对数与对数函数
【高中数学】第六节 对数与对数函数

第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
第二章 第六节 对数与对数函数

A.a>0>b
B.a>b>0
C.b>a>0
D.b>0>a
(1)D
(2)A
解
析
:
(1)a
=
log315
=
log3
3×5
= 1 + log35>1 , b = log420 =
log44×5
=1+log45>1,c=log21.9<1,因为
log35=llgg
5 3
lg 5 >lg 4
=log45,所以 a>b>c.
B.b<c<a
C.c<a<b
D.c<b<a
D
解析:画出函数 f(x)=|lg x|,∵f(2)=|lg 2|=|-lg 2|=lg
1 2
,且14
1 <3
1 <2
,
∴f14
1 >f3
1 >f2
,即 a>b>c.
5.(多选)函数 y=loga(x+c)(a,c 为常数,其中 a>0,a≠1)的图象如图所示, 则下列结论成立的是( )
第二章 函 数 第六节 对数与对数函数
必备知识 增分策略 关键能力 精准突破
栏目索引
必备知识 增分策略
必备知识 1.对数的概念 如果 ab=N(a>0,且 a≠1),那么 b 叫作以 a 为底,(正)数 N 的对数,记作 b =logaN.这里,a 叫作对数的_底__数_,N 叫作对数的真数.
答案:0,
2 2
解析:若方程 4x=logax 在0,12 上有解,则函数 y=4x 与
高三:对数与对数函数

这时f(x)=log4(-x2+2x+3).
由-x2+2x+3>0得-1<x<3,即函数定义域为(-1,3). 令g(x)=-x2+2x+3. 则g(x)在(-1,1)上单调递增,在(1,3)上单调递减. 又y=log4x在(0,+∞)上单调递增,
所以f(x)的单调递增区间是(-1,1),单调递减区间是
则f(a2)+f(b2)=________. 解析:由f(ab)=1得ab=10,于是f(a2)+f(b2)=lg a2 +lg b2=2(lg a+lg b)=2lg(ab)=2lg 10=2. 答案:2
1.在运用性质logaMn=nlogaM时,要特别注意条件,在
无M>0的条件下应为logaMn=nloga|M|(n∈N*,且n为偶数).
1 4 3 1 = ×(5lg 2-2lg 7)- × lg 2+ (lg 5+2lg 7) 2 3 2 2 5 1 = lg 2-lg 7-2lg 2+ lg 5+lg 7 2 2 1 1 1 1 = lg 2+ lg 5= lg(2×5)= . 2 2 2 2
(2)由 2a=5b=m 得 a=log2m,b=log5m, 1 1 ∴a+b=logm2+logm5=logm10. 1 1 ∵a+b=2, ∴logm10=2,即 m2=10. 解得 m= 10(∵m>0).
A.0,
(
B. 2 ,1 2
)
2 2
C.(1, 2)
D.( 2,2)
[自主解答]
(1)由1-x>0,知x<1,排除选项A、
B;设t=1-x(x<1),因为t=1-x为减函数,而y=ln t 为增函数,所以y=ln(1-x)为减函数,可排除D选C.
