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x 2-=1(b >0)的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点. (1)若l 的倾斜角为,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且|AB|=4,求l 的斜率.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.2016年上海市高考数学试卷(文科) 参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x ∈R,则不等式|x -3|<1的解集为 (2,4) .【分析】由含绝对值的性质得-1<x -3<1,由此能求出不等式|x -3|<1的解集. 【解答】解:∵x ∈R,不等式|x -3|<1, ∴-1<x -3<1, 解得2<x <4.∴不等式|x -3|<1的解集为(2,4). 故答案为:(2,4). 【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)设z =,其中i 为虚数单位,则z 的虚部等于 -3 . 【分析】利用复数的运算法则即可得出.【解答】解:z ===-3i +2,则z 的虚部为-3. 故答案为:-3.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离 .【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76 (米).【分析】将数据从小到大进行重新排列,根据中位数的定义进行求解即可.【解答】解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80. 则位于中间的数为1.76,即中位数为1.76, 故答案为:1.76【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.5.(4分)若函数f(x)=4sinx +acosx 的最大值为5,则常数a = ±3 . 【分析】利用辅助角公式化简函数f(x)的解析式,再利用正弦函数的最大值为5,求得a 的值.【解答】解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.(x-1)(x 6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=log2>1) .【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1(y-1),(y>1).把x与y互换即可得出f(x)的反函数f-1(x). +2x,由1+2x=y,解得x=log2【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.(y-1),(y>1).∴f(x)=1+2x,由1+2x=y,解得x=log2把x与y互换可得:f(x)的反函数f-1(x)=log(x-1).2(x-1),(x>1).故答案为:log2【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.7.(4分)若x,y满足,则x-2y的最大值为-2 .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:画出可行域(如图),设z=x-2y⇒y=x-z,由图可知,当直线l经过点A(0,1)时,z最大,且最大值为z=0-2×1=-2.max故答案为:-2.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2-2sin2x,即2sin2x+3sinx-2=0.可得sinx=-2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于112 . 【分析】根据展开式中所有二项式系数的和等于2n=256,求得 n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(-)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,==,∴(-)8中,Tr+1∴当=0,即r=2时,常数项为T=(-2)2=112.3故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值. 【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===-,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.【分析】利用分步乘法求出两同学总的选法种数,再求出选法相同的选法种数,利用古典概型概率计算公式得答案.【解答】解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题. 12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是[-1,] .【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,-1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[-,1,],故答案为:[-1,].【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞) .【分析】根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.【解答】解:∵关于x,y的方程组无解,∴直线ax+y-1=0与直线x+by-1=0平行,∴-a=-,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).【点评】本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为 4 .【分析】对任意n∈N*,Sn∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或-1,则k的最大个数为4.【解答】解:对任意n∈N*,Sn∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,-1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,-1;或3,0,0;或3,0,-1;或3,1,0;或3,1,-1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,-1;或2,1,0,0;或2,1,0,-1;或2,1,-1,0;或2,1,-1,1;或3,0,0,0;或3,0,0,-1;或3,0,-1,0;或3,0,-1,1;或3,-1,0,0;或3,-1,0,1;或3,-1,1,0;或3,-1,1,-1;…即有n>4后一项都为0或1或-1,则k的最大个数为4,不同的四个数均为2,0,1,-1,或3,0,1,-1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【分析】根据异面直线的定义便可判断选项A,B,C的直线都和直线EF异面,而由图形即可看出直线B1C1和直线相交,从而便可得出正确选项.【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B 1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.4【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有sin(3x-)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x-)=sin(3x+b),此时b=-+2π=,若a=-3,则方程等价为sin(3x-)=sin(-3x+b)=-sin(3x-b)=sin(3x-b+π), 则-=-b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(-3,),共有2组,故选:B.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①举反例说明命题不成立;②根据定义得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:对于①,举反例说明:f(x)=2x,g(x)=-x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g(x)=-x不是增函数,所以①是假命题;对于②,根据周期函数的定义,f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)-h(x)=g(x+T)-h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目.三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:-=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y),则y=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y),则y=1,∴x==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3-S△OMP+S△MGN=-××1+=,S 1-S3==,S4-S1=-=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)双曲线x2-=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.