3(xtk)高等数学 微分中值定理习题
高等数学数学分析中值定理习题有答案

第三章 中值定理与导数的应用1. 设)(x f 在]1,0[上连续,在(0,1)内可导,0)1()0(==f f ,1)21(=f 求证:存在)1,0(∈ξ使1)(='ξf .2. 求证:若)(x f 在],[b a 上可导,)()(b f a f -+'≠',则对介于)(a f +'与)(b f -'之间的任意值c ,有),(b a ∈ξ,使c f =')(ξ.(导函数的介值定理)3. 设)(x f 在],[b a 上连续,在),(b a 内可导,)()(b f a f =,)(x f 在],[b a 上不恒为常数.求证:),(,21b a ∈∃ξξ,使0)(1>'ξf ,0)(2<'ξf .4. 设012>>x x ,证明:),(21x x ∈∃ξ,使)()1(212112x x e e x e x x x --=-ξξ.5. 讨论方程212x x+=的实根个数.6. 设)(x f 在]1,0[上二阶可导,0)1()0(==f f ,2)(max 10=≤≤x f x .求证:)1,0(∈∃ξ,使16)(-≤''ξf .7. 求)1(cot lim 22x x x -→8. 求xx x ln 0)1(lim -+→9. 求21)tan (lim 0x xxx →10. 求30)1(sin lim x x x x e x x +-→11. 求2220sin )(cos 121lim 2xe x x x x x -+-+→12. 讨论方程x x x x cos sin 2+=的实根个数。
13. 求证:bb aa ba b a +++≤+++11114. 比较eπ和πe 的大小.15. 设 ,3,2,1,==n n x n n ,求该数列中的最大项.16. 设⎩⎨⎧>-≤≤=1,)2(10,)(3x x x x x f ,求)(x f 的极值与拐点.17. 设10,1≤≤>x p ,求证:1)1(211≤-+≤-p p p x x .18. 求椭圆)0,0(12222>>=+b a by a x 上的点,使得椭圆在该点的切线与坐标轴所围成的三角形面积最小.第三章 中值定理与导数的应用 答案1. 设)(x f 在]1,0[上连续,在(0,1)内可导,0)1()0(==f f ,1)21(=f 求证:存在)1,0(∈ξ使1)(='ξf . 证明:令x x f x F -=)()(,则)(x F 在]1,0[上连续,在(0,1)内可导,0)0(=F ,1)1(-=F ,21)21(=F .由连续函数的介值定理,)1,21(0∈∃x ,0)(0=x F ,又根据罗尔定理,),0(0x ∈∃ξ,0)(='ξF ,即1)(='ξf .2. 求证:若)(x f 在],[b a 上可导,)()(b f a f -+'≠',则对介于)(a f +'与)(b f -'之间的任意值c ,有),(b a ∈ξ,使c f =')(ξ.(导函数的介值定理)证明:无妨设)()(b f c a f -+'<<',令cx x f x F -=)()(,则0)(<'+a F ,0)(>'-b F .)(x F 在],[b a 上可导,必连续,因此有最小值)(ξF ,a ≠ξ,否则0)()(lim )(≥--='+→+ax a F x F a F ax 矛盾!;b ≠ξ,否则0)()(lim )(≤--='-→+bx b F x F b F bx 矛盾!因此),(b a ∈ξ.由Fermat 定理,0)(='ξF ,即c f =')(ξ.3. 设)(x f 在],[b a 上连续,在),(b a 内可导,)()(b f a f =,)(x f 在],[b a 上不恒为常数.求证:),(,21b a ∈∃ξξ,使0)(1>'ξf ,0)(2<'ξf .证明:)(x f 在],[b a 上连续,因此有最大值M x f =)(1,最小值m x f =)(2.由题意m M >,因为)()(b f a f =,所以)()(b f a f M =>,或m b f a f >=)()(.无妨设)()(b f a f M =>,由Lagrange 中值定理可知,),(11x a ∈∃ξ, 0)()()()(1111>--=--='a x a f M a x a f x f f ξ;),(12b x ∈∃ξ,0)()()()(1112<--=--='x b Mb f x b x f b f f ξ.4. 设012>>x x ,证明:),(21x x ∈∃ξ,使)()1(212112x x e e x ex x x --=-ξξ.证明:令x e x f x =)(,xx g 1)(=,)(),(x g x f 在],[21x x 上连续,在),(21x x 内可导且0)(≠'x g .由Cauchy 中值定理,),(21x x ∈∃ξ,使)()()()()()(1212x g x g x f x f g f --=''ξξ,即212112x x e x e x e e x x --=-ξξξ.5. 讨论方程212x x +=的实根个数.解:令212)(x x f x--=,)(x f 在),(+∞-∞连续,0)0(=f ,0)1(=f ,0)2(<f ,0)5(>f ,故)(x f 至少有三个实根,若)(x f 有多于三个的实根,则由罗尔定理,)(x f '''有实零点,而0)2(ln 2)(3>='''xx f ,因此)(x f 恰有三个实根.6. 设)(x f 在]1,0[上二阶可导,0)1()0(==f f ,2)(max 10=≤≤x f x .求证:)1,0(∈∃ξ,使16)(-≤''ξf .证明:设2)()(max 010==≤≤x f x f x ,则)1,0(0∈x ,0)(0='x f .根据Taylor 公式,),0(01x ∈∃ξ,)1,(02x ∈ξ,使2010002)())(()()0(0x f x x f x f f ξ''+-'+==; 202000)1(2)()1)(()()1(0x f x x f x f f -''+-'+==ξ,即4)(21-=''x f ξ,4)1)((202-=-''x f ξ.2100≤<x 时,16)(1-≤''ξf ;1210<≤x 时,16)(2-≤''ξf .7. 求)1(cot lim 22x x x -→ 解:)1(cot lim 220x x x -→x x x x x x 222220sin sin cos lim -=→300sin cos limsin cos lim x xx x x x x x x x -+=→→ 323cos sin cos lim220-=--=→xx x x x x8. 求xx x ln 0)1(lim -+→解: xx x ln 0)1(lim -+→)1ln(ln 0lim x x x e -→+==-+→)1ln(ln lim 0x x x =-+→x x x ln )(lim 0=-+→x xx 1ln lim 0=--+→2011lim xx x 0lim 0=+→x x 1)1(lim ln 0=-+→x x x9. 