浙江省台州市2019届高三上学期期末质量评估数学试题(全WORD版)
2019届浙江省台州市高三上学期期末质量评估数学试题(解析版)

2019届浙江省台州市高三上学期期末质量评估数学试题一、单选题1.设集合,N,则()A.B.C.D.【答案】C【解析】求出后可得.【详解】,故,选C.【点睛】在集合的交并补的运算中,注意集合元素的属性,本题为基础题.2.设复数满足,其中为虚数单位,则复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】利用复数的除法计算出后可得其对应的点所处的象限.【详解】,该复数对应的点为,它在第四象限中.故选D.【点睛】如果复数,那么它对应的复平面上的点为,复平面上的点与复数之间是一一对应的.3.已知公差不为零的等差数列满足,为数列的前项和,则的值为()A.B.C.D.【答案】A【解析】由可以得到等差数列的基本量的关系,再用基本量表示可得它们的比值.【详解】设公差为,由得到,整理得到,因,故,,所以,故选A.【点睛】等差数列或等比数列问题基本的处理策略有两类:(1)基本量方法,即把数学问题归结关于基本量或的关系式来处理;(2)利用等差数列或等比数列性质来处理,解题时需结合数列下标的特点或和式的特点来找合适的性质.4.已知实数,满足,则的取值范围是()A.B.C.D.【答案】D【解析】利用三角换元把转化为关于的函数关系后可得取值范围.【详解】令,则,因,故,当且仅当时取最大值,当时取最小值,故选D.【点睛】二元等式条件下的二元函数的范围问题,应利用换元或消元的方法把二元函数变为一元函数,再利用函数的手段计算函数的值域,注意尽量不要使用基本不等式,因为基本不等式往往只能求最大值或最小值.5.设不为1的实数,,满足:,则( )A.B.C.D.【解析】根据幂函数的单调性可以得到D是正确的.【详解】因为底数与的大小关系不确定,故B错;同理,C也错.取,则,从而,故A错,因为为上的增函数,而,故,故D正确.综上,选D.【点睛】不同的对数或指数比较大小,可根据底数的形式构建合适的单调函数,如果底数不能统一,则需要找中间数,通过它传递大小关系.6.在的展开式中常数项为()A.B.C.D.【答案】A【解析】,故可通过求展开式中的的系数来求常数项.【详解】因为,故,又的展开式中的系数为,故选A.【点睛】三项展开式的指定项的系数,可以利用二项式定理的推导方法求出指定项的系数,也可以把三项代数式变形为两项代数式,再利用二项式定理求出指定项的系数.7.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A.,B.,C.,D.,【解析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.8.设,为双曲线:的左右焦点,点为双曲线的一条渐近线上的点,记直线,,的斜率分别为,,.若关于轴对称的直线与垂直,且,,成等比数列,则双曲线的离心率为()A.B.C.D.【答案】B【解析】用直线的倾斜角的正切表示斜率,注意到的倾斜角的和为,故可得的倾斜角的正切值,从而得到双曲线的离心率.【详解】为,所以,即,故,,故选B.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于的不等式或不等式组.9.已知函数,的最小值为,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为当时函数值为,所以函数的最小值为等价于在上恒成立,利用参变分离可以求得实数的取值范围.【详解】因为的最小值为且时,故恒成立,也就是,当时,有;当时,有,故,所以选C.【点睛】含参数的函数的最值问题可以转化为恒成立即:(1)在上的最小值为等价于恒成立且存在,使得;10.如图,在矩形ABCD中,AB=2,AD=1,M为AB的中点,将△ADM沿DM翻折.在翻折过程中,当二面角A—BC—D的平面角最大时,其正切值为()A.B.C.D.【答案】B【解析】取的中点,的中点为,则折叠后有平面,在四棱锥中过点作的垂线,垂足为,再过作的垂线,垂足为,连接,则为二面角的平面角,可用的三角函数表示的正切值,利用导数可求其最大值.【详解】取的中点,的中点为,因为为等腰三角形,故,同理,,所以有平面.因为平面,故平面平面.