《最优化概述》PPT课件
合集下载
最优化方法课程PPT

x
∞
表示
= max { xi }
x 1 = ∑ xi
x 2 = (∑ x
1 2 2 i
)
7
二、数学预备知识
范数的内积 范数不等式
x y = ∑ xi yi
T i =1 n
x+ y ≤ x + y
三角不等式 柯西不等式
x0 = ( x1 ( 0 ) , x2 ( 0 ) ,..., xn ( 0 ) )
() () ()
4
一、最优化方法的基本概念
(2) 非线性规划 非线性规划(Nonlinear Programming, NLP)
f(x),Ci(x) ( i ∈ E U I ),其中之一均为线性函数 ,
(3) 无约束最优化问题 Unconstraint Optimization Problem) 无约束最优化问题(
λ)x(2)
x(2)
x
17
二、数学预备知识
(3) 凸函数的判定准则 一阶判定条件: 在凸集S上具有一阶连续偏导数 一阶判定条件: f(x)在凸集 上具有一阶连续偏导数,则 在凸集 上具有一阶连续偏导数, f(x)为S上凸函数的充要条件是 为 上凸函数的充要条件是
f x
f(x)
( ) ≥ f ( x ) + ∇f ( x ) ( x ( ) − x ( ) )
x
2 21 1
没有约束条件C 没有约束条件 i(x)
5
一、最优化方法的基本概念
4 数学规划模型的分类 主要是针对决策变量x 来进行分类: 主要是针对决策变量 1, x2,…xn来进行分类:
连续型 离散型
线性规划 LP (有、无约束 有 无约束)
非线性规划NLP 非线性规划 (有、无约束 有 无约束)
∞
表示
= max { xi }
x 1 = ∑ xi
x 2 = (∑ x
1 2 2 i
)
7
二、数学预备知识
范数的内积 范数不等式
x y = ∑ xi yi
T i =1 n
x+ y ≤ x + y
三角不等式 柯西不等式
x0 = ( x1 ( 0 ) , x2 ( 0 ) ,..., xn ( 0 ) )
() () ()
4
一、最优化方法的基本概念
(2) 非线性规划 非线性规划(Nonlinear Programming, NLP)
f(x),Ci(x) ( i ∈ E U I ),其中之一均为线性函数 ,
(3) 无约束最优化问题 Unconstraint Optimization Problem) 无约束最优化问题(
λ)x(2)
x(2)
x
17
二、数学预备知识
(3) 凸函数的判定准则 一阶判定条件: 在凸集S上具有一阶连续偏导数 一阶判定条件: f(x)在凸集 上具有一阶连续偏导数,则 在凸集 上具有一阶连续偏导数, f(x)为S上凸函数的充要条件是 为 上凸函数的充要条件是
f x
f(x)
( ) ≥ f ( x ) + ∇f ( x ) ( x ( ) − x ( ) )
x
2 21 1
没有约束条件C 没有约束条件 i(x)
5
一、最优化方法的基本概念
4 数学规划模型的分类 主要是针对决策变量x 来进行分类: 主要是针对决策变量 1, x2,…xn来进行分类:
连续型 离散型
线性规划 LP (有、无约束 有 无约束)
非线性规划NLP 非线性规划 (有、无约束 有 无约束)
工程设计中的优化方法教学课件PPT

(4)数学模型 建立数学模型是解决优化设计的关键 优化设计的数学模型是实际设计的数学抽象。
任何一个优化设计问题可归结为如下描述:
在给定的约束条件下,选择适当的设计变量X, 使其目标函数 f (X)达到最优值。
其数学表达式(数学模型)为
设计变量
X= (x1, x2, ···, xn)T X∈Rn
在满足约束方程
无约束优化方法的特点和适用范围
计算方法
消去 黄金分割法 法 Fibonacci
直 插值 二次插值法
接 搜
法
三次插值法
索 爬山 坐标轮换法
法
法非导
共轭方向法