求21)tan (lim 0x xxx →解:21)tan (lim 0x xx x →xx x x e tan ln 102lim →=x x x x tan ln 1lim 20→)tan 1ln(1lim 20x x x x x -+=→30tan lim x xx x -=→3131sec lim 220=-=→x x x 31021)tan (lim e xx x x =→10. 求30)1(sin lim xx x x e x x +-→ 解:30)1(sin lim x x x x e xx +-→3333320)1()](!3)][(!321[lim x x x x o x x x o x x x x +-+-++++=→ 31)(3lim 3330=+=→xx o x x11. 求222sin )(cos 121lim 2xe x x x x x -+-+→解:0→x 时,2cos x e x -)](1[)(212222x o x x o x ++-+-=)(2322x o x +-=~232x -; 2220sin )(cos 121lim 2x e x xx x x -+-+→12123)](8121[21lim 2244220-=-+-+-+=→x x x o x x x x12. 讨论方程x x x x cos sin 2+=的实根个数。
微分中值定理例题

. . . .()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x5的理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理程功2021/12/28()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
微分中值定理与导数的应用习题

微分中值定理与导数的应用习题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 微分中值定理与导数的应用习题§ 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题(1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件(2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ).A. x e x f =)(B. ||)(x x f =C. 21)(x x f -=D. ⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='x x x f ,所以)(x f 为一常数.设c x f =)(,又因为(1)2f π=,故 )(2cot arctan ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=-证明: 只需令2)(x x g =,利用柯西中值定理即可证明.8.证明下列不等式(1)当π<<x 0时,x xxcos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xxcos sin >. (2)当 0>>b a 时,bba b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<<因为'1()f x x =,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a bξ<<,从而bba b a a b a -<<-ln .§ 洛毕达法则1. 填空题 (1) =→xxx 3cos 5cos lim2π35-(2)=++∞→xx x arctan )11ln(lim0 (3))tan 11(lim 20x x x x -→=31(4)0lim (sin )xx x +→=12.选择题(1)下列各式运用洛必达法则正确的是( B ) A . ==∞→∞→nn nn n en ln limlim 11lim=∞→nn eB . =-+→x x x x x sin sin lim0 ∞=-+→xxx cos 1cos 1lim 0C . x x x x x x x x x cos 1cos1sin 2lim sin 1sin lim020-=→→不存在 D . x x e x 0lim →=11lim 0=→x x e(2) 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A . x x x sin lim 20→B . x x xtan 0)1(lim +→ C . x x x x sin lim +∞→ D . x nx e x +∞→lim3. 求下列极限(1)n n mm a x a x a x --→lim .解: n n m m a x a x a x --→lim =nm n m a x a nm nx mx ---→=11lim .(2)20222lim x x x x -+-→.解: 20222lim xx x x -+-→=x x x x 22ln 22ln 2lim 0-→-=2)2(ln 2)2(ln 2lim 220x x x -→+=2)2(ln .(3)30tan sin limx xx x -→ .解:30tan sin lim x x x x -→=32030)21(lim )1(cos tan lim xx x x x x x x -⋅=-→→=21-. (4) 20)(arcsin 1sin lim x x e xx --→.解:20)(arcsin 1sin lim x x e x x --→=201sin lim x x e x x --→=212sin lim 2cos lim00=+=-→→x e x x e x x x x .(5)xx x x xx ln 1lim 1+--→.解: )ln 1()(x x x x x +=',x x x x xx ln 1lim 1+--→=xx x x x 11)ln 1(1lim 1+-+-→=22111)ln 1(limx x x x x xx x --+-→2])ln 1([lim 1221=++=++→x x x x x x .(6) )111(lim 0--→x x e x .解:2121lim )1(1lim )111(lim 22000==---=--→→→x xe x x e e x x x x x x x(7) x x xtan 0)1(lim +→ .解:1)1(lim 202000sin limcsc 1lim cot ln limln tan lim tan 0=====+→+→+→+→+----→x xx x xxxx xx x x x x eeeex.(8))31ln()21ln(lim xx x +++∞→.