在四棱锥中过点作的垂线,垂足为,再过作的垂线,垂足为,连接.因为,平面,平面平面,故平面.因为平面,故,又平面,故,所以为二面角的平面角.设,则,,,所以,其中.令,则,令且,当时,;当时,;所以,故,故选B.【点睛】二面角的平面角的大小或最值的计算,应先构造二面角的平面角,然后在可解的三角形(最好是直角三角形)中讨论该角.注意最值的计算可以通过目标函数的单调性讨论得到.二、填空题11.我国古代数学著作《九章算术》中记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步有木.问邑方几何?”示意图如下图,正方形中,,分别为和的中点,若,,,,且过点,则正方形的边长为_____.【答案】【解析】利用可得的关系,从而求得即得正方形的边长.因为,,所以,而,故,所以,因为中点,所以,故,所以=150即正方形的边长为300,填300 .【点睛】本题考查三角形相似,为基础题.12.已知则____;不等式的解集为____.【答案】【解析】利用的解析式可得的大小,而不等式的解则可以通过分类讨论得到.【详解】,等价于或者,解得或,故填.【点睛】分段函数的处理方法可以通过刻画函数的图像,运用数形结合的思想方法求解问题,也可以通过分类讨论的方法求解,分类的方法是依据不同范围上的解析式的不同形式.13.已知,满足条件则的最大值是_____,原点到点的距离的最小值是_____.【答案】【解析】画出不等式组对应的可行域,通过平移动直线求目标函数的最大值,而原点到点的距离的最小值就是原点到点的距离.【详解】不等式组对应的可行域如下:当动直线过时,有最大值,又,故的最大值为.原点到的距离的最小值即为,故分别填、.【点睛】二元一次不等式组条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如表示动直线的横截距的三倍,而则表示动点与的连线的斜率.14.小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.【答案】【解析】超出45元即为掏出纸币50元,60元,70元,80元,90元,用排列组合知识分别计算即可.如果掏出4张共计50元,则有3张10元,1张20元一种情况,用古典概型公式可求概率.【详解】超出45元即为掏出纸币50元,60元,70元,80元,90元,如果掏出纸币50元,则2张20元,1张10元,或3张10元,1张20元,共有;如果掏出纸币60元,则2张20元,2张10元,或3张20元,共有;如果掏出纸币70元,则3张20元,1张10元,或2张20元,3张10元,共有;如果掏出纸币80元,则3张20元,2张10元,共有;如果掏出纸币90元,则3张20元,3张10元,共有;综上,共有种.设“如果不放回的掏出4张,刚好是50元”为事件,则所有的基本事件的总数为,中含有的基本事件的总数为,故.所以分别填.【点睛】此类问题为取球模型,通常运用排列组合的知识求不同种类的个数,注意计算时根据问题的特征合理分类或分步.同时还应注意是有放回还是无放回.古典概型的概率计算关键是确定基本事件的总数和随机事件中含有的基本事件的个数,注意每个基本事件是等可能发生的.15.已知某多面体的三视图如图所示,则该几何体的所有棱长和为_______,其体积为____.【答案】【解析】根据三视图得到相应的几何体后可计算棱长之和和体积.【详解】三视图对应的几何体如图所示:该几何体是正方体中挖掉如图所示的棱台,各棱长之和为,其体积为,故填,.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.16.若函数在上有零点,则的最小值为____.【答案】【解析】设函数的零点为,利用消元后得到,配方后可得最小值.【详解】设函数的零点为,则由得到,所以,,当时,有最小值,故填.含多参数的函数的零点存在问题,一般地依据零点的个数分类讨论得到参数满足的不等式组,再由线性规划或非线性规划计算目标函数的最值或取值范围,也可以通过设零点,把目标函数转化新的函数,再用配方法或判别式或基本不等式求出最值.17.设圆,圆半径都为1,且相外切,其切点为.点,分别在圆,圆上,则的最大值为____.【答案】【解析】以为原点,两圆圆心所在的直线为轴建立直角坐标系,利用圆的参数方程可设,,利用辅助角公式和配方法可以求得的最大值.