【分析】(1)由题意求出A点纵坐标,由△F1AB是等边三角形,可得tan∠AF1F2=tan=,从而求得b值,则双曲线的渐近线方程可求;(2)写出直线l的方程y-0=k(x-2),即y=kx-2k,与双曲线方程联立,利用弦长公式列式求得k值.【解答】解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为 x2-=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y-0=k(x-2),即y=kx-2k,联立,可得(3-k2)x2+4k2x-4k2-3=0,由直线与双曲线有两个交点,则3-k2≠0,即k.△=36(1+k2)>0.x 1+x2=,x1•x2=.∵|AB|=•|x1-x2|=•=•=4,化简可得,5k4+42k2-27=0,解得k2=, 求得k=.∴l 的斜率为.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了双曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 【分析】(1){a n }与{b n }不是无穷互补数列.由4∉A,4∉B,4∉A ∪B =N *,即可判断;(2)由a n =2n ,可得a 4=16,a 5=32,再由新定义可得b 16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d =1或2,讨论d =1,2求得通项公式,结合新定义,即可得到所求数列的通项公式. 【解答】解:(1){a n }与{b n }不是无穷互补数列. 理由:由a n =2n -1,b n =4n -2,可得4∉A,4∉B,即有4∉A ∪B =N *,即有{a n }与{b n }不是无穷互补数列; (2)由a n =2n ,可得a 4=16,a 5=32,由{a n }与{b n }是无穷互补数列,可得b 16=16+4=20, 即有数列{b n }的前16项的和为(1+2+3+…+20)-(2+4+8+16)=×20-30=180;(3)设{a n }为公差为d(d 为正整数)的等差数列且a 16=36,则a 1+15d =36, 由a 1=36-15d ≥1,可得d =1或2,若d =1,则a 1=21,a n =n +20,b n =n(1≤n ≤20), 与{a n }与{b n }是无穷互补数列矛盾,舍去; 若d =2,则a 1=6,a n =2n +4,b n =.综上可得,a n =2n +4,b n =.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,考查运算和推理能力,属于中档题.23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.【分析】(1)当a =1时,不等式f(x)>1化为:>1,因此2,解出并且验证即可得出.(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,(+a)x2=1,化为:ax2+x-1=0,对a分类讨论解出即可得出.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得-≤1,因此≤2,化为:a≥=g(t),t∈[,1],利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,不等式f(x)>1化为:>1,∴2,化为:,解得0<x<1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,∴(+a)x2=1,化为:ax2+x-1=0,若a=0,化为x-1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.综上可得:a=0或-.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,∴-≤1,∴≤2,化为:a≥=g(t),t∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.。
2016年普通高等学校招生全国统一考试(上海卷)数学试题 (文科)解析版

2016年普通高等学校招生全国统一考试上海数学试卷(文史类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x ∈R ,则不等式31x -<的解集为_______.【答案】(2,4)【解析】试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4)考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.2、设iiZ 23+=,期中i 为虚数单位,则Im z =____________.【答案】3-【解析】试题分析:i(32i)23i z =-+=-,故Im 3z =-考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.【答案】5【解析】试题分析:利用两平行线间距离公式得25d 5===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.5、若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.【答案】3±【解析】试题分析:)sin(16)(2ϕ++=x a x f ,其中4tan a =ϕ,故函数)(x f 的最大值为216a +,由已知,5162=+a ,解得3±=a .考点:三角函数sin()y A x ωϕ=+的图象和性质.【名师点睛】三角函数性质研究问题,基本思路是通过化简,得到sin()y A x ωϕ=+,结合角的范围求解..本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.6、已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)-【解析】试题分析:将点39(,)带入函数()xf x 1a =+的解析式得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注..本题较为容易.7、若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-【解析】试题分析:由不等式组画出可行域,如图,令y x z 2-=,当直线z x y 2121-=经过点)1,0(P时,z 取得最大值,且为2-.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.8.方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________.【答案】566ππ或【解析】试题分析:3sinx 1cos 2x =+,即23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或.考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解..本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.9、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.【答案】112【解析】试题分析:因为二项式所有项的二项系数之和为n2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x -+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解.本题能较好地考查考生的思维能力、基本计算能力等.10、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.OxyP【答案】3【解析】试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C ==考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.11、某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】16【解析】试题分析:将4种水果每两种分为一组,有24C 6=种方法,则甲、乙两位同学各自所选的两种水果相同的概率为16.考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.如图,已知点O (0,0),A (1.0),B (0,−1),P 是曲线y =OP BA ×uu u r uu r的取值范围是.【答案】[-【解析】试题分析:由题意,设(cos ,sin )P αα,[0,π]α∈,则(cos ,sin )OP αα= ,又(1,1)BA =,所以cos sin )[4OP BA αααπ⋅=+=+∈- .考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到OP BA ×uu u r uu r的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等.13.设a >0,b >0.若关于x ,y 的方程组1,1ax y x by ì+=ïïíï+=ïî无解,则a b +的取值范围是.【答案】(2,)+∞【解析】试题分析:方程组无解等价于直线1ax y +=与直线1x by +=平行,所以1ab =且1a b ≠≠.