数法 单纯形法
最速下降法
间 接 寻 优 法
爬山 法导数 法
共轭梯度法 牛顿法
变尺度法
特点及适用范围
黄金分割法计算过程简单,收敛较快,应用较广
二次插值法算法成熟,收敛较快,应用广。函数性态较好时, 其效果比消去法好
所用数据为:F1=120kN, F2=12kN,[σ]=140MPa
表5-1 箱形梁设计结果比铰
跨度 l(cm)
常规设计(mm)
x1
x2
x3
x4
1050 760 340 6 10 1350 880 390 6 10 1650 1010 440 6 10
优化设计(mm)
x1
x2
x3
x4
790 310 5
计算简单,占内存少,收敛慢,可靠性差,适用于维数n<10 收敛较快,可靠性较好,占用内存少,特别适用于n<10-20 的二次函数 计算简单,收敛快,效果好,适用于中小型设计问题 计算简单,占用内存少,对初始点的选择要求低。最初几步 迭代函数值下降很快,但越靠近极值点越慢。和他法混用 所用公式结构简单,收敛速度较快,要求内存量少。适用于 多维优化问题求解 算法复杂,计算是大,对初始点要求高。一定条件下收敛速 度很快。高维优化问题不宜采用 收敛速度快,稳定性好,是目前最有效的方法之一,适用于 求解多维优化问题8Βιβλιοθήκη 870 380 66
最优化方法及其应用PPT课件

f ( X 0 ) f ( X1) f ( X k ) f ( X k 1)
一 最优化问题总论
如果是求一个约束的极小点,则每一次迭代的新点都应该在约束可 行域内,即 X k D,k 0,1,2,
下图为迭代过程
一 最优化问题总论
(二)收敛速度与计算终止准则
(1)收敛速度
作为一个算法A,能够收敛于问题的最优解当然
x1 x2
即求
2x,1 5x2 40
x1 0 , x2 0
max f (x1, x2 ) x1 x2
2x1 5x2 40,
x1
0,x2
0.
一 最优化问题总论
最优化问题的数学模型包含有三个要求:即变
量(又称设计变量)、目标函数、约束条件.
一、变量 二、目标函数 三、约束条件 四、带约束条件的优化问题数学模型表示形式
t f (x1,x2 )
t c
L
L在 三维空间中曲面
与[平x1, 面x2 ]T 有一条交
线 .交线在平面上的投影曲线是 ,可见曲线上的点到平
面
的高度都等于常数C,也即曲线上的的函数值都
具有相同的值.
一 最优化问题总论
当常数取不同的值时,重复 上面的讨论,在平面上得到一族 曲线——等高线.
等高线的形状完全由曲面的 形状所决定;反之,由等高线的 形状也可以推测出曲面的形状.
线(如图),不等式约束把坐标平面分成两部分当中的一部分 (如图).
一 最优化问题总论
综上所述,当把约束条件中的每一个 等式所确定的曲线,以及每一个不等式所 确定的部分在坐标平面上画出之后,它 们相交的公共部分即为约束集合D.
一 最优化问题总论
例1.4 在坐标平面上画出约束集合
一 最优化问题总论
如果是求一个约束的极小点,则每一次迭代的新点都应该在约束可 行域内,即 X k D,k 0,1,2,
下图为迭代过程
一 最优化问题总论
(二)收敛速度与计算终止准则
(1)收敛速度
作为一个算法A,能够收敛于问题的最优解当然
x1 x2
即求
2x,1 5x2 40
x1 0 , x2 0
max f (x1, x2 ) x1 x2
2x1 5x2 40,
x1
0,x2
0.
一 最优化问题总论
最优化问题的数学模型包含有三个要求:即变
量(又称设计变量)、目标函数、约束条件.
一、变量 二、目标函数 三、约束条件 四、带约束条件的优化问题数学模型表示形式
t f (x1,x2 )
t c
L
L在 三维空间中曲面
与[平x1, 面x2 ]T 有一条交
线 .交线在平面上的投影曲线是 ,可见曲线上的点到平
面
的高度都等于常数C,也即曲线上的的函数值都
具有相同的值.