【详解】以为原点,两圆圆心所在的直线为轴建立如图所示的直角坐标系.则,,令,,所以所以,令,则,所以当时,有最大值,填.向量的数量积的计算,有四种途径:(1)利用定义求解,此时需要知道向量的模和向量的夹角;(2)利用坐标来求,把数量积的计算归结坐标的运算,必要时需建立直角坐标系;(3)利用基底向量来计算,也就是用基底向量来表示未知的向量,从而未知向量数量积的计算可归结为基底向量的数量积的计算;(4)靠边靠角,也就是利用向量的线性运算,把未知向量的数量积转化到题设中的角或边对应的向量三、解答题18.已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)设△ABC中的内角,,所对的边分别为,,,若,且,求的取值范围.【答案】(Ⅰ)单调递增区间为,Z. (Ⅱ)【解析】(Ⅰ)利用二倍角公式和辅助角公式可得函数,故可求得函数的递增区间.(Ⅱ)由可得,利用余弦定理可以得到的关系式,再利用基本不等式可求的取值范围.【详解】(Ⅰ).所以,解得,.所以函数的单调递增区间为,.(Ⅱ)因为,所以.所以.而,所以,即.又因为,所以.【点睛】(Ⅰ)对于形如的函数,我们可将其化简为,其中,.形如的函数,可以利用降幂公式和辅助角公式将其化为的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.(Ⅱ)解三角形中的范围问题,可以利用正弦定理把目标函数转为角的三角函数,也可以利用基本不等式及已知的等式关系求出相应的范围.19.如图,四棱锥中,垂直平面,,,,为的中点.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的正弦值.【答案】(Ⅰ)见证明(Ⅱ)【解析】(Ⅰ)可证平面,从而得到平面平面.(Ⅱ)在平面内过作的垂线,垂足为,由(1)可知平面,从而就是所求的线面角,利用解直角三角形可得其正弦值.【详解】又,所以.故,即,而,所以平面,因为平面,所以平面平面.(Ⅱ)平面,平面,故.又,所以.在平面内,过点作,垂足为.由(Ⅰ)知平面平面,平面,平面平面所以平面.由面积法得:即.又点为的中点,.所以.又点为的中点,所以点到平面的距离与点到平面的距离相等.连结交于点,则.所以点到平面的距离是点到平面的距离的一半,即.所以直线与平面所成角的正弦值为.另解:如图,取的中点,如图建立坐标系.因为,所以.所以有:..,.设平面的一个法量为,则取,得,.即.设直线与平面所成角为,则.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.20.在数列中,,,且对任意的N,都有.(Ⅰ)证明数列是等比数列,并求数列的通项公式;(Ⅱ)设,记数列的前项和为,若对任意的N都有,求实数的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)【解析】(Ⅰ)可变形为,故是等比数列.利用累加法可以求出的通项.(Ⅱ)由(Ⅰ)知,用裂项相消法可求,求出的【详解】(Ⅰ)由可得.又,,所以,故.所以是首项为2,公比为2的等比数列.所以.所以.(Ⅱ)因为.所以.又因为对任意的都有,所以恒成立,即,即当时,.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),而数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.21.设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.(Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.【答案】(Ⅰ):.(Ⅱ)【解析】(Ⅰ)可设直线方程为,直线方程为,联立直线方程和抛物线方程并消元得到关于的方程,利用判别式为零得到的坐标后可得的直线方程.(Ⅱ)设,则直线方程为,直线方程为.联立直线方程和抛物线方程并消元得到关于的方程,利用判别式为零得到满足的一元二次方程,利用韦达定理得到与的关系,利用得到与的函数关系后得到的取值范围.【详解】(Ⅰ)设直线方程为,直线方程为.由可得.因为与抛物线相切,所以,取,则,.即. 