又a ,b为正数,所以2a b +>=(1a b ≠≠),即a b +取值范围是(2,)+∞.考点:方程组的思想以及基本不等式的应用.【名师点睛】根据方程表示直线,探讨得到方程组无解的条件,进一步应用基本不等式达到解题目的.易错点在于忽视得到a b ≠.本题能较好地考查考生的逻辑思维能力、基本运算求解能力、数形结合思想等.14.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.【答案】4【解析】试题分析:当1n =时,12a =或13a =;当2n 时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k 时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =.考点:数列的求和.【名师点睛】从研究n S 与n a 的关系入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是()(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 1【答案】D 【解析】试题分析:只有11B C 与EF 在同一平面内,是相交的,其他A,B,C 中直线与EF 都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.17.设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)3x ax b -+,则满足条件的有序实数对(a ,b )的对数为()(A)1(B)2(C)3(D)4【答案】B 【解析】试题分析:5sin(3sin(32)sin(3333πππx x πx -=-+=+,5(,)(3,3πa b =,又4sin(3sin[(3sin(3333πππx πx x -=--=-+,4(,)(3,)3πa b =-,注意到[0,2)b π∈,只有这两组.故选B.考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到,a b 的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】试题分析:①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩,03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩,0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.三、解答题(74分)19.(本题满分12分)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图, AC 长为56π, 11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.【答案】(1)312;(2)2π.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =.计算体积与侧面积即得.(2)由11//O B OB 得C ∠OB 或其补角为11O B 与C O 所成的角,计算C ∠OB 即得.试题解析:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l =π=π⨯⨯=π,圆柱的侧面积22112S rl =π=π⨯⨯=π.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以C ∠OB 或其补角为11O B 与C O 所成的角.由 11A B 长为3π,可知1113π∠AOB =∠A O B =,由 C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.考点:1.几何体的体积;2.空间的角.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.20.(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
上海市奉贤区届高三数学一模试卷文(含解析)

2016年上海市奉贤区高考数学一模试卷(文科)一、填空题(共14小题,每小题5分,满分70分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b= .2.函数的定义域是.3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t= .5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为.6.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,则S n=2,则q= .7.在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=cm.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有.(用数字作答)9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB的倾斜角为α,则cosα的值为.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a= .11.已知x≥1,y≥0,集合A={(x,y)|x+y≤4},B={(x,y)|x﹣y+t=0},如果A∩B≠∅,则t的取值范围是.12.在(x++2)4展开式中的常数项是(用数值作答)13.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是.14.若数列{a n}满足a n+a,且a1=x,{a n}单调递增,则x的取值范围是.二、选择题(共4小题,每小题5分,满分20分)15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]16.下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>17.若复数z满足关系=1,则z对应的复平面的点的轨迹是()A.圆B.椭圆C.双曲线D.直线18.方程9x+|3x+b|=5(b∈R)有一个正实数解,则b的取值范围为()A.(﹣5,3)B.(﹣5.25,﹣5)C.[﹣5,5)D.前三个都不正确三、解答题(共5小题,满分60分)19.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求BE与面PADE所成的线面角的大小.20.已知椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)设A、B是四条直线x=±a,y=±b所围成的两个顶点,P是椭圆C上的任意一点,若,求证:动点Q(m,n)在定圆上运动.21.如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P 的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?22.(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.23.数列{a n},{b n}满足,a1>0,b1>0;(1)求证:{a n•b n}是常数列;(2)若{a n}是递减数列,求a1与b1的关系;(3)设a1=4,b1=1,c n=log3,求{c n}的通项公式.2016年上海市奉贤区高考数学一模试卷(文科)参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b= 0 .【考点】复数的基本概念.【分析】由i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,即可得到实部等于0,则b可求.【解答】解:i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,则﹣b=0,即b=0.故答案为:0.2.函数的定义域是[0,+∞).【考点】函数的定义域及其求法.【分析】由题意可得2x﹣1≥0,解不等式可得函数的定义域.【解答】解:由题意可得2x﹣1≥0,解不等式可得x≥0所以函数的定义域是[0,+∞)故答案为:[0,+∞)3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=150°.【考点】平面向量数量积的运算.【分析】由题意可得∠BAC 为钝角,再由×2×3×sin∠BAC=,解得sin∠BAC=,从而得到∠BAC的值.【解答】解:∵在△ABC中,||=2,||=3,且△ABC的面积为,∴=,即,解得sin∠BAC=,又•<0,∴,∴∠BAC=150°.故答案为:150°.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t= ±\frac{1}{2} .【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,直线tx+y+1=0的斜率为﹣t,运用两直线垂直的条件:斜率之积为﹣1,计算即可得到所求值.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得渐近线为y=±2x,直线tx+y+1=0的斜率为﹣t,而渐近线的斜率为±2,由两直线垂直的条件:斜率之积为﹣1,可得﹣t=±,即有t=±.故答案为:±.5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为 4 .【考点】抛物线的简单性质.【分析】把点M(x0,2)代入抛物线方程,解得x0.