一 最优化问题总论
当常数取不同的值时,重复 上面的讨论,在平面上得到一族 曲线——等高线.
等高线的形状完全由曲面的 形状所决定;反之,由等高线的 形状也可以推测出曲面的形状.
线(如图),不等式约束把坐标平面分成两部分当中的一部分 (如图).
一 最优化问题总论
综上所述,当把约束条件中的每一个 等式所确定的曲线,以及每一个不等式所 确定的部分在坐标平面上画出之后,它 们相交的公共部分即为约束集合D.
一 最优化问题总论
例1.4 在坐标平面上画出约束集合
最优化理论与算法完整版课件 PPT

Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目
最优化方法PPT

共117页第8页
同时太阳系这个"整体"又是它所属的"更大整 体"--银河系的一个组成部分。世界上的具体系统是 纷繁复杂的,必须按照一定的标准,将千差万别的 系统分门别类,以便分析、研究和管理,如:教育 系统、医疗卫生系统、宇航系统、通讯系统等等。 如果系统与外界或它所处的外部环境有物质、能量 和信息的交流,那么这个系统就是一个开放系统, 否则就是一个封闭系统。开放系统具有很强的生命 力,它可能促进经济实力的迅速增长,使落后地区 尽早走上现代化。如改革开放以来已大大增强了我 们的综合国力。而我国的许多边远山区农村,由于 交通不便,相对封闭,还处于比较落后的状态。
会科学和思维科学的相互渗透与交融汇流,产生了 具有高度抽象性和广泛综合性的系统论、控制论和 信息论。
系统论是研究系统的模式、性能、行为和规律 的一门科学。它为人们认识各种系统的组成、结构、 性能、行为和发展规律提供了一般方法论的指导。 系统论的创始人是美籍奥地利理论生物学家和哲学 家路德维格·贝塔朗菲。系统是由若干相互联系的 基本要素构成的,它是具有确定的特性和功能的有 机整体。如太阳系是由太阳及其围绕它运转的行星 (金星、地球、火星、木星等等)和卫星构成的。
从数学上比较一般的观点来看,所谓最优化问题可 以概括为这样一种数学模型:给定一个“函数”,F(X), 以及“自变量”X应满足的一定条件,求X为怎样的值时, F(X)取得其最大值或最小值。这里在函数和自变量两个 词上之所以打上引号,是想强调它们的含意比中学数学 和大学微积分中函数的定义要广泛得多。通常,称F(X) 为“目标函数”,X应满足的条件为“约束条件”。约 束条件一般用一个集合D表示为:X∈D。求目标函数 F(X)在约束条件X∈D下的最小值或最大值问题,就是一 般最优问题的数学模型,它还可以利用数学符号更简洁 地表示成:Min F(X)或Max F(X)。
最优化问题概述

例4.(混合饲料配合)以最低成本确定满足动物所需营养的最优混 合饲料。下面举一个简化了的例子予以说明。 设每天需要混合饲料的批量为100磅,这份饲料必须含:至少 0.8%而不超过1.2%的钙;至少22%的蛋白质;至多5%的粗纤维。假 定主要配料包括石灰石、谷物、大豆粉。这些配料的主要营养
成分为: 每磅配料中的营养含量
最优化问题概述
最优化问题的数学模型与基本概念
最优化技术是一门较新的学科分支。它是在
本世纪五十年代初在电子计算机广泛应用的推
动下才得到迅速发展,并成为一门直到目前仍 然十分活跃的新兴学科。最优化所研究的问题 是在众多的可行方案中怎样选择最合理的一种 以达到最优目标。
数学模型就是对现实事物或问题的数学抽象或描述。 建立数学模型时要尽可能简单,而且要能完整地 描述所研究的系统,具体建立怎样的数学模型需要丰富 的经验和熟练的技巧。即使在建立了问题的数学模型之 后,通常也必须对模型进行必要的数学简化以便于分析 、计算。 一般的模型简化工作包括以下几类: (1)将离散变量转化为连续变量。 (2)将非线性函数线性化。 (3)删除一些非主要约束条件。
r 3
2 3
.