解: )31ln()21ln(lim x x x +++∞→=2ln 23ln(12)12lim ln(12)3lim 3lim1x x x x x x x x x →+∞→+∞→+∞+++===xxx 212lim 2ln 3++∞→=2ln 3.(9) n n n ∞→lim .解: 因为1lim 1limln 1lim ===∞→∞→∞→xxxx x x x eex ,所以n n n ∞→lim =1.§函数的单调性与曲线的凹凸性1. 填空题(1) 函数)ln(422x x y -=的单调增加区间是),21()0,21(+∞- ,单调减少区间)21,0()21,( --∞.(2)若函数)(x f 二阶导数存在,且0)0(,0)(=>''f x f ,则xx f x F )()(=在+∞<<x 0上是单调 增加 .(3)函数12+=ax y 在),0(∞+内单调增加,则a 0>.(4)若点(1,3)为曲线23bx ax y +=的拐点,则=a 23-,=b 29,曲线的凹区间为)1,(-∞,凸区间为),1(∞.2. 单项选择题(1)下列函数中,( A )在指定区间内是单调减少的函数. A . x y -=2 ),(∞+-∞ B . x y e = )0,(-∞ C . x y ln = ),0(∞+ D . x y sin = ),0(π(2)设)12)(1()(+-='x x x f ,则在区间)1,21(内( B ).A. )(x f y =单调增加,曲线)(x f y =为凹的B. )(x f y = 单调减少,曲线)(x f y =为凹的C. )(x f y =单调减少,曲线)(x f y =为凸的 D.)(x f y =单调增加,曲线)(x f y =为凸的(3))(x f 在),(+∞-∞内可导, 且21,x x ∀,当 21x x >时, )()(21x f x f >,则( D ) A. 任意0)(,>'x f x B. 任意0)(,≤-'x f x C. )(x f -单调增 D. )(x f --单调增(4)设函数)(x f 在]1,0[上二阶导数大于0, 则下列关系式成立的是( B ) A. )0()1()0()1(f f f f ->'>' B. )0()0()1()1(f f f f '>->' C. )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->' 2. 求下列函数的单调区间 (1)1--=x e y x .解:1-='x e y ,当0>x 时,0>'y ,所以函数在区间),0[+∞为单调增加; 当0<x 时,0<'y ,所以函数在区间]0,(-∞为单调减少.(2)(2y x =-解:)1(31031-='-x x y ,当1>x ,或0<x 时,0>'y ,所以函数在区间),1[]0,(+∞-∞ 为单调增加; 当01x <<时,0<'y ,所以函数在区间]1,0[为单调减少.(3))1ln(2x x y ++=解: 011111222>+=++++='x x x x x y ,故函数在),(+∞-∞单调增加.3. 证明下列不等式(1)证明: 对任意实数a 和b , 成立不等式||1||||1||||1||b b a a b a b a +++≤+++.证明:令x x x f +=1)(,则0)1(1)(2>+='x x f , )(x f 在) , 0 [∞+内单调增加. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++(2)当1>x 时, 1)1(2ln +->x x x .证明:设)1(2ln )1()(--+=x x x x f , 11ln )('-+=xx x f ,由于当1x >时,211()0f x x x''=->, 因此)(x f '在),1[+∞单调递增, 当 1x >时, 0)1()(='>'f x f , 故)(x f 在),1[+∞单调递增, 当 1>x 时, 有0)1()(=>f x f .故当1>x 时,0)1(2ln )1()(>--+=x x x x f , 因此1)1(2ln +->x x x .(3)当 0>x 时,6sin 3x x x ->.证明:设6sin )(3x x x x f +-=, 021cos )(2=+-='x x x f ,当0>x ,()sin 0f x x x ''=->,所以)(x f '在),0[+∞单调递增, 当 0>x 时, 0)0()(='>'f x f , 故)(x f 在),0[+∞单调递增, 从而当 0>x 时, 有0)0()(=>f x f . 因此当 0>x 时,6sin 3x x x ->.4. 讨论方程k x x =-sin 2π(其中k 为常数)在)2,0(π内有几个实根.解:设()sin ,2x x x k πϕ=-- 则()x ϕ在]2,0[π连续, 且k k -=-=)2(,)0(πϕϕ,由()1cos 02x x πϕ'=-=,得2arccos x π=为)2,0(π内的唯一驻点.()x ϕ在2[0,arccos ]π上单调减少,在2[arccos ,]2ππ上单调增加.故k ---=242arccos )2(arccos 2πππϕ为极小值,因此)(x ϕ在]2,0[π的最大值是k -,最小值是k ---242arccos 2ππ.(1) 当,0≥k 或242arccos 2--<ππk 时,方程在)2,0(π内无实根;(2) 当0242arccos 2<<--k ππ时,有两个实根; (3) 当242arccos 2--=ππk 时,有唯一实根.5. 试确定曲线d cx bx ax y +++=23中的a 、b 、c 、d ,使得2-=x 处曲线有水平切线,)10,1(-为拐点,且点)44,2(-在曲线上.解: c bx ax y ++='232,b ax y 26+='',所以2323(2)2(2)062010(2)(2)(2)44a b c a b a b c d a b c d ⎧-+-+=⎪+=⎪⎨+++=-⎪⎪-+-+-+=⎩ 解得: 16,24,3,1=-=-==d c b a .6.求下列函数图形的拐点及凹或凸的区间(1)12-+=x xx y解: 222)1(11-+-='x x y , 323)1(62-+=''x xx y , 令0=''y ,得0=x ,当1x =±时y ''不存在.当01<<-x 或1>x 时, 0>''y ,当1-<x 或10<<x 时, 0<''y .故曲线12-+=x xx y 在)1,0()1,( --∞上是凸的, 在区间和),1()0,1(+∞- 上是凹的,曲线的拐点为)0,0(. (2)32)52(x x y -=拐点及凹或凸的区间解:y '=,y''=. 当0=x 时,y y ''',不存在;当21-=x 时,0=''y .故曲线在)21,(--∞上是凸的, 在),21(+∞-上是凹的,)23,21(3--是曲线的拐点,7.利用凹凸性证明: 当π<<x 0时, πxx >2sin证明:令πx x x f -=2sin )(, 则π12cos 21)(-='x x f , 2sin 41)(xx f -=''.