利用抛物线的定义可得:点M到抛物线焦点的距离=x0+1.【解答】解:把点M(x0,2)代入抛物线方程可得: =4x0,解得x0=3.∴点M到抛物线焦点的距离=x0+1=4.故答案为:4.6.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,则S n=2,则q= \frac{1}{2} .【考点】等比数列的通项公式.【分析】由无穷递缩等比数列的各项和可得=2,解方程可得.【解答】解:∵无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,且S n=2,∴=2,解得q=,故答案为:.7.在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=\frac{3}{2} cm.【考点】球的体积和表面积;棱柱、棱锥、棱台的体积.【分析】求出球的体积等于水面高度恰好上升Rcm的体积,即可求出R的值.【解答】解:在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,所以,,所以R=(cm);故答案为:.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有34 .(用数字作答)【考点】组合及组合数公式;排列、组合的实际应用.【分析】根据题意,选用排除法;分3步,①计算从7人中,任取4人参加某个座谈会的选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.【解答】解:分3步来计算,①从7人中,任取4人参加某个座谈会,分析可得,这是组合问题,共C74=35种情况;②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,③根据排除法,可得符合题意的选法共35﹣1=34种;故答案为34.9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB的倾斜角为α,则cosα的值为\frac{\sqrt{10}}{10} .【考点】直线的倾斜角.【分析】设直线OA的倾斜角为θ,则tanθ=,tanα==,cosα=.【解答】解:设直线OA的倾斜角为θ,则tanθ=,则tanα====3,∴cosα===.故答案为:.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a= 1 .【考点】反函数.【分析】f﹣1(x)在定义域上是奇函数,可得:原函数f(x)在定义域上也是奇函数,利用f(0)=0即可得出.【解答】解:∵f﹣1(x)在定义域上是奇函数,∴原函数f(x)在定义域上也是奇函数,∴f(0)=1﹣a=0,解得a=1,∴f(x)=,经过验证函数f(x)是奇函数.故答案为:1.11.已知x≥1,y≥0,集合A={(x,y)|x+y≤4},B={(x,y)|x﹣y+t=0},如果A∩B≠∅,则t的取值范围是[﹣4,2]..【考点】交集及其运算.【分析】把A∩B≠∅转化为线性规划问题,作出可行域,由直线x﹣y+t=0与可行域有交点求得t的范围.【解答】解:由作出可行域如图,要使A∩B≠∅,则直线x﹣y+t=0与可行域有公共点,联立,得B(1,3),又A(4,0),把A,B的坐标分别代入直线x﹣y+t=0,得t=﹣4,t=2.∴﹣4≤t≤2.故答案为:[﹣4,2].12.在(x++2)4展开式中的常数项是70 (用数值作答)【考点】二项式定理的应用.【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:(x++2)4 =的展开式的通项公式为T r+1=•=•x4﹣r,令4﹣r=0,求得 r=4,可得展开式中的常数项是=70,故答案为:70.13.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是\frac{3+\sqrt{3}}{2} .【考点】由三视图求面积、体积;棱柱、棱锥、棱台的体积.【分析】由题意可知三视图复原的几何体是三棱锥,正方体的一个角,根据三视图的数据,求出三棱锥的表面积即可.【解答】解:由题意可知三视图复原的几何体是三棱锥,正方体的一个角,所以几何体的表面积为:3个等腰直角三角形与一个等边三角形的面积的和,即:3×=.故答案为:.14.若数列{a n}满足a n+a,且a1=x,{a n}单调递增,则x的取值范围是(1,3).【考点】数列的函数特性.【分析】数列{a n}单调递增⇔a1<a2<a3,解出即可得出.【解答】解:数列{a n}单调递增⇔a1<a2<a3,∵数列{a n}满足a n+a,且a1=x,解得a2=6﹣x,a3=4+x.∴x<6﹣x<4+x,解得1<x<3.故答案为:(1,3).二、选择题(共4小题,每小题5分,满分20分)15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]【考点】直线与平面所成的角.【分析】做出斜线与射影所确定的平面,则当α内的直线与射影平行时.夹角最小为35°,当直线与射影垂直时,夹角最大为90°.【解答】解:设平面α的斜线的斜足为B,过斜线上A点做平面α的垂线,垂足为C,则∠ABC=35°,∴当α内的直线与BC平行时,直线与斜线所成的角为35°,当α内的直线与BC垂直时,则此直线与平面ABC垂直,∴直线与斜线所成的角为90°,故选:D.16.下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>【考点】其他不等式的解法.【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.17.若复数z满足关系=1,则z对应的复平面的点的轨迹是()A.圆B.椭圆C.双曲线D.直线【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】设z=x+yi,(x,y∈R),代入复数z满足关系=1,化简即可得出.【解答】解:设z=x+yi,(x,y∈R),∵复数z满足关系=1,∴x2+y2=1.则z对应的复平面的点的轨迹是以原点为圆心,1为半径的圆.故选:A.18.方程9x+|3x+b|=5(b∈R)有一个正实数解,则b的取值范围为()A.(﹣5,3)B.(﹣5.25,﹣5)C.[﹣5,5)D.前三个都不正确【考点】根的存在性及根的个数判断.【分析】化简9x+|3x+b|=5可得3x+b=5﹣9x或3x+b=﹣5+9x,从而讨论以确定方程的根的个数,从而解得.【解答】解:∵9x+|3x+b|=5,∴|3x+b|=5﹣9x,∴3x+b=5﹣9x或3x+b=﹣5+9x,①若3x+b=5﹣9x,则b=5﹣3x﹣9x,其在(﹣∞,0)上单调递减,故当b≤3时,无解,当3<b<5时,有一个解,当b≥5时,无解;②若3x+b=﹣5+9x,则b=﹣5﹣3x+9x=(3x﹣)2﹣,∵x∈(﹣∞,0)时,0<3x<1,∴当﹣<b<﹣5时,有两个不同解;当b=﹣时,有一个解;综上所述,b的取值范围为(﹣5.25,﹣5),故选B.三、解答题(共5小题,满分60分)19.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求BE与面PADE所成的线面角的大小.【考点】直线与平面所成的角;平面的基本性质及推论.【分析】(1)延长PE交AC于F,可证F与C重合,故直线BC即为面PBE与面ABC的交线;(2)连接AE,则∠BEA为所要求的角,根据棱锥的体积计算AB,利用勾股定理计算AE,则tan∠BEA=.【解答】解:(1)延长PE交AC于F,∵AP、AB、AC两两互相垂直,∴PA⊥平面ABC,∵DE⊥平面ABC,∴DE∥PA,∴,∴F与C重合.∵C∈PE,C∈AC,PE⊂平面PBE,AC⊂平面ABC,∴C是平面PBE和平面ABC的公共点,又B是平面PBE和平面ABC的公共点,∴BC是面PBE与面ABC的交线.(2)连接AE,∵AP、AB、AC两两互相垂直,∴AB⊥平面PAC,∴∠BEA为BE与平面PAD所成的角,∴V B﹣PADE==(1+2)×1×AB=,∴AB=.又∵AE==,∴tan∠BEA==.∴BE与面PADE所成的线面角为arctan.20.已知椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)设A、B是四条直线x=±a,y=±b所围成的两个顶点,P是椭圆C上的任意一点,若,求证:动点Q(m,n)在定圆上运动.【考点】椭圆的简单性质.【分析】(1)由椭圆的长轴长是短轴长的两倍,焦距为2,列出方程组,能求出椭圆方程.(2)由已得A(2,1),B(﹣2,1),设P(x0,y0),由此能证明点Q(m,n)在定圆x2+y2=运动.【解答】(1)解:∵椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为2,∴,解得a=2,b=1,c=,∴椭圆方程为.(2)证明:∵A、B是四条直线x=±2,y=±1所围成的两个顶点,∴A(2,1),B(﹣2,1),设P(x0,y0),则+y02=1.由,得,∴+(m+n)2=1,故点Q(m,n)在定圆x2+y2=运动.21.如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P 的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?【考点】余弦定理的应用.【分析】(1)由条件可设PA=5x,PB=3x,运用余弦定理,即可得到cos∠PAB;(2)由同角的平方关系可得sin∠PAB,求得点P到直线AB的距离h=PAsin∠PAB,化简整理配方,由二次函数的最值的求法,即可得到所求最大值及PA,PB的值.【解答】解:(1)由条件①,得,∵PA=5x,∴PB=3x,则,可得;(2)由同角的平方关系可得,所以点P到直线AB的距离h=PAsin∠PAB,=,∵cos∠PAB≤1,∴,∴2≤x≤8,所以当x2=34,即时,h取得最大值15千米.