h 23
2 3
2
此时圆柱体的表面积为 6 2 3
3
例2.多参数曲线拟合问题 已知两个物理量x和y之间的依赖关系为:
y a1 a2 x a4 1 a3 ln 1 exp a5 a3 a4 和a5待定参数,为确定这些参数,
i 1, 2 , , m
j 1, 2 , , m
例9(非线性方程组的求解) 解非线性方程组是相当困难 的一类问题,由于最优化方法的发展,对解非线性方程组 提供了一种有力的手段。 解非线性方程组
最优化理论与方法概述

定义:最优化问题是指在一定条件下,寻找最优解的过程
分类:线性规划、非线性规划、整数规划、动态规划等
特点:多目标、多约束、多变量、非线性等
应用领域:经济、金融、工程、科学计算等
最优化问题的分类
线性规划问题
整数规划问题
动态规划问题
非线性规划问题
组合优化问题
03
最优化理论的基本概念
函数的方向导数和梯度
牛顿法的基本原理
迭代过程收敛于函数的极小值点或鞍点
牛顿法适用于非线性、非凸函数的最优化问题
牛顿法是一种基于牛顿第二定律的数值优化方法
通过选择一个初始点,并迭代地沿着函数的负梯度方向进行搜索
拟牛顿法的基本原理
拟牛顿法的基本思想
拟牛顿法的迭代过程
拟牛顿法的收敛性分析
拟牛顿法的优缺点比较
05
最优化方法的收敛性和收敛速度
未来发展趋势与展望
最优化方法在深度学习中的应用
最优化方法在深度学习中的未来发展
最优化方法在深度学习中的优势与挑战
最优化方法在深度学习中的应用案例
深度学习中的优化问题
最优化方法在金融工程中的应用
投资组合优化:利用最优化方法确定最优投资组合,降低风险并提高收益
风险管理:通过最优化方法对金融风险进行识别、评估和控制,降低损失
极值点:函数在某点的函数值比其邻域内其他点的函数值都小或都大
最优值点:函数在某点的函数值比其定义域内其他点的函数值都小
最优化理论的基本概念:寻找函数的极值点和最优值点,使函数达到最小或最大值
函数的凸性和凹性
凸函数:对于函数图像上的任意两点,连接它们的线段都在函数图像的下方
凹函数:对于函数图像上的任意两点,连接它们的线段都在函数图像的上方
分类:线性规划、非线性规划、整数规划、动态规划等
特点:多目标、多约束、多变量、非线性等
应用领域:经济、金融、工程、科学计算等
最优化问题的分类
线性规划问题
整数规划问题
动态规划问题
非线性规划问题
组合优化问题
03
最优化理论的基本概念
函数的方向导数和梯度
牛顿法的基本原理
迭代过程收敛于函数的极小值点或鞍点
牛顿法适用于非线性、非凸函数的最优化问题
牛顿法是一种基于牛顿第二定律的数值优化方法
通过选择一个初始点,并迭代地沿着函数的负梯度方向进行搜索
拟牛顿法的基本原理
拟牛顿法的基本思想
拟牛顿法的迭代过程
拟牛顿法的收敛性分析
拟牛顿法的优缺点比较
05
最优化方法的收敛性和收敛速度
未来发展趋势与展望
最优化方法在深度学习中的应用
最优化方法在深度学习中的未来发展
最优化方法在深度学习中的优势与挑战
最优化方法在深度学习中的应用案例
深度学习中的优化问题
最优化方法在金融工程中的应用
投资组合优化:利用最优化方法确定最优投资组合,降低风险并提高收益
风险管理:通过最优化方法对金融风险进行识别、评估和控制,降低损失
极值点:函数在某点的函数值比其邻域内其他点的函数值都小或都大
最优值点:函数在某点的函数值比其定义域内其他点的函数值都小
最优化理论的基本概念:寻找函数的极值点和最优值点,使函数达到最小或最大值
函数的凸性和凹性
凸函数:对于函数图像上的任意两点,连接它们的线段都在函数图像的下方
凹函数:对于函数图像上的任意两点,连接它们的线段都在函数图像的上方
最优化及最优化方法讲稿.pptx

1939年前苏联数学家Л.B.Канторович提出 了解决下料问题和运输问题这两种线性规划问题的求解 方法。
最优化的发展简史
以苏联 Л.В.康托罗维奇和美国G.B.丹齐克为 代表的线性规划;