同理可得.所以:.(Ⅱ)设,则直线方程为,直线方程为.由可得.因为直线与抛物线相切,所以.同理可得,所以,时方程的两根.又因为,则,所以.【点睛】对于直线和抛物线相切.的问题,我们可以联立动直线和抛物线方程,利用判别式为0得到不同参数的关系,在这个关系的基础上化简目标代数式(通常化为一元函数),最后用函数的手段求最值或范围等.22.设函数,R.(Ⅰ)求函数在处的切线方程;(Ⅱ)若对任意的实数,不等式恒成立,求实数的最大值;(Ⅲ)设,若对任意的实数,关于的方程有且只有两个不同的实根,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)-1(Ⅲ)见解析【解析】(Ⅰ)求出函数在处的导数后可得切线方程.(Ⅱ)参变分离后求函数的最小值可得的最大值.(Ⅲ)因为,故无零根,参变分离后考虑的图像与直线总有两个不同的交点,从而得到实数的取值范围.【详解】(Ⅰ),. 且,所以在处的切线方程为. (Ⅱ)因为对任意的实数,不等式恒成立.所以恒成立.设,则,所以在,单调递增,在,单调递减.所以,因为,是方程的两根.所以. (其中)所以的最大值为.(Ⅲ)若对任意的实数,关于的方程有且只有两个不同的实根,当,得,与已知矛盾.所以有两根,即与有两个交点令,则.令,,则在单调递减,单调递增,所以.(ⅰ)当时,即时,则,即在,单调递增,且当时,的取值范围为;当时,的取值范围为.此时对任意的实数,原方程恒有且只有两个不同的解.(ⅱ)当时,有两个非负根,,所以在,,单调递增,单调递减,所以当时有4个交点,或有3个交点,均与题意不合,舍去.(ⅲ)当时,则有两个异号的零点,,不妨设,则在,当时,的取值范围为,当时,的取值范围为,所以当时,对任意的实数,原方程恒有且只有两个不同的解.所以有,,得.由,得,即.所以,,.故.所以.所以当或时,原方程对任意实数均有且只有两个解.【点睛】(1)对于曲线的切线问题,注意“在某点处的切线”和“过某点的切线”的差别,切线问题的核心是切点的横坐标;(2)不等式的恒成立问题,应优先考虑参变分离的方法,把恒成立问题转化为函数的最值(或最值的范围)问题来处理,有时新函数的最值点(极值点)不易求得,可采用设而不求的思想方法,利用最值点(极值点)满足的等式化简函数的最值可以相应的最值范围.(3)导数背景下零点个数问题,可转化为动直线与函数的图像的位置关系,用导数刻画函数图像时注意函数值的范围(防止忽视渐近线).第 21 页共 21 页。
浙江省台州市临海综合中学2019年高三数学理上学期期末试题含解析

浙江省台州市临海综合中学2019年高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 给出下列四个命题:①命题“若,则”的逆否命题为假命题;②命题.则,使;③“”是“函数为偶函数”的充要条件;④命题“,使”;命题“若,则”,那么为真命题.其中正确的个数是()....参考答案:B①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定式特称命题知,②为真.③当函数为偶函数时,有,所以为充要条件,所以③正确.④因为的最大值为,所以命题为假命题,为真,三角函数在定义域上不单调,所以为假命题,所以为假命题,所以④错误.所以正确的个数为2个,选B.2. 若一个底面为正三角形的几何体的三视图如右图所示,则这个几何体的体积为A.B. C.D. 6参考答案:B由三视图可知该几何体为正三棱柱,棱柱的高为4,底面正三角形的高为,所以底面边长为6,所以几何体的体积为,选B.3. 函数则()A. 1 B. 2 C. 3 D. 4参考答案:B4. 已知为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是( )A.B.C.D.参考答案:C5. 已知偶函数在区间单调增加,则满足<的x 取值范围是(A)(,) (B) [,) (C)(,) (D) [,)参考答案:A6. 已知等差数列{a n}的前n项和为S n,若,,则数列{a n}的公差为()A. B. C. D.参考答案:D【分析】根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.7. 已知命题,则命题的否定为A. B.C. D.