对数运算和对数函数

对数与对数函数一、相关知识点1.对数的定义:如果()1,0≠>=a a N a x 且,那么数x 叫做以a 为底,N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数。
2.几种常见对数(1)()1,0≠>a a 且①01log =a ; ②1log =a a ; ③N a Na =log ; ④N a N a =log .(两个对数恒等式) (2)对数的重要公式:①换底公式:()0,1,log log log >=N b a b aN aNb均为大于零且不等于;②abba log 1log =,推广:da d c cb b a log log log log =⋅⋅. (3)对数的运算法则:如果0,0,1,0>>≠>N M a a 且,那么 ①()Na M a MN aloglog log += ; ②NaM a N Malog log log -=; ③()R n n MaM a n∈=log log ;④b a b a mnnm log log = . 3.反函数,只需了解:指数函数xa y =与对数函数xa y log =互为反函数,它们的图象关于直线x y =对称。
题型一:对数的化简和求值1.计算:(1)2110025lg 41lg ÷⎪⎭⎫ ⎝⎛-;(2)32log 2450lg 2lg 5lg +⋅+;(3)()232031027.0252lg 3.0lg 21000lg 8lg 27lg --⎪⎭⎫⎝⎛-⨯+-++-+;(4)()222lg 20lg 5lg 8lg 325lg +++. 2.已知()[]0lg log log 25=x ,求x 的值.3.已知0>a ,且1≠a ,m a =2log ,n a =3log ,求nm a +2的值能力提高:(1).设m ba==52,且211=+ba ,则=m ; (2).若632==b a ,求证:c b a 111=+题型二:(1)对数函数的基本性质题型一:基本性质1.函数()()223lg +-=x x f 恒过定点_______________________2.如果0log log 2121<<y x ,那么()(A)1<<x y ; (B)1<<y x ;(C)y x <<1; (D)x y <<1.3.已知()x x f a log =,()x x g b log =,()x x r c log =,()x x h d log =的图象如图所示则a ,b ,c ,d 的大小为A.b a d c <<<;B.a b d c <<<;C.b a c d <<<;D.d c b a <<<4.若函数()⎪⎩⎪⎨⎧<⎪⎭⎫⎝⎛+≥=)()(4214log 2x x f x x x f ,则⎪⎭⎫⎝⎛23f 的值是( ) A.21; B.1; C.23; D.2 5.若点()b a ,在x y lg =图像上,1≠a ,则下列点也在此图像上的是()A.⎪⎭⎫⎝⎛b a ,1;B. ()b a -1,10;C.⎪⎭⎫⎝⎛+1,10b a ; D.()b a 2,2. 6.函数()()13log 2+=xx f 的值域为7.为了得到函数103lg+=x y 的图像,只需把函数x y lg =的图像上所有的点( ) A.向左平移3个单位长度,再向上平移1个单位长度; B.向右平移3个单位长度,再向上平移1个单位长度; C.向左平移3个单位长度,再向下平移1个单位长度; D.向右平移3个单位长度,再向下平移1个单位长度.8.若函数()()()101≠>--=a a a a k x f xx且在R 上既是奇函数,又是减函数()()k x x g a +=log 的图象是( )9.对于函数()x f 定义域中任意的()2121,x x x x ≠,有如下结论: ①()()()2121x f x f x x f ⋅=+; ②()()()2121x f x f x x f +=⋅; ③()()02121>--x x x f x f ; ④()()222121x f x f x x f +<⎪⎭⎫ ⎝⎛+. 当()x x f lg =时,上述结论中正确结论的序号是. 能力提高:1.已知函数()22log 21+-=a y x 的值域是R ,求a 的取值范围.2.已知函数()()1log 22++=ax ax x f 的定义域为全体实数,求a 的取值范围.3.已知函数()()1log 22++=ax axx f 的值域域为全体实数,求a 的取值范围。
对数公式及对数函数的总结

对数公式及对数函数的总结对数公式是数学中一种重要的数学工具,可以用来简化复杂的计算、求解方程和表示关系等。
对数公式和对数函数广泛应用于数学、物理、工程等领域,有很多重要的性质和应用。
下面将对对数公式及对数函数的性质、定义以及应用进行总结。
一、对数公式1. 对数的定义:设a>0且a≠1,b>0,则称b是以a为底的对数的真数,记作b=logₐb。
a称为对数的底数,b称为真数,带底数和真数的对数,称为对数的对数。
对数的定义可以用反函数的概念来构造对数函数,即对数函数是幂函数的反函数。
2. 常用对数公式:常用对数是以10为底的对数,记作logb(x),其中b=10,x>0。