以美国库恩和塔克尔为代表的非线性规划;以 美国R.贝尔曼为代表的动态规划;
以苏联Л.С.庞特里亚金为代表的极大值原理 等。这些方法后来都形成体系,成为近代很活跃 的学科,对促进运筹学、管理科学、控制论和系 统工程等学科的发展起了重要作用。
最优化方法的具体应用举例
④最优控制:主要用于对各种控制系统的优化。 例如,导弹系统的最优控制,能保证用最少燃料 完成飞行任务,用最短时间达到目标;再如飞机、 船舶、电力系统等的最优控制,化工、冶金等工 厂的最佳工况的控制。计算机接口装置不断完善 和优化方法的进一步发展,还为计算机在线生产 控制创造了有利条件。最优控制的对象也将从对 机械、电气、化工等硬系统的控制转向对生态、 环境以至社会经济系统的控制。
最优化方法的研究对象及应用
最优化方法的主要研究对象是各种有组织系统 的管理问题及其生产经营活动。最优化方法的目 的在于针对所研究的系统,求得一个合理运用人 力、物 力和财力的最佳方案,发挥和提高系统的 效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经 营的日益发展,最优化方法已成为现代管理科学 的重要理论基础和不可缺少的方法,被人们广泛 地应用到空间技术、军事科学、电子工程、通讯 工程、自动控制、系统识别、资源分配、计算数 学、公共管理、经济管理等各个领域,发挥着越 来越重要的作用。
最优化方法的内容
最优化方法包括的内容很广泛,如线 性规划、非线性规划、整数规划、几何规 划、动态规划、随机规划、多目标规划、 组合优化(在给定有限集的所有具备某些条件的
最优化的发展简史
以苏联 Л.В.康托罗维奇和美国G.B.丹齐克为 代表的线性规划;
以美国库恩和塔克尔为代表的非线性规划;以 美国R.贝尔曼为代表的动态规划;
以苏联Л.С.庞特里亚金为代表的极大值原理 等。这些方法后来都形成体系,成为近代很活跃 的学科,对促进运筹学、管理科学、控制论和系 统工程等学科的发展起了重要作用。
最优化方法的具体应用举例
④最优控制:主要用于对各种控制系统的优化。 例如,导弹系统的最优控制,能保证用最少燃料 完成飞行任务,用最短时间达到目标;再如飞机、 船舶、电力系统等的最优控制,化工、冶金等工 厂的最佳工况的控制。计算机接口装置不断完善 和优化方法的进一步发展,还为计算机在线生产 控制创造了有利条件。最优控制的对象也将从对 机械、电气、化工等硬系统的控制转向对生态、 环境以至社会经济系统的控制。
最优化方法的研究对象及应用
最优化方法的主要研究对象是各种有组织系统 的管理问题及其生产经营活动。最优化方法的目 的在于针对所研究的系统,求得一个合理运用人 力、物 力和财力的最佳方案,发挥和提高系统的 效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经 营的日益发展,最优化方法已成为现代管理科学 的重要理论基础和不可缺少的方法,被人们广泛 地应用到空间技术、军事科学、电子工程、通讯 工程、自动控制、系统识别、资源分配、计算数 学、公共管理、经济管理等各个领域,发挥着越 来越重要的作用。
最优化方法的内容
最优化方法包括的内容很广泛,如线 性规划、非线性规划、整数规划、几何规 划、动态规划、随机规划、多目标规划、 组合优化(在给定有限集的所有具备某些条件的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min f (x), s.t.ci (x) 0, i 1,, m
最优化问题的分类
最优化问题
根据函 数性质、 复杂程 度分类
连续最优化:决策变量取值连续 光滑最优化:函数连续可微 线性规划
非线性最优化
非光滑优化:有一个非光滑
离散最优化:决策变量取值离散
线性规划问题
• 连续光滑的最优化问题,若目标函数和约束函数都是
A2 x b(2) .