即选址应满足千米,千米.22.(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.【考点】对数函数的图象与性质;子集与真子集.【分析】(1)使用分析法证明;(2)设0<x1<x2,利用(1)的结论和对数函数的性质化简f(x1)﹣f(x2)判断其符号,得出结论;(3)由(2)的结论及f(9)=0列出不等式组,解出n即可得出M中元素的个数.【解答】(1)证明:∵x2+1>0,x2>0,欲证:,只需证:x2(x1+1)>x1(x2+1),即证:x1x2+x2>x1x2+x1,只需证:x2>x1,显然x2>x1成立,∴.(2)解:f(x)的定义域为(0,+∞).设0<x1<x2,则f(x1)﹣f(x2)=lg(x1+1)﹣lg(x2+1)+log3x2﹣log3x1=lg+log3=lg﹣log.∵0<x1<x2,∴0<<<1,∴lg>log>log,∴f(x1)﹣f(x2)=lg﹣log>log﹣log=0.∴f(x1)>f(x2),∴f(x)在定义域(0,+∞)上是减函数.(3)解:由(2)知f(x)是定义在(0,+∞)上的减函数,且f(9)=0,∵f(n2﹣214n﹣1998)≥0,∴0<n2﹣214n﹣1998≤9.∴13447<(n﹣107)2≤13456.∵115<<116, =116,n∈Z,∴n﹣107=116或n﹣107=﹣116.∴集合M有两个元素.∴集合M有4个子集.23.数列{a n},{b n}满足,a1>0,b1>0;(1)求证:{a n•b n}是常数列;(2)若{a n}是递减数列,求a1与b1的关系;(3)设a1=4,b1=1,c n=log3,求{c n}的通项公式.【考点】数列递推式;数列的函数特性.【分析】(1)化简可得b n+1=2,从而可得a n+1b n+1=(a n+b n)•2=a n b n,从而证明;(2)由题意知a n+1=a n+b n<a n,从而求得;(3)化简可得a n+1=+,从而可得===()2,从而可得数列{c}是以1为首项,2为公比的等比数列,从而求得.n【解答】解:(1)证明:∵=+=(),∴b n+1=2,∴a n+1b n+1=(a n+b n)•2=a n b n,∴{a n•b n}是常数列;(2)∵{a n}是递减数列,∴a n+1=a n+b n<a n,∴a n>b n,∴a1>b1.(3)∵a1=4,b1=1,∴a n•b n=4,∴a n+1=a n+b n=a n+=+,∴===()2,∴log3=log3()2=2log3,即c n+1=2c n,又∵c1=log3=1,故数列{c n}是以1为首项,2为公比的等比数列,∴c n=1•2n﹣1=2n﹣1.。
2016年高考文科数学上海卷-答案

以12()log (1)f x x -=-.【提示】先将点(3,9)代入函数)(1xf x a =+求出a 值,再将x 与y 互换转化成反函数.【考点】反函数的概念,反函数的求解 7.【答案】2-【解析】由不等式组画出可行域如图中阴影部分所示,令2z x y =-,当直线1122y x z =-经过点(0,1)P 时,z 取得最大值2-.【提示】根据约束条件,画出相应的封闭区域,通过平移找到最优解. 【考点】线性规划 8.【答案】π5π,66【解析】化简3sin 1cos2x x =+得:23sin 22sin x x =-,所以22sin 3sin 20x x +-=,解得1sin 2x =或sin 2x =-(舍去),又[0,2π]x ∈,所以π5π66x =或. 【提示】先通过化简得到角的某种三角函数值,再结合角的范围求解. 【考点】三角方程 9.【答案】112【解析】由二项式定理得:所有项的二项式系数之和为2n ,即2256n =,所以8n =,又二项展开式的通项为()8483331882(2)rr rr r r r T C x C x x --+⎛⎫ ⎪⎝⎭=-=-,令84033r -=,所以2r =,所以3112T =,即常数项为112. 【提示】先根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,再综合运用二项展开式的系数的性质求解. 【考点】二项式定理 10.【答案】733【解析】由已知可设357a b c ===,,,∴2221cos =22a b c C ab +-=-,∴3sin 2C =,∴732sin 3c R C ==. OxyP。
上海市奉贤区高考数学一模试卷(文科)

上海市奉贤区高考数学一模试卷(文科)一、解答题详细信息1.难度:中等不等式的解集是(用区间表示).详细信息2.难度:中等函数y=cos22x-sin22x的最小正周期是.详细信息3.难度:中等过点(3,2)且一个法向量为的直线的点法向式方程为.详细信息4.难度:中等集合A=(1,2],集合B={x|x<a},满足A⊊B,则实数a的范围是.详细信息5.难度:中等设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是.详细信息6.难度:中等设双曲线的渐近线方程为3x±2y=0,则正数a的值为.详细信息7.难度:中等已知无穷等比数列中的首项1,各项的和2,则公比q= .详细信息8.难度:中等方程的解是.详细信息9.难度:中等已知,,则= .详细信息10.难度:中等函数的最小值是.详细信息11.难度:中等如图是某算法的程序框图,则程序运行后输出的结果是.详细信息12.难度:中等有这么一个数学问题:“已知奇函数f(x)的定义域是一切实数R,且f(m)=2,f(m2-2)=-2,求m的值”.请问m的值能否求出,若行,请求出m的值;若不行请说明理由(只需说理由)..详细信息13.难度:中等已知数列{an }的通项公式为an=|n-13|,那么满足ak+ak+1+…+ak+19=102的正整数k= .详细信息14.难度:中等设函数,则方程有个实数根.二、选择题详细信息15.难度:中等复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限详细信息16.难度:中等若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2abB.C.D.详细信息17.难度:中等下列函数中不能用二分法求零点的是()A.f(x)=3x-1B.f(x)=x3C.f(x)=|x|D.f(x)=ln详细信息18.难度:中等两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点,这样的正三角形有()A.4个B.3个C.2个D.1个三、解答题详细信息19.难度:中等已知锐角△ABC中,三个内角为A、B、C,向量,,∥,求∠A的大小.详细信息20.难度:中等关于x的不等式的解集为(-1,2).(1)求实数m的值;(2)若实系数一元二次方程x2+mx+n=0的一个根,求n.详细信息21.难度:中等已知直角坐标平面内点F1(-2,0),F2(2,0),一曲线C经过点P,且.(1)求曲线C的方程;(2)设A(1,0),若,求点P的横坐标的取值范围.详细信息22.难度:中等函数,定义f(x)的第k阶阶梯函数,其中k∈N*,f(x)的各阶梯函数图象的最高点Pk (ak,bk).(1)直接写出不等式f(x)≤x的解;(2)求证:所有的点Pk在某条直线L上.详细信息23.难度:中等出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:(1)求点A(1,3)、B(6,9)的“距离”|AB|;(2)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;(3)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点A(1,3)、B(6,9),C(1,9),求经过这三个点确定的一个“圆”的方程,并画出大致图象;(说明所给图形小正方形的单位是1)详细信息24.难度:中等正数列{an }的前n项和Sn满足:2Sn=anan+1-1,a1=a>0.(1)求证:an+2-an是一个定值;(2)若数列{an}是一个单调递增数列,求a的取值范围;(3)若S2013是一个整数,求符合条件的自然数a.。
2016年上海高考文科数学试题及答案

密★启用前2016年普通高等学校招生全国统一考试(上海卷)数学(文)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.设,则不等式的解集为_______.2.设,其中为虚数单位,则的虚部等于______.3.已知平行直线,,则与的距离是_____.4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).5.若函数的最大值为5,则常数______.6.已知点(3,9)在函数的图像上,则的反函数=______.7.若满足则的最大值为_______.8.方程在区间上的解为_____.9.在的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.10.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于____.11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.12.如图,已知点O(0,0),A(1.0),B(0,−1),P是曲线上一个动点,则的取值范围是 .13.设a>0,b>0. 若关于x,y的方程组无解,则的取值范围是 .14.无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和.若对任意的,则k的最大值为 .二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设,则“a>1”是“a2>1”的()(A)充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既非充分也非必要条件16.