当π<<x 0时, 0)(<''x f , 故函数πxx x f -=2sin )(的图形在),0(π上是凸的, 从而曲线)(x f y =在线段AB (其中)(,()),0(,0(ππf B f A )的上方,又0)()0(==πf f , 因此0)(>x f ,即πxx >2sin .§ 函数的极值与最大值最小值1. 填空题(1)函数x x y 2=取极小值的点是1ln 2x =-.(2) 函数31232)1()(--=x x x f 在区间]2,0[上的最大值为322)21(=f ,最小值为(0)1f =- .2.选择题(1) 设)(x f 在),(+∞-∞内有二阶导数,0)(0='x f ,问)(x f 还要满足以下哪个条件,则)(0x f 必是)(x f 的最大值( C )A . 0x x =是)(x f 的唯一驻点B . 0x x =是)(x f 的极大值点C . )(x f ''在),(+∞-∞内恒为负D . )(x f ''不为零(2) 已知)(x f 对任意)(x f y =满足x e x f x x f x --='+''1)]([3)(2,若00()0 (0)f x x '=≠,则( B )A. )(0x f 为)(x f 的极大值B. )(0x f 为)(x f 的极小值C. ))(,00x f x (为拐点D. )(0x f 不是极值点, ))(,00x f x (不是拐点(3)若)(x f 在0x 至少二阶可导, 且1)()()(lim 2000-=--→x x x f x f x x ,则函数)(x f 在0x 处( A )A . 取得极大值B . 取得极小值C . 无极值D . 不一定有极值3. 求下列函数的极值(1) ()3/223x x x f -=.解:由13()10f x x-'=-=,得1=x .4''31(),(1)03f x x f -''=>,所以函数在1=x 点取得极小值.(2)xx x f 1)(=.解:定义域为),0(+∞,11ln 21, (1ln )x xxy ey xx x '==-, 令0y '=得驻点x e =,当(0,)x e ∈时,0y '>,当(,)x e ∈+∞时,0y '<.因此ee e y 1)(=为极大值.4. 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解:(3)23, (4)132y y -==.由266120y x x '=+-=,得1=x , 2-=x .而34)2(,7)1(=-=y y , 所以最大值为132,最小值为7.5. 在半径为R 的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积V 最大.解:设圆锥体的高为h , 底半径为r ,故圆锥体的体积为h r V 2 31π=,由于222)(R r R h =+-,因此)2( 31)(2h Rh h h V -=π )20(R h <<,由0)34( 31)(2=-='h Rh h V π,得34R h =,此时R r 322=.由于内接锥体体积的最大值一定存在,且在)2,0(R 的内部取得. 现在0)(='h V 在)2,0(R 内只有一个根,故当34R h =, R r 322=时, 内接锥体体积的最大.6. 工厂C 与铁路线的垂直距离AC 为20km , A 点到火车站B 的距离为100km . 欲修一条从工厂到铁路的公路CD , 已知铁路与公路每公里运费之比为3:5,为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处解: 设AD x = B 与C 间的运费为y , 则 )100(340052x k x k y -++= (1000≤≤x ), 其中k 是某一正数.由 0)34005(2=-+='x xk y 得15=x 由于ky x 400|0== ky x 380|15==2100511500|+==x y 其中以k y x 380|15==为最小 因此当AD 15=x km 时 总运费为最省.7. 宽为b 的运河垂直地流向宽为a 的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少解: 问题转化为求过点C 的线段AB 的最大值. 设木料的长度为l , y CB x AC ==,,木料与河岸的夹角为t ,则l y x =+,且t b y t a x sin ,cos ==,t b t a l sin cos += )2,0(π∈t . 则ttb t t a l 22sin cos cos sin -=', 由0='l 得3tan abt =, 此时233232)(b a l +=,故木料最长为233232)(b a l +=.§ 函数图形的描绘1.求23)1(+=x x y 的渐近线. 解:由 -∞=+-→231)1(lim x x x ,所以1x =为曲线)(x f y =的铅直渐近线.因为 2)1(lim )(lim ,1)1(lim lim 2322-=-+=-=+=∞→∞→∞→∞→x x x x y x x x y x x x x所以2-=x y 为曲线)(x f y =的斜渐近线.第四章 综合练习题1.填空题(1) 01ln(1)1lim sin limarctan x x x x x x→→+∞++= 0 . (2) 函数)1ln(+-=x x y 在区间)0,1(-内单调减少,在区间),0(+∞内单调增加.(3) 曲线)1ln(1x e xy ++=的渐近线是00==y x 和. (4)=-→x x x cos 02)(tan lim π1 . 2. 求下列极限 (1) 2)1ln(sin 1tan 1limxx x xx x -++-+→解:20)1ln(sin 1tan 1limx x x xx x -++-+→=xx x x x x x x sin 1tan 11])1[ln(sin tan lim 0+++⋅-+-→ =x x x x x x x tan lim)1ln(cos 1lim 2100→→⋅-+-=x x xx -+-→)1ln(cos 1lim 210=111sin lim 210-+→xx x =21)1(sin lim210-=+-→x x x x . (2) xe e x x x x a a x x 1sin)(1cos)1cos 11sin (lim 21-+-+∞→ 解:x e e x x x x a a x x 1sin )(1cos )1cos 11sin (lim 21-+-+∞→=xe e x x x x x a x 1sin)1(1cos )1cos 11sin (lim 212-+-∞→=x x e x x x a x 1)1(1cos11sin lim 22+-∞→ =a x a e xx x x x x x e 2432223131sin 11cos 11cos 1lim1-=-+-∞→. 3. 求证当0>x 时, )1ln(212x x x +<-.证明: 令221)1ln()(x x x x f +-+=, 则21()111x f x x x x'=-+=++, 当0>x 时, ()0f x '>,故)(x f 在),0[+∞单调增. 