其中 G为 n n阶对称矩阵.
最优解的定义
1 整体最优
y=6 y=sin(x)
2 局部最优
15
全局最优解与局部最优解
•例
ac
d
eb
• 注1:并非所有连续可微函数都有极小解.
• 注2:即使问题有最优解,最优解也未必唯一,也未
必是全局最优解.
极值问题
• 回顾 极值问题: • 1、 f(x0)是函数f(x)的一个极大值这一概念是怎
变量x (x1, , xn )T 的线性函数,则称为线性规划问
题.
•
一般m形in式c1:x1 c2 x2 s.t. a11x1 a12 x2
c n
xn a1n
xn
b1 ,
am1x1 am2 x2 amn xn bm ,
am1,1x1 am1,2 x2 am1,n xn bm1,
样叙述的? • 2、 f(x0)是函数f(x)的一个极小值这一概念是怎
样叙述的? • 3、求函数的极值的步骤是哪几步?
定 义 : 设 函 数 f (x) 在 点 X0 的 某 邻 域 U (x0 ) 上 有 定 义 , 若 对 x U (x0 ) 有 f (x) f (x0 ) ,( f (x) f (x0 ) )
最优化问题举例(2)
例题2:有一边长为48厘米的正方形铁皮, 从它的四个角截去相等的小正方形,然后折起各 边做一个无盖的铁盒,问在四角截去多大的小正
方形,才能使所做的铁盒容积最大?
48-2x
x
x
48-2x
48
5
最优化问题举例(3)
如图,靠墙建一个矩形的操场,现只有围60米 的建筑材料.
问长和宽怎样选取,可以使操场的面积最大?
第1-3节 最优化问题简介
• 什么是最优化 • 最优化问题的分类 • 相关概念
什么是最优化
• 最优化:在众多可行方案或方法中找到最好的方 案或方法,构造寻求最优解的计算方法.
金融
交通运输
工业生产
收益最大或 风险最小
两地之间的输送管 道或运输路线在满 足要求的条件下尽
可能短
汽车生产中希望 用同样面积的钢 板切割尽可能多
x1
有效约束、无效约束与内点、边界点
• 有效(积极\起作用)约束:对于可行点 x,考虑不等式 约束 ci (x) 0,若 ci (x) ,0 就称约束 ci (x) 0在 点 是x有效约束,并称可行点 位x 于约束ci (x) 0的
• 解:设产品 Q j日产量 x 个j 单位,j 1,2,3,
ms.ta. x232xxx112
5x2 3x2 4x3
4x3 1500, 800,
总利润
原料日消耗量 不超过可用量
3x12x2 5x3 2000,
x j 0, j 1,2,3.
a p1x1 a p2 x2 a pn xn bp .
二次规划问题
• 目标函数是变量 x 的二次函数,约束函数都是变量 x
的线性函数,称为二次规划问题. • 一般形式:
min s.t.
q(x) A1x b
1 2
(1)
xT ,
Gx
c
T
x
d
最大值和最小值统称最值。
19
求函数最值的一般方法
•
先求出f(x)在[a,b]内的所有驻点(
或不可导但连续的点),
• 将这些点的函数值与区间端点的函 数值f(a),f(b)进行比较,
• 其中最大(小)的就是函数在区间 [a,b]上的最大(小)值
20
y
f (b) y=f (x)
f (x0)
0aຫໍສະໝຸດ x0b的外壳
最优化问题举例(1)-生产计划
• 某工厂用3种原料 P1, P2 , P3
生产3种产品 Q1, Q2 , Q3
已知单位产品所需原料及利润如下,试制定总利润最 大的生产计划.