常用对数公式如下:十进制和对数公式:logb(xy) = logb(x) + logb(y)数字乘方和对数公式:logb(x/y) = logb(x) - logb(y)对数乘方和对数公式:logb(x^k) = klogb(x)对数的换底公式:loga(b) = logc(b) / logc(a),其中c>0且c≠1自然对数的定义:ln(x) = logₑ(x)自然对数的性质:ln(e^x) = x,其中x为任意实数。
二、对数函数1. 对数函数的定义:对数函数y=logₐ(x)是幂函数y=a^x的反函数,其中a>0且a≠1、对于任意正数x和任意实数a,对数函数的守恒是:a^logₐ(x) = x。
2.对数函数的性质:对数函数有以下性质:a) 当0<x<1时,0<logₐ(x)<∞;当x>1时,-∞<logₐ(x)<0。
b) 对数函数logₐ(x)在定义域内是递增函数。
c)对数函数的图像是以(1,0)为对称轴的反比例函数图像。
d)对数函数的增长速度比幂函数的增长速度慢。
三、对数函数的应用1.指数增长和对数函数:对数函数常用于描绘指数增长的情况。
例如,在经济学中,对数函数可以用来描述人口增长、物质消耗和资本积累等指数增长的趋势。
高中数学第七节 对数与对数函数

数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
[类题通法]
对数运算的一般思路
(1)首先利用幂的运算把底数或真数进行变形,化成分数指数 幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.
(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用 对数的运算性质,转化为同底对数真数的积、商、幂的运算.
2.解决与对数函数有关的问题时易漏两点:
(1)函数的定义域;
(2)对数底数的取值范围.
数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
[试一试] 1. (2013· 苏中三市、 连云港、 淮安二调)“M>N”是“log2M>log2N”
成立的____________条件(填“充分不必要”“必要不充 分”“充要”或“既不充分又不必要”). 解析:当 M,N 为负数时,不能得到 log2M>log2N,而根据函
数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
1.对数值的大小比较的基本方法
(1)化同底后利用函数的单调性;(2)作差或作商法; (3)利用中间量(0 或 1);(4)化同真数后利用图像比较.
2.明确对数函数图像的基本点
(1)当 a>1 时,对数函数的图像“上升”;
当 0<a<1 时,对数函数的图像“下降”.
(2)是否存在实数 a,使 f(x)的最小值为 0?若存在,求出 a 的值;若不存在,说明理由.
[解] (1)∵f(1)=1, ∴log4(a+5)=1,因此a+5=4,a=-1, 这时f(x)=log4(-x2+2x+3). 由-x2+2x+3>0得-1<x<3,函数f(x)的定义域为(-1,3).
对数与对数函数

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa 就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象Oxyy = l o g x a ><a <a111( ))底数互为倒数的两个对数函数的图象关于x (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是1 11111 1xxxxy y y yOO OOABC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是yyO x yO x yABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B.答案:C9.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1Oxy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f(x 2)]<f (221x x +)成立的函数是 A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47.(2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.(2004年苏州市模拟题)已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169. 小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。
对数函数和对数型函数的区别

对数函数和对数型函数的区别
对数函数和对数型函数都是数学中的一种函数类型,它们都跟指数运算相关。
然而,它们之间还是有一些区别的。
1. 对数函数
对数函数是一种基本的函数类型,用于解决指数运算的问题。
对数函数的通用表示式为:
y = loga(x)
其中,a 表示底数,x 表示真数,y 表示对数。
这个函数表达的是这样一个意思:对数 y 是底数 a 的多少次幂等于 x。
对于对数函数,它的定义域为正实数集合(0, +∞),值域为实数集合。
对数函数有以下几种常见的形式:
1)自然对数函数:y = ln(x)