当0>x 时,有()(0)0f x f >=,即)1ln(212x x x +<-. 4. 设)(x f 在],[b a 上可导且4≥-a b ,证明:存在点),(0b a x ∈使)(1)(020x f x f +<'.证明: 设)(arctan )(x f x F =, 则)(1)()(2x f x f x F +'=',且2|)(|π≤x F .由拉格朗日中值定理知, 存在),(0b a x ∈,使)()()(0x F a b a F b F '=--, 即 14422|)(||)(|)()()(1)(020<=+≤-+≤--=+'πππa b a F b F a b a F b F x f x f .5. 设函数)(),(x g x f 在],[b a 上连续,在),(b a 内具有二阶导数且存在相等的最大值, 且)()(a g a f =, )()(b g b f =, 证明: 存在),(b a ∈ξ,使得)()(ξξg f ''=''.证明: 设)(),(x g x f 分别在),(,21b a x x ∈取得最大值M , 则12()()f x g x M ==, 且12()()0f x g x ''==. 令)()()(x g x f x F -=.当21x x =时, 0)()()(1===x F b F a F , 由罗尔定理知, 存在),(),,(1211b x x a ∈∈ξξ, 使 0)()(21='='ξξF F , 进一步由罗尔定理知, 存在),(21x x ∈ξ,使0)(=''ξF ,即)()(ξξg f ''=''当21x x ≠时, 0)()(11≥-=x g M x F ,0)()(22≤-=M x f x F ,由零点存在定理可知,存在],[211x x ∈ξ,使0)(1=ξF . 由于0)()(==b F a F ,由前面证明知, 存在),(b a ∈ξ,使0)(=''ξF ,即)()(ξξg f ''=''.6. 设0≤k ,证明方程112=+x kx 有且仅有一个正的实根.证明:设11)(2-+=x kx x f . 当0=k ,显然112=x只有一个正的实根.下考虑0<k 时的情况.先证存在性: 因为)(x f 在),0(+∞内连续,且+∞=→)(lim 0x f x ,-∞=+∞→)(lim x f x ,由零点存在定理知,至少存在一个),0(+∞∈ξ,使0)(=ξf ,即112=+x kx 至少有一个正的实根.再证唯一性:假设有12,0x x >,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在12(,)(0,)x x η∈⊂+∞,使0)(='ηf ,即023=-ηk ,从而023>=ηk ,这与0<k 矛盾.故方程112=+x kx 只有一个正的实根.7. 对某工厂的上午班工人的工作效率的研究表明,一个中等水平的工人早上8时开始工作,在t 小时之后,生产出t t t t Q 129)(23++-=个产品.问:在早上几点钟这个工人工作效率最高解:因为12183)()(2++-='=t t t Q t x ,186)()(+-=''='t t Q t x , 令0)(='t x ,得3=t . 又当3t <时,()0x t '>.函数()x t 在[0,3]上单调增加;当3t >时,()0x t '<,函数()x t 在[3,)+∞上单调减少.故当3=t 时,)(t x 达到最大, 即上午11时这个工人的工作效率最高.。
高等数学习题课答案

第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 . ( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ). (A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ).A.不相等 B .相等 C.至多相差一个常数 D.均为常数 6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ).(A )),(+∞-∞ (B ))1,(-∞ (C ))2,1( (D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点;(C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ). (A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0 C .是1ln 2- D .不存在16.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A ) ( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f - 17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim lim tan 3x x x x x x x x→→--==0sin 1lim 66x x x →== 222201(6)lim (1)→---x x x e xx e 22401lim →--=x x e x x 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=-代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-, 当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根. ()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导,且()()()()xF x ef x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又Q ()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, Q ()f x 在[0,]a 上连续,在(0,)a 内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'=即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f '<]故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条件,由中值定理,至少存在一点(1,)x ξ∈,使得()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a b a b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞U ,单调减区间1(,3)3. 