参考答案:D命题p的否定书写方法为:先变量词,再否结论,对照各选项,只有D符合.8. 复数的虚部()A.i B.﹣i C.1 D.﹣1参考答案:D【考点】复数代数形式的乘除运算.【专题】转化思想;数系的扩充和复数.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣i的虚部为﹣1.故选:D.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.9. 若,则的值为()A. B. C. D.参考答案:C10. 如图,已知=,=,=3,用,表示,则等于().+B++.+参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. (09南通交流卷)为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝). 根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是▲参考答案:答案:700012. 阅读如图所示的程序框图,运行相应的程序,则输出的结果是 ;参考答案:考点:算法和程序框图因为故答案为:013. 已知F1、F2分别是双曲线的左、右焦点,点P是双曲线上的点,且|P F1|=3,则|PF2|的值为 .参考答案:7略14. 曲线与直线所围成图形面积为_________.参考答案:略15. 设x,y满足约束条件,则的最小值是__________.参考答案:-2.【分析】画出约束条件所表示平面区域,结合图象,确定目标函数最优解,代入即可求解,得到答案.【详解】画出约束条件所表示平面区域,如图所示,目标函数化为,当直线过点A时,此时在y轴上的截距最大,目标函数取得最小值,又由,解得,所以目标函数的最小值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16.若双曲线右支上一点到直线的距离为,则=_________。
台州市2019学年第一学期高三年级期末质量评估试题

台州市2010学年第一学期高三年级期末质量评估试题语文 2011.01命题:林晓滨(温岭中学)项琪(台州中学)审卷:蒋东明(台州一中)一、语言文字运用(共24分,其中选择题每小题3分)1.下列词语中加点的字,注音全都正确的一组是()A.啮噬(shì)牛虻(máng)一刹那(chà)浑水摸鱼(hún)B.熟稔(rěn)腼腆(tiǎn)冠心病(guàn)不容置喙(huì)C.皈依(guī)模棱(léng)闷葫芦(mèn)顺蔓摸瓜(wàn)D.趿拉(tā)悠邈(miǎo)斧凿痕(záo)按捺不住(nài)2.下列各句中,没有错别字的一项是()A.人无信不立,一诺千斤是中华民族的传统美德,与朋友交往当坚守一个信字,即使是赴汤蹈火也要实现自己的诺言。
B.幸福不喜欢喧嚣浮华,它常常在暗淡中降临:贫困中相濡以沫的一块蛋糕,患难中心心相印的一个眼神,离别时泪眼婆娑的一句叮咛。
C.这批影视作品紧扣时代脉膊,彰显民族精神,在题材上高屋建瓴,在创作上独具匠心,在人物形象塑造上不落巢臼,处处给人以耳目一新之感。
D.民工许霆利用银行ATM自动提款机的故障很轻松地提走了现金17.5万元,此事件一经曝光,立即在社会上引起轩然大波,人们纷纷置疑银行的安全措施。
3.下列各句中,加点的词语运用正确的一项是()A.凤凰卫视的著名主持人鲁豫,身材娇小,着装优雅,谈吐伶俐,如此玲珑剔透又如此咄咄逼人,与她面对面,你简直不可能有任何躲闪的余地。
B.科比的个人能力是很强,但如果他能意识到篮球是五个人的游戏,能和队友精诚合作,那么三人成虎,众志成城,新赛季获得总冠军就变得容易多了。
C.某楼盘开发商带资不过千万元,靠住户预付房款数千万元,开发了一个超过亿万元的楼盘,赚取了高额利润,真可谓空手套白狼。
D.新中国成立60年来首次有歼击机女飞行员受阅,因此备受各界关注。
浙江省台州市2019-2020年高三数学期末质量评估试题 文 新人教A版