产品 原料
Q1
每日原料可
Q2
Q3
用量
P1
2
3
0
1500
P2
0
2
4
800
P3
3
2
5
2000
单位产品利
3
5
4
润(千元)
最优化问题举例(1)-生产计划
x
可以看出,函数在区间[a ,b]上的最大值和最小值要么是区间 端点的函数值,要么是极值。
而极值点又包括在驻点中,因此我们只要把驻点的函数值及区
间端点的函数值都求出来,放在一起比较大小,就能找出最大
值和最小值来。最大值和最小值统称最值。
21
最优解的性质
22
可行点与可行域
• 满足最优化问题的一般形式(1)中所有约束条件的点
x
6
最优化问题举例(4)
7
最优化问题一般形式
8
怎么定义解? 一定有解吗?
为什么没有<号,为什么没有>号?
9
优化问题分类
10
最优化问题的分类
最优化问题
根据约束 条件分类
无约束优化问题
min f (x), x Rn.
约束优化问题 等式约束优化问题
不等式约束优化问题 混合约束问题
min f (x), s.t.ci (x) 0, i 1,, m
称为可行点, 所有可行点的集合称为可行域. 用 F 表示可
行域,即
F x ci (x) 0,i 1, 2,, m, ci (x) 0,i m 1,, p.
•例
c1(x) 2x1 3x2 x3 6 0,
x1 0,
x2 0,
x3
x3 0.
x2
定义:设函数 f (x) 在点 X0 处的得极大值(极小值)点 X0 称为极大点(极小点), 极大值,极小值统称为极值,极大点,极小点统称为极点。
17
y f (b)
f (x0)
y=f (x)
0
a
x0
b
x
18
最值问题
函数的最大值与最小值 定义: 设f(x)是区间[a,b]上的连续函数,如果 存 在 点 x0∈[a,b] , 使 得 对 于 所 有 x∈[a,b] , 都 有 f(x)≤f(x0)(或f(x)≥f(x0)),则称 f(x0)是函数f(x)在[a,b]上的最大值(或最小值)。
最优化问题的分类
最优化问题
根据函 数性质、 复杂程 度分类
连续最优化:决策变量取值连续 光滑最优化:函数连续可微 线性规划
非线性最优化
非光滑优化:有一个非光滑
离散最优化:决策变量取值离散
线性规划问题
• 连续光滑的最优化问题,若目标函数和约束函数都是
A2 x b(2) .
其中 G为 n n阶对称矩阵.
最优解的定义
1 整体最优
y=6 y=sin(x)
2 局部最优
15
全局最优解与局部最优解
•例
ac
d
eb
• 注1:并非所有连续可微函数都有极小解.
• 注2:即使问题有最优解,最优解也未必唯一,也未
必是全局最优解.
极值问题
• 回顾 极值问题: • 1、 f(x0)是函数f(x)的一个极大值这一概念是怎
变量x (x1, , xn )T 的线性函数,则称为线性规划问
题.
•
一般m形in式c1:x1 c2 x2 s.t. a11x1 a12 x2
c n
xn a1n
xn
b1 ,
am1x1 am2 x2 amn xn bm ,
am1,1x1 am1,2 x2 am1,n xn bm1,
样叙述的? • 2、 f(x0)是函数f(x)的一个极小值这一概念是怎
样叙述的? • 3、求函数的极值的步骤是哪几步?
定 义 : 设 函 数 f (x) 在 点 X0 的 某 邻 域 U (x0 ) 上 有 定 义 , 若 对 x U (x0 ) 有 f (x) f (x0 ) ,( f (x) f (x0 ) )
最优化问题举例(2)
例题2:有一边长为48厘米的正方形铁皮, 从它的四个角截去相等的小正方形,然后折起各 边做一个无盖的铁盒,问在四角截去多大的小正
方形,才能使所做的铁盒容积最大?
48-2x
x
x
48-2x
48
5
最优化问题举例(3)
如图,靠墙建一个矩形的操场,现只有围60米 的建筑材料.
问长和宽怎样选取,可以使操场的面积最大?