对数函数有很多应用,比如在物理、化学、工程学等领域,对数函数经常用来解决指数运算相关的问题。
与对数函数类似,对数型函数也是表现指数运算的函数类型。
然而,对数型函数不是以对数的形式来表达指数运算,而是通过其他数学方法来实现。
对数型函数有以下几种常见的形式:
其中,幂函数、指数函数、指数递减函数、指数递增函数都是对数型函数的一种。
对于对数型函数,与对数函数相比,它没有一个统一的形式,而是根据实际应用来设计具体形式。
对数型函数的定义域、值域也与对数函数不同,具体来说,定义域和值域会因具体函数形式的不同而不同。
对数型函数同样也有很多应用。
比如在经济学和生物学等领域,幂函数、指数函数等函数形式经常用来描述某些现象的数量级或增长趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与对数函数1、考查对数函数的定义域与值域.2、考查对数函数的图象与性质的应用.3、考查以对数函数为载体的复合函数的有关性质.4、考查对数函数与指数函数互为反函数的关系.一般不单独考查对数运算,而以考查对数函数图象、性质为主,性质又以单调性为主。
有时在大题中与其它函数结合,这时一般要用导数解决。
选择题、填空题、解答题都有可能出现,题目难度一般较小,只要掌握图像和基本性质就不难解决。
考点1 对数式的化简与求值对数源于指数,对数与指数互为逆运算,对数的运算可根据对数的定义、对数的运算性质、对数恒等式和对数的换底公式进行.在解决对数的运算和与对数的相关问题时要注意化简过程中的等价性和对数式与指数式的互化. 考点2 对数值的大小比较一般是同底问题利用单调性处理,不同底问题的处理,一般是利用中间值来比较大小,同指(同真)数问题有时也可借助指数函数、对数函数的图象来解决.考点3 对数函数性质的应用研究函数问题,首先考虑定义域,即定义域优先的原则.研究复合函数的单调性,一定要注意内层与外层的单调性问题.复合函数的单调性的法则是“同增异减”考点1 对数式的化简与求值典例1 求值:(1)log 89log 23; (2)(lg 5)2+lg 50·lg 2; (3)123249-43lg8+lg 245.解题思路 运用对数运算法则及换底公式解题过程 (1)原式=log 2332log 23=23.(2)原式=(lg 5)2+lg(10×5)lg105=(lg 5)2+(1+lg 5)(1-lg 5)=(lg 5)2+1-(lg 5)2=1. (3)法一 原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12=12(lg 2+lg 5)=12lg 10=12. 法二 原式=lg 427-lg 4+lg(75)=lg 42×757×4= lg 10=12.易错点拨 对数的运算可根据对数的定义、对数的运算性质、对数恒等式和对数的换底公式进行,要注意化简过程中的等价性和对数式与指数式的互化。
变式1 (1)若2a =5b =10,求1a +1b 的值. (2)若x log 34=1,求4x +4-x 的值.点拨 注意指对数的互化。
答案 (1)由已知a =log 210,b =log 510, 则1a +1b=lg 2+lg 5=lg 10=1. (2)由已知x =log 43,则4x +4-x=4log 43+4-log 43=3+13=103.考点2 对数值的大小比较典例1 已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ).A .c <a <bB .c <b <aC .b <c <aD .a <b <c解题思路 利用函数单调性或插入中间值比较大小 解题过程 1242l o g 3l o g 3l o g 9=-=-,1442(log 3)(log 9)(log 9)b f f f ==-=,log 47<log 49,0.2-0.6=⎝⎛⎭⎫15-35>2>log 49,又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<12(log 3)f <f (log 47),即c <b <a ,故选B.易错点拨 同底问题利用单调性处理,不同底问题利用中间值来比较大小变式1 设a =log 32,b =ln 2,c =5-12,则( ).A .a <b <cB .b <c <aC .c <a <bD .c <b <a 点拨 法一 a =log 32=1log 23,b =ln 2=1log 2e ,而log 23>log 2e >1,所以a <b ,c =5-12=15,而5>2=log 24>log 23,所以c <a ,综上c <a <b ,故选C. 法二 a =log 32=1log 23b =ln 2=1log 2e ,1<log 2e <log 23<2,∴12<1log 23<1log 2e<1;c =5-12=15<14=12,所以c <a <b ,故选C. 答案 C考点3 对数函数性质的应用典例3 已知函数f (x )=log a (2-ax ),是否存在实数a ,使函数f (x )在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.解题思路 a >0且a ≠1,问题等价于在[0,1]上恒有⎩⎪⎨⎪⎧a >12-ax >0解题过程 ∵a >0,且a ≠1,∴u =2-ax 在[0,1]上是关于x 的减函数. 又f (x )=log a (2-ax )在[0,1]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2.∴a 的取值范围是(1,2).易错点拨 易忽略2-ax >0在[0,1]上恒成立,即2-a >0.实质上是忽略了真数大于0的条件。