610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间. 解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e =的单调区间,拐点及凹或凸的区间.解:arctan 211xy ex '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=-令0y ''=,得10x =,21x =22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28. 23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =-列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值. 解:2()cos cos 23f x a x x '=+Q ()f x 在3π处取得极值 22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 203333322f πππ⎛⎫⎛⎫''∴=--=-⋅+⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 333332f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.。
高等数学第三章微分中值定理与导数的应用试题库(附带答案)

>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。
《高等数学》第三章微分中值定理与导数的应用的习题库(201511)

《⾼等数学》第三章微分中值定理与导数的应⽤的习题库(201511)第三章微分中值定理与导数的应⽤⼀、判断题1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。
()2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。
()3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→-=,则必存在(a,b)ξ∈使'()0f ξ=。
() 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。
() 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以⾄少存在⼀点()1,1ξ∈-使'()0f ξ=。
() 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。
() 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。
() 8. arcsin arccos ,[1,1]2x x x π+=∈-。
() 9. arctan arctan ,(,)2x x x π+=∈-∞+∞。
() 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。
() 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。
() 12. ''222(2)lim lim21(21)x x x x x x →→=--()13. 22'0011limlim()sin sin x x x x e e x x→→--= () 14. 若'()0f x >则()0f x >。
高等数学第三章习题课答案

第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 . ( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ). (A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ).A.不相等 B .相等 C.至多相差一个常数 D.均为常数 6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ).(A )),(+∞-∞ (B ))1,(-∞ (C ))2,1( (D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点;(C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ). (A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0 C .是1ln 2- D .不存在16.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A ) ( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f - 17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim lim tan 3x x x x x x x x→→--==0sin 1lim 66x x x →== 222201(6)lim (1)→---x x x e xx e 22401lim →--=x x e x x 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=-代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-, 当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根. ()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导,且()()()()xF x ef x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'=即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f'<故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条件,由中值定理,至少存在一点(1,)x ξ∈,使得()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a ba b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间. 解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e=的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=-令0y ''=,得10x =,21x =22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28. 23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =-列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值. 解:2()cos cos 23f x a x x '=+()f x 在3π处取得极值 22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 203333322f πππ⎛⎫⎛⎫''∴=--=-⋅+⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 333332f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.。