如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C117.设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为()(A)1 (B)2 (C)3 (D)418.设f(x)、g(x)、h(x)是定义域为的三个函数.对于命题:①若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数,下列判断正确的是()(A)①和②均为真命题 (B) ①和②均为假命题(C)①为真命题,②为假命题 (D)①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等.现建立平面直角坐标系,其中原点O为EF 的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的“经验值”为.设M是C上纵坐标为1的点,请计算以EH为一边、另有一边过点M的矩形的面积,及五边形EOMGH的面积,并判别哪一个更接近于S1面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,是等边三角形,求双曲线的渐近线方程;(2)设若l的斜率存在,且|AB|=4,求l的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列.(1)若=,=,判断{}与{}是否为无穷互补数列,并说明理由;(2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和;(3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}得通项公式.23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知R,函数=.(1)当时,解不等式>1;(2)若关于的方程+=0的解集中恰有一个元素,求的值;(3)设>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.A16.D17.B18.D19.解:(1)由题意可知,圆柱的母线长,底面半径.圆柱的体积,圆柱的侧面积.(2)设过点的母线与下底面交于点,则,所以或其补角为与所成的角.由长为,可知,由长为,可知,,所以异面直线与所成的角的大小为.20.解:(1)因为上的点到直线与到点的距离相等,所以是以为焦点、以为准线的抛物线在正方形内的部分,其方程为().(2)依题意,点的坐标为.所求的矩形面积为,而所求的五边形面积为.矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差的绝对值为,所以五边形面积更接近于面积的“经验值”.21.解:(1)设.由题意,,,,因为是等边三角形,所以,即,解得.故双曲线的渐近线方程为.(2)由已知,.设,,直线.由,得.因为与双曲线交于两点,所以,且.由,,得,故,解得,故的斜率为.22.解:(1)因为,,所以,从而与不是无穷互补数列.(2)因为,所以.数列的前项的和为.(3)设的公差为,,则.由,得或.若,则,,与“与是无穷互补数列”矛盾;若,则,,.综上,,.23.解:(1)由,得,解得.(2)有且仅有一解,等价于有且仅有一解,等价于有且仅有一解.当时,,符合题意;当时,,.综上,或.(3)当时,,,所以在上单调递减.函数在区间上的最大值与最小值分别为,.即,对任意成立.因为,所以函数在区间上单调递增,时,有最小值,由,得.故的取值范围为.。
(精校版)2016年上海市高考数学(文)试题含答案

2016年高考上海数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.设x ∈R ,则不等式31x -<的解集为_______.2.设32iiz +=,其中i 为虚数单位,则z 的虚部等于______.3.已知平行直线1210l x y +-=:,2210l x y ++=:,则1l 与2l 的距离是_____.4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).5.若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.6.已知点(3,9)在函数()1xf x a =+的图像上,则()f x 的反函数1()fx -=______.7.若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.8.方程3sin 1cos 2x x =+在区间[]0,2π上的解为_____.9.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.10.已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于____.11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.12.如图,已知点O (0,0),A (1.0),B (0,−1),P是曲线y =OP BA ×uu u r uu r的取值范围是.13.设a >0,b >0.若关于x ,y 的方程组1,1ax y x by ì+=ïïíï+=ïî无解,则a b +的取值范围是.14.无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意的*n ÎN ,{23}n S Î,则k 的最大值为.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设a ÎR ,则“a >1”是“a 2>1”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是()(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 117.设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)3x ax b -+,则满足条件的有序实数对(a ,b )的对数为()(A)1(B)2(C)3(D)418.设f (x )、g (x )、h(x )是定义域为R 的三个函数.对于命题:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是增函数,则f (x )、g (x )、h(x )均是增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h(x )均是以T 为周期的函数,下列判断正确的是()(A)①和②均为真命题(B)①和②均为假命题(C)①为真命题,②为假命题(D)①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图, AC 长为56π, 11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1面积是S 2面积的两倍,由此得到S 1面积的“经验值”为8.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判别哪一个更接近于S 1面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点.(1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设3,b =若l 的斜率存在,且|AB |=4,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B = ,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由;(2)若n a =2n且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知a ∈R ,函数()f x =21log ()a x+.(1)当1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.参考答案1.)4,2(2.3-3.5524.76.15.3±6.)1(log 2-x 7.2-8.65,6ππ9.11210.33711.1612.⎡-⎣13.()2,+∞14.415.A 16.D 17.B 18.D 19.解:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l πππ==⨯⨯=,圆柱的侧面积22112S rl πππ==⨯⨯=.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以C ∠OB 或其补角为11O B 与C O 所成的角.由 11A B 长为π,可知111π∠AOB =∠A O B =,由 C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.20.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为5,而所求的五边形面积为11.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差的绝对值为118143-=,所以五边形面积更接近于1S 面积的“经验值”.21.解:(1)设(),x y A A A .由题意,()2F ,0c,c =,()22241y b c b A =-=,因为1F ∆AB是等边三角形,所以2c A =,即()24413b b +=,解得22b =.故双曲线的渐近线方程为y =.(2)由已知,()2F 2,0.设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430k x k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.