台州市 2019-2020级期末质量评估试题数 学(文)本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.Ⅰ 选择题部分(共50分)参考公式:球的表面积公式 24S πR = 柱体的体积公式 Sh V =球的体积公式 343V πR = 其中S 表示柱体的底面积,h 表示柱体的高其中R 表示球的半径 台体的体积公式121()3V h S S =锥体的体积公式 Sh V 31= 其中1S ,2S 分别表示台体的上底、下底面积, 其中S 表示锥体的底面积,h 表示锥体的高 h 表示台体的高 如果事件A ,B 互斥,那么()()()P A B P A P B +=+一、选择题(共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项符合题目要求.) 1. 复数31ii--等于 (A )i 21+(B )12i -(C )2i +(D )2i -2. 集合12{0,log 3,3,1,2}A =-,集合{|2,}xB y R y x A =∈=∈,则A B =(A ){}1(B ){}1,2(C ){}3,1,2-(D ){}3,0,1-3.向量(1,1),(1,3a x b x =-=+,则“2x =”是“a ∥b ”的 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充要条件(D ) 既不充分也不必要条件4. 已知点)1,1(-A 及圆 044422=++-+y x y x ,则过点A ,且在圆上截得最长的弦所在的直线方程是 (A )01=-x(B )0=+y x(C )01=+y(D )02=--y x5. 设函数)(x f 为偶函数,且当)2,0[∈x 时x x f sin 2)(=,当),2[+∞∈x 时x x f 2log )(=,则=+-)4()3(f f π(A )23+-(B ) 1(C )3(D )23+6. 按照如图的程序框图执行,若输出结果为15,则M 处条件为(第9题)(A )16k ≥? (B )8k <? (C )16k <? (D )8k ≥?7. 若函数()(1)(01)x x f x k a a a a -=-->≠且在R 上既是奇函(A )3 (B )12(C )2 (D )13 9. 如图,正方体1111D C B A ABCD -中,E 是棱1DD 的中点,F 是 侧面11C CDD 上的动点,且F B 1//平面BE A 1,则F B 1与平面 11C CDD 所成角的正弦值构成的集合是(A ){}2 (B ) ⎭⎬⎫⎩⎨⎧552 (C )|23t t ⎧⎪≤≤⎨⎪⎪⎩⎭(D )|t t ⎧≤≤⎨⎩ 10. 定义在上R 的函数()f x 满足(6)1f =,'()f x 为()f x 的导函数,已知'()y f x =的图象如图所示,若两个正数,a b 满足(32)1f a b +>,则11b a -+的取值范围是 (A )1(,2)3-(B )1(,)3-+∞ (C )1(,)[0,)3-∞-⋃+∞ (D )[2,)+∞Ⅱ 非选择题部分(共100分)二、填空题(本题共7道小题,每题4分,共28分;将答案直接答在答题卷上指定的位置) 11.在某次法律知识竞赛中,将来自不同学校的学生的 0.040.030.020.01(第10题)成绩绘制成如图所示的频率分布直方图.已知成绩 在[60,70)的学生有40人,则成绩在[70,90)的 有 ▲ 人.12.一空间几何体的三视图如图所示,则该几何体的体积为 ▲ .13.若{}n b 是等比数列,,,m n p 是互不相等的正整数,则有正确的结论:1nmpp m n n p m b b b b b b ⎛⎫⎛⎫⎛⎫⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.类比上述性质,相应地,若{}n a 是等差数列,,,m n p 是互不相等的正整数,则有正确的结论: ▲ .14.在1,2,3,4,5这五个数中,任取两个不同的数记作,a b ,则满足2()f x x ax b =-+有两个不同零点的概率是 ▲ .15.为了测量正在海面匀速直线行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点,C D ,在某时刻观察到该航船在A 处,此时测得30ADC ∠=,3分钟后该船行驶至B 处,此时测得60ACB ∠=,45,60BCD ADB ∠=∠=,则船速为 ▲ 千米/分钟.16.