厦门理工学院高数答案练习题微分中值定理与导数的应用

高等数学练习题 第三章 微分中值定理与导数的应用系 专业 班 姓名 学号§3.1 微分中值定理一.选择题1. 在区间[]1,1-上,下列函数满足罗尔中值定理的是 [ A ](A)()2321f x x =+ (B )()211f x x=- (C )()f x = (D )()2132f x x x =-+ 2. 若)(x f 在),(b a 内可导,1x 、2x 是),(b a 内任意两点,且21x x <,则至少存在一点ξ,使得 [ C ] (A )))(()()(a b f a f b f -'=-ξ (b a <<ξ); (B )))(()()(11x b f x f b f -'=-ξ (b x <<ξ1); (C )))(()()(1212x x f x f x f -'=-ξ (21x x <<ξ); (D )))(()()(22a x f a f x f -'=-ξ (2x a <<ξ)3.下列函数在给定区间上不满足拉格朗日定理条件的有 [ B ] (A )212)(xxx f +=,[1,1]- (B )x x f =)(,[1,2]- (C )254)(23-+-=x x x x f , [0,1] (D ))1ln()(2x x f +=,[0,3]4.设)(x f ,)(x g 是恒大于零的可导函数,且0)()()()(<'-'x g x f x g x f ,则当b x a <<时,有 [ A ] (A ))()()()(x g b f b g x f > (B ))()()()(x g a f a g x f > (C ))()()()(b g b f x g x f > (D ))()()()(a g a f x g x f > 二.填空题1. 对函数r qx px x f ++=2)(在区间],[b a 上应用拉格朗日定理时,所求的拉格朗日定理结论中的ξ 2. 若)(x f 在],[b a 上连续,在),(b a 内可导,则至少存在一点),(b a ∈ξ,使得 =-)()(a f b f e e成立3.设()(1)(2)(3)f x x x x x =---,则()0f x '=有 3 个根,它们分别位于区间 (0,1); (1,2); (2,3) 内. 三.证明题1. 当0a b <<,试证:ln b a b b ab a a--<< 证:令=)(x f x ln , 可知 )(x f 在],[b a 连续,在),(b a 上可导由拉格朗日定理可知,存在 ),(b a ∈ξ 使得 a ba b a b a b f ln ln ln )(1))(('=-=-=-ξξ 又b a <<<ξ0, 所以ab 111<<ξ, 且 0)(>-a b , 即ln b a b b ab a a--<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例24
证明:
x (1) x 0时, e 1 x ; 22 x x (2) x 0时, e 1 x . 2
x 2
22
第三章
微分中值定理与导数的应用
例25
Taylor中值 定理 设f ( x)在 a, b内二阶可导, f ( x) 0,
f ( ) f (0) ( 0) f ( ), (0, ) (1) a f ( ) ab f (1) f ( ) (1 ) f ( ), ( ,1) (2) a b 由(1),有 a b 由(2),有 1 a b f ( ) f ( ) a b 1 得 f ( )(a b) f ( )(a b) a b a b. f ( ) f ( ) 18
且f (0) 0, f ( x)单调减少, Lagrange
f (a b) f (a) f (b), 0 a b a b c
24
证明:
中值定理
第三章
微分中值定理与导数的应用
习题课
例29 设f ( x)在0, a上二阶可导, 且 f ( x) M ,
4. 会用导数判断函数图形的凹凸性,会求拐点 会描绘函数的图形(包括水平,铅直和斜渐 , 近线). 会求解最大值和最小值的应用问题. 5. 会用洛必达(L,Hospital)法则求不 定式的极限. 6. 了解曲率和曲率半径的概念并会 计算曲率和 曲率半径.
3
第三章
微分中值定理与导数的应用
习题课
1.微分中值定理及其相互关系
的零点.
11
第三章
微分中值定理与导数的应用
习题课
例7 设 f ( x)在0, a上连续, 在 0, a 内可导,
且f (a) 0,
证明: 0,a 使得f ( ) f ( ) 0.
例8 设 f ( x)在0,1上二阶可导, 且f (0) f (1),
f (b) f (a ) f ( ) F (b) F (a ) F ( )
1 ( n) f ( x0 )( x x0 )n n! 1 f ( n1) ( )( x x0 )n1 4 ( n 1)!
第三章
微分中值定理与导数的应用
习题课
2. 微分中值定理的主要应用
有时也可考虑 对导数用中值定理.
6
第三章
微分中值定理与导数的应用
习题课
4.导数应用
(1) 研究函数的性态: 增减, 极值, 凹凸,拐点, 渐近线, 曲率 (2) 解决最值问题 • 目标函数的建立 • 最值的判别问题 求不定式极限;几何应用; (3)其他应用: 相关变化率; 证明不等式; 研究方程实根等.
f (1) f ( ) (1 ) f ( ), ( ,1)
(2)
17
第三章
微分中值定理与导数的应用
习题课
设 f ( x ) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f (0) 0, f (1) 1, 试证 : 对任意给定的正数a , b a b 在 (0,1) 内存在不同的 , 使 a b. x0,1时, 最值 1 p p x 1 x 1, p 1 p 1 2
21
第三章
微分中值定理与导数的应用
习题课
例23 设 a 0, b 0, a b, 证明: a b 2
p p 1 p
凹凸性
p
a b
,
p 1
tan tan , 2 cos cos
0
2
.