由212243k x x k +=-,2122433k x x k +=-,得()()()2212223613k x x k +-=-,故()21226143k x k +AB ==-==-,解得235k=,故l 的斜率为5±.22.解:(1)因为4∉A ,4∉B ,所以4∉A B ,从而{}n a 与{}n b 不是无穷互补数列.(2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++()512020221802+⨯--=.(3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=.由136151a d =-≥,得1d =或2.若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾;若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.23.解:(1)由21log 11x ⎛⎫+> ⎪⎝⎭,得112x +>,解得()0,1x ∈.(2)()2221log log 0a x x ⎛⎫++=⎪⎝⎭有且仅有一解,等价于211a x x ⎛⎫+= ⎪⎝⎭有且仅有一解,等价于210ax x +-=有且仅有一解.当0a =时,1x =,符合题意;当0a ≠时,140a ∆=+=,14a =-.综上,0a =或14-.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y有最小值3142a -,由31042a -≥,得23a ≥.故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。
2016年上海市高考数学试卷(文科)

2016年上海市高考数学试卷(文科)一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a= .6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f ﹣1(x)= .7.(4分)若x,y满足,则x﹣2y的最大值为.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C117.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.22.(16分)对于无穷数列{an }与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*},若同时满足条件:①{an },{bn}均单调递增;②A∩B=∅且A∪B=N*,则称{an}与{bn}是无穷互补数列.(1)若an =2n﹣1,bn=4n﹣2,判断{an}与{bn}是否为无穷互补数列,并说明理由;(2)若an =2n且{an}与{bn}是无穷互补数列,求数量{bn}的前16项的和;(3)若{an }与{bn}是无穷互补数列,{an}为等差数列且a16=36,求{an}与{bn}的通项公式.23.(18分)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.2016年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x ∈R ,则不等式|x ﹣3|<1的解集为 (2,4) .【分析】由含绝对值的性质得﹣1<x ﹣3<1,由此能求出不等式|x ﹣3|<1的解集.【解答】解:∵x ∈R ,不等式|x ﹣3|<1, ∴﹣1<x ﹣3<1, 解得2<x <4.∴不等式|x ﹣3|<1的解集为(2,4). 故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)设z=,其中i 为虚数单位,则z 的虚部等于 ﹣3 .【分析】利用复数的运算法则即可得出. 【解答】解:z===﹣3i+2,则z 的虚部为﹣3.故答案为:﹣3.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)已知平行直线l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则l 1,l 2的距离 .【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则l 1,l 2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76 (米).【分析】将数据从小到大进行重新排列,根据中位数的定义进行求解即可.【解答】解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80.则位于中间的数为1.76,即中位数为1.76,故答案为:1.76【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a= ±3 .【分析】利用辅助角公式化简函数f(x)的解析式,再利用正弦函数的最大值为5,求得a的值.【解答】解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f ﹣1(x)= log(x﹣1)(x>1).2【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可(y﹣1),(y>1).把x与y互换即可得得f(x)=1+2x,由1+2x=y,解得x=log2出f(x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log(y﹣1),(y>1).2(x﹣1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2故答案为:log(x﹣1),(x>1).2【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.7.(4分)若x,y满足,则x﹣2y的最大值为﹣2 .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:画出可行域(如图),设z=x﹣2y⇒y=x﹣z,由图可知,=0﹣2×1=﹣2.当直线l经过点A(0,1)时,z最大,且最大值为zmax故答案为:﹣2.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.9.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112 .【分析】根据展开式中所有二项式系数的和等于2n=256,求得 n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T==,r+1=(﹣2)2=112.∴当=0,即r=2时,常数项为T3故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.【分析】利用分步乘法求出两同学总的选法种数,再求出选法相同的选法种数,利用古典概型概率计算公式得答案.【解答】解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题.12.(4分)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是[﹣1,] .【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞).【分析】根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.【解答】解:∵关于x,y的方程组无解,∴直线ax+y﹣1=0与直线x+by﹣1=0平行,∴﹣a=﹣,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).【点评】本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为 4 .【分析】对任意n∈N*,Sn∈{2,3},列举出n=1,2,3,4的情况,归纳可得n >4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,Sn∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【分析】根据异面直线的定义便可判断选项A,B,C的直线都和直线EF异面,而由图形即可看出直线B1C1和直线相交,从而便可得出正确选项.【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B 1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin (3x﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①举反例说明命题不成立;②根据定义得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h (x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:对于①,举反例说明:f(x)=2x,g(x)=﹣x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g(x)=﹣x不是增函数,所以①是假命题;对于②,根据周期函数的定义,f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目.