已知圆22:(2)(1)5C x y -+-=及点B (0,2),设Q P ,分别是直线02:=++y x l 和圆C 上的动点,则PQ PB +的最小值为 ▲ .17.如图,扇形AOB 的弧的中点为M ,动点D C ,分别在OB OA ,上,且.BD OC =若1=OA ,120AOB ∠=,则MC MD ⋅的取值范围是 ▲ .俯视图正视图 侧视图(第12题)(第15题)C(第17题)BCDA三、解答题(本题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.)18.(本题满分14分)已知函数2()cos 2cos f x x x x a ωωω=-+(,0)x R ω∈>的最小正周期为π,最大值为3. (Ⅰ)求ω和常数a 的值; (Ⅱ)求函数()f x 的单调递增区间.19. (本题满分14分)已知数列{}n b 是首项为1,公比为2的等比数列.数列{}n a 满足2log 311n n a b n =-+,n S 是{}n a 的前n 项和.(Ⅰ)求n S(Ⅱ)设同时满足条件:①21()2n n n c c c n N *+++≤∈;②n c M ≤(n N *∈,M 是与n 无关的常数)的无穷数列{}n c 叫“特界”数列.判断(1)中的数列{}n S 是否为“特界”数列,并说明理由.20.(本题满分14分)如图,在三棱锥D ABC -中,ADC ABC ⊥平面平面,AD DCB ⊥平面,2,AD CD ==4,AB =M 为线段AB 的中点.(Ⅰ)求证:BC ACD ⊥平面;(Ⅱ)求二面角A CD M --的余弦值.21. (本题满分15分)已知函数21()ln 22f x x ax x =--. (Ⅰ)当3a =时,求函数()f x 的极大值;(Ⅱ)若函数()f x 存在单调递减区间,求实数a 的取值范围.22.(本题满分15分)已知抛物线2:4C x y =的焦点为F ,过点()0,1K -的直线l 与C 相交于,A B 两点,点A 关于y 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB ⋅=,求DBK ∠的平分线与y 轴的交点坐标. (第20题)ABCDM台州市 2019-2020年 第一学期 高三年级期末质量评估试题数 学(文)答题卷2012.01一、选择题:本大题共有10小题,每小题5分,共50分.二、填空题:本大题共有7小题,每小题4分,共28分.11.________________________ 12.________________________ 13. 14.________________________ 15.________________________ 16.________________________ 17.________________________三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效…………………………………………装……………………………………订……………………………………线……………………………………台州市2019-2020年第一学期高三年级期末质量评估试题数学(文)参考答案及评分标准2012.1 一、选择题:1-10. C B A B D A A C D B 二、填空题:11.25 12.13π 13.()()()0p n m p n m m a a n a a p a a -+-+-= 14.920 15.6. .31[,]82三、解答题:18.(本小题14分)(I )解:2()cos 2cos f x x x x a ωωω=-+ ……………………………………1分2cos 21x x a ωω=--+2sin(2)16x a πω=-+-, ………………………3分由22T ππω==,得1ω=. ………………………5分又当sin(2)16x πω-=时,max 213y a =+-=,得2a =. (7)分(Ⅱ)解:由(I )知()2sin(2)16f x x π=-+,由222()262k x k k πππππ-≤-≤+∈Z ,9分 得63k x k ππππ-≤≤+, ………………12分故()f x 的单调增区间为[,