变式1 已知f (x )=log 4(4x -1) (1)求f (x )的定义域; (2)讨论f (x )的单调性;(3)求f (x )在区间1[,2]2上的值域.点拨 复合函数的各种性质,可以拆分为内外函数来讨论。
答案 (1)由4x -1>0解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2),f (x )在(0,+∞)上递增. (3)f (x )在区间1[,2]2上递增,又f ⎝⎛⎭⎫12=0,f (2)=log 415, 因此f (x )在1[,2]2上的值域为[0,log 415]突破1 指数、对数函数求值问题解题基本方法典例1 设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x≤0,若((1))1f f =,则a =________.解题思路 先求(1)f ,再求((1))f f 的值。
解题过程 因为(1)lg10f ==,所以33(0)001f a =+-=,故1a =易错点拨 若是求((1))f f ,则要对a 进行讨论,分0a >和0a ≤两种情况,求得()f a 后,再根据()f a 在哪段内求最终值。
变式1 设函数f (x )=⎩⎪⎨⎪⎧21-x ,x≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.点拨 分段函数分段求解。
答案 当1x ≤时,122x -≤,0x ≥,所以01x ≤≤; 当1x >时,21log 2x -≤,12x ≥,所以1x >所以,()2f x ≤的x 的取值范围是[0,)+∞1、2 log 510+log 50.25=( )A .0B .1C .2D .42、已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b3、函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞) 4、下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( )A .(-∞,1] B. 4[1,]3-C.2[0,)3D .[1,2)5、()f x =)(x f 定义域为( )A. )0,21(-B.]0,21(-C. ),21(+∞-D.),0(+∞6、函数)12(log )(5+=x x f 的单调增区间是__________7、函数x x f 6log21)(-=的定义域为____.8、若log a 23>1,则a 的取值范围是________.1、已知x x f lg )(5=,则)2(f 等于( )A.2lgB.32lgC.321lgD.2lg 512、设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )A .1ln 2- Bln 2)- C .1ln 2+ Dln 2)+3、若函数21,1()lg ,1x x f x x x ⎧+≤=⎨>⎩,则((10))f f =( ) A .log101 B .b C .1D .04、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是( )A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]5、函数224log ([2,4])log y x x x=+∈的最大值是______6、已知函数)(log 221a ax x y --=在区间)31,(--∞是增函数,则实数a 的取值范围为7、已知2121()log ()2f x x x =++。
(1)求函数的定义域,单调区间;(2)求函数的值域。
8、已知函数()ln 1f x x x =-+,(0,)x ∈+∞,求函数()f x 的最大值;1、放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率...是2ln 10-(太贝克/年),则()=60M ( ) A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 2、已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且。
(1)求)(x f 的定义域;(2)判断)(x f 的奇偶性并予以证明;(3)当1>a 时,求使0)(>x f 的x 的取值范围。
3、已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.4、已知函数21()32f x x =+,()h x =(Ⅰ)设函数F (x )=f (x )-h (x ),求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程42233log [(1)]log ()log (4)24f x h a x h x --=---;(Ⅲ)试比较1001(100)(100)()k f h h k =-∑与16的大小.。