三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:﹣=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y),则y=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y),则y=1,∴x==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S 1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.【分析】(1)由题意求出A点纵坐标,由△F1AB是等边三角形,可得tan∠AF1F2=tan=,从而求得b值,则双曲线的渐近线方程可求;(2)写出直线l的方程y﹣0=k(x﹣2),即y=kx﹣2k,与双曲线方程联立,利用弦长公式列式求得k值.【解答】解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为 x2﹣=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y﹣0=k(x﹣2),即y=kx﹣2k,联立,可得(3﹣k2)x2+4k2x﹣4k2﹣3=0,由直线与双曲线有两个交点,则3﹣k2≠0,即k.△=36(1+k2)>0.x 1+x2=,x1•x2=.∵|AB|=•|x1﹣x2|=•=•=4,化简可得,5k4+42k2﹣27=0,解得k2=,求得k=.∴l的斜率为.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了双曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.22.(16分)对于无穷数列{an }与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*},若同时满足条件:①{an },{bn}均单调递增;②A∩B=∅且A∪B=N*,则称{an}与{bn}是无穷互补数列.(1)若an =2n﹣1,bn=4n﹣2,判断{an}与{bn}是否为无穷互补数列,并说明理由;(2)若an =2n且{an}与{bn}是无穷互补数列,求数量{bn}的前16项的和;(3)若{an }与{bn}是无穷互补数列,{an}为等差数列且a16=36,求{an}与{bn}的通项公式.【分析】(1){an }与{bn}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可判断;(2)由an =2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d=1或2,讨论d=1,2求得通项公式,结合新定义,即可得到所求数列的通项公式.【解答】解:(1){an }与{bn}不是无穷互补数列.理由:由an =2n﹣1,bn=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{an }与{bn}不是无穷互补数列;(2)由an =2n,可得a4=16,a5=32,由{an }与{bn}是无穷互补数列,可得b16=16+4=20,即有数列{bn}的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{an }为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,an=n+20,bn=n(1≤n≤20),与{an }与{bn}是无穷互补数列矛盾,舍去;若d=2,则a1=6,an=2n+4,bn=.综上可得,an =2n+4,bn=.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,考查运算和推理能力,属于中档题.23.(18分)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值; (3)设a >0,若对任意t ∈[,1],函数f (x )在区间[t ,t+1]上的最大值与最小值的差不超过1,求a 的取值范围. 【分析】(1)当a=1时,不等式f (x )>1化为:>1,因此2,解出并且验证即可得出.(2)方程f (x )+log 2(x 2)=0即log 2(+a )+log 2(x 2)=0,(+a )x 2=1,化为:ax 2+x ﹣1=0,对a 分类讨论解出即可得出.(3)a >0,对任意t ∈[,1],函数f (x )在区间[t ,t+1]上单调递减,由题意可得﹣≤1,因此≤2,化为:a ≥=g (t ),t ∈[,1],利用导数研究函数的单调性即可得出. 【解答】解:(1)当a=1时,不等式f (x )>1化为:>1,∴2,化为:,解得0<x <1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f (x )+log 2(x 2)=0即log 2(+a )+log 2(x 2)=0,∴(+a )x 2=1,化为:ax 2+x ﹣1=0,若a=0,化为x ﹣1=0,解得x=1,经过验证满足:关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素1. 若a ≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x 的方程f(x )+log 2(x 2)=0的解集中恰有一个元素1. 综上可得:a=0或﹣.(3)a >0,对任意t ∈[,1],函数f (x )在区间[t ,t+1]上单调递减, ∴﹣≤1,∴≤2,化为:a ≥=g (t ),t ∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市奉贤区高考数学一模试卷(文科)
一、填空题(共14小题,每小题5分,满分70分)
1.若i(bi+1)是纯虚数,i是虚数单位,则实数b=.
2.函数的定义域是.
3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=.
4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t=.
5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为.
6.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,则S n=2,则
q=.
7.在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=
cm.
8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有.(用数字作答)
9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB
的倾斜角为α,则cosα的值为.
10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a=.
11.已知x≥1,y≥0,集合A={(x,y)|x+y≤4},B={(x,y)|x﹣y+t=0},如果A∩B≠∅,则t的取值范围是.
12.在(x++2)4展开式中的常数项是(用数值作答)
13.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是.
14.若数列{a n}满足a n+a,且a1=x,{a n}单调递增,则x的取值范围是.
二、选择题(共4小题,每小题5分,满分20分)
15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()
A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]
16.下列不等式中,与不等式<2解集相同的是()
A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)
C.<D.>
17.若复数z满足关系=1,则z对应的复平面的点的轨迹是()
A.圆B.椭圆C.双曲线D.直线
18.方程9x+|3x+b|=5(b∈R)有一个正实数解,则b的取值范围为()
A.(﹣5,3)B.(﹣5.25,﹣5)
C.[﹣5,5)D.前三个都不正确
三、解答题(共5小题,满分60分)
19.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,
且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求BE与面PADE所成的线面角的大小.
20.已知椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为2.
(1)求椭圆C的标准方程;
(2)设A、B是四条直线x=±a,y=±b所围成的两个顶点,P是椭圆C上的任意一点,若
,求证:动点Q(m,n)在定圆上运动.
21.如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):
①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;
②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)
(2)问垃圾发电厂该如何选址才能同时满足上述要求?
22.(1)已知0<x1<x2,求证:;
(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;
(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.
23.数列{a n},{b n}满足,a1>0,b1>0;
(1)求证:{a n•b n}是常数列;
(2)若{a n}是递减数列,求a1与b1的关系;
(3)设a1=4,b1=1,c n=log3,求{c n}的通项公式.。