第1-3节 最优化问题简介
• 什么是最优化 • 最优化问题的分类 • 相关概念
什么是最优化
• 最优化:在众多可行方案或方法中找到最好的方 案或方法,构造寻求最优解的计算方法.
金融
交通运输
工业生产
收益最大或 风险最小
两地之间的输送管 道或运输路线在满 足要求的条件下尽
可能短
汽车生产中希望 用同样面积的钢 板切割尽可能多
x1
有效约束、无效约束与内点、边界点
• 有效(积极\起作用)约束:对于可行点 x,考虑不等式 约束 ci (x) 0,若 ci (x) ,0 就称约束 ci (x) 0在 点 是x有效约束,并称可行点 位x 于约束ci (x) 0的
• 解:设产品 Q j日产量 x 个j 单位,j 1,2,3,
ms.ta. x232xxx112
5x2 3x2 4x3
4x3 1500, 800,
总利润
原料日消耗量 不超过可用量
3x12x2 5x3 2000,
x j 0, j 1,2,3.
a p1x1 a p2 x2 a pn xn bp .
二次规划问题
• 目标函数是变量 x 的二次函数,约束函数都是变量 x
的线性函数,称为二次规划问题. • 一般形式:
min s.t.
q(x) A1x b
1 2
(1)
xT ,
Gx
c
T
x
d
最大值和最小值统称最值。
19
求函数最值的一般方法
•
先求出f(x)在[a,b]内的所有驻点(
或不可导但连续的点),
• 将这些点的函数值与区间端点的函 数值f(a),f(b)进行比较,
• 其中最大(小)的就是函数在区间 [a,b]上的最大(小)值
20
y
f (b) y=f (x)
f (x0)
0aຫໍສະໝຸດ x0b的外壳
最优化问题举例(1)-生产计划
• 某工厂用3种原料 P1, P2 , P3
生产3种产品 Q1, Q2 , Q3
已知单位产品所需原料及利润如下,试制定总利润最 大的生产计划.
产品 原料
Q1
每日原料可
Q2
Q3
用量
P1
2
3
0
1500
P2
0
2
4
800
P3
3
2
5
2000
单位产品利
3
5
4
润(千元)
最优化问题举例(1)-生产计划
x
可以看出,函数在区间[a ,b]上的最大值和最小值要么是区间 端点的函数值,要么是极值。
而极值点又包括在驻点中,因此我们只要把驻点的函数值及区
间端点的函数值都求出来,放在一起比较大小,就能找出最大
值和最小值来。最大值和最小值统称最值。
21
最优解的性质
22
可行点与可行域
• 满足最优化问题的一般形式(1)中所有约束条件的点
x
6
最优化问题举例(4)
7
最优化问题一般形式
8
怎么定义解? 一定有解吗?
为什么没有<号,为什么没有>号?
9
优化问题分类
10
最优化问题的分类
最优化问题
根据约束 条件分类
无约束优化问题
min f (x), x Rn.
约束优化问题 等式约束优化问题
不等式约束优化问题 混合约束问题
min f (x), s.t.ci (x) 0, i 1,, m
称为可行点, 所有可行点的集合称为可行域. 用 F 表示可
行域,即
F x ci (x) 0,i 1, 2,, m, ci (x) 0,i m 1,, p.
•例
c1(x) 2x1 3x2 x3 6 0,
x1 0,
x2 0,
x3
x3 0.
x2
定义:设函数 f (x) 在点 X0 处的得极大值(极小值)点 X0 称为极大点(极小点), 极大值,极小值统称为极值,极大点,极小点统称为极点。
17
y f (b)
f (x0)
y=f (x)
0
a
x0
b
x
18
最值问题
函数的最大值与最小值 定义: 设f(x)是区间[a,b]上的连续函数,如果 存 在 点 x0∈[a,b] , 使 得 对 于 所 有 x∈[a,b] , 都 有 f(x)≤f(x0)(或f(x)≥f(x0)),则称 f(x0)是函数f(x)在[a,b]上的最大值(或最小值)。