Lagrange 中值定理
20
第三章
微分中值定理与导数的应用
习题课
arctan x ln 1 x , x Cauchy中 0 例20 证明: 1 x 值定理或 单调性 例21 设0 x1 x2 , 单调性 tan x2 x2 证明: tan x1 x1
第三章
微分中值定理与导数的应用
习题课
例17 设 f ( x)在a, a
a 0
2
上有二阶连续导数,
且f (0) 0.
证明:
a a
至少存在点 a, a , 使得a f 3
f ( x)dx
涉及到函数值与高阶导数时,想Taylor 中值定理 结合闭区间上连续函数的最值定理 例18 设函数 f ( x)在1,1 上有三阶连续导数,且
f ( x) 令F ( x) g ( x) 例10 设 f ( x)在a, b上连续, 在 a, b内可导,
证明: a,b 使得f ( ) g( ) g( ) f ( ).
证明: a,b 使得
ab f (b) f (a) 令F ( x) x x a f ( x) 2 ba
第三章
微分中值定理与导数的应用
习题课
一、教学要求 1. 理解罗尔(Rolle) 定理和拉格朗日 (Lagrange)定理. 2. 了解柯西(Cauchy)定理和泰勒 (Tayloy)定理. 3. 理解函数的极值概念,掌握用导数 判断函数 的单调性和求极值的方法.
2
第三章
微分中值定理与导数的应用
习题课
习题课
证明: 对 x1, x2 a, b ,0 t 1,
有
f 1 t x1 tx2 1 t f ( x1 ) tf ( x2 )
例26 证明 在 在 内可导,且 内有界. Lagrange 中值定理
23
第三章
微分中值定理与导数的应用
e e 1 f ( ) f ( ) x1 x2 e e f ( x1 ) f ( x2 )
对f ( x)e x , e x应用Chauchy中值定理
15
x1
x2
第三章
微分中值定理与导数的应用
习题课
例15 设 f ( x)在a, b上连续, 在 a, b内可导, 且0 a b,
(1) 研究函数或导数的性态 (2) 证明方程根的存在 性 证明恒等式或不等式 (3)
(4) 证明有关中值问题的结论
5
第三章
微分中值定理与导数的应用
习题课
3.有关中值问题的解题方法 利用逆向思维,设辅助函数. 一般解题方法: (1) 证明含一个中值的等式或根的存在, 多用罗尔定理, 可用原函数法找辅助函数. (2)若结论中涉及到含中值的两个不同函数, 可考虑用 柯西中值定理. (3)若结论中含两个或两个以上的中值, 必须多次应用 中值定理. (4)若已知条件中含高阶导数, 多考虑用泰勒公式,
f ( x) x在 a, b 内 有唯一实根.
例4 设
f ( x)在0, 上
二阶可导,且
f (0) 1, f (0) 0, 又当 x 0时, f ( x) 0,
证明: f ( x) 0在 0, 内 有唯一实根.
10
第三章
微分中值定理与导数的应用
习题课
且f (a) f (b) 0, c a, b , 使得f (c) 0,
Lagrange 例27 设f ( x)在 a, b内二阶可导, 中值定理
证明: a, b , 使得f ( ) 0.
例28 设 f ( x)在0, c上连续,在0,c内可导,
f (b) f (a) a+b 2 . f ( ) 22 ba
13
第三章
微分中值定理与导数的应用
习题课
例11 设 设f ( x)在a, b上可导, 且f ( x) 0,
f (b) f ( ) b a . 证明: a,b 使得 ln f (a) f ( )
2 f ( ) 证明: 0,1 使得f ( ) . 1
提示:
令F ( x) f ( x) 1 x
2
12
第三章
微分中值定理与导数的应用
习题课
例9 设 f ( x), g( x)在a, b上连续, 在 a, b内可导,
且f (a) f (b) 0, g ( x) 0, x a, b
14
第三章
微分中值定理与导数的应用
习题课
例13 设
f ( x)在a, b 上连续, 在 a, b内可导, a 0,
ba
证明: a,b 使得 f (b) f (a) a b f ( ) .
对f ( x), x 应用Chauchy中值定理
2
2
例14 设 f ( x)在 x1, x2 上可导, 且0<x1 x2 , 证明: x1, x2 使得
f (0) 0, f (1) 1, 试证 : 对任意给定的正数a , b a b 在 (0,1) 内存在不同的 , 使 a b. f ( ) f ( ) a 证 0 1 介值定理 ab a , 存在 (0,1), 使得 f ( ) ab f ( x )在 [0, ], [ ,1]上分别用 拉氏定理, f ( ) f (0) ( 0) f ( ), (0, ) (1)
7
第三章
微分中值定理与导数的应用
习题课
二、典型例题
1. 证 的存在性. 例1 设 a1 , a2 ,, an 满足
an a2 a3 n 1 a1 1 0, 3 5 2n 1
证明方程
a1 cos x a2 cos 3x an cos 2n 1 x 0,
f (1) 0, f (1) 1, f (0) 0. 证明:至少存在 1,1 ,使得f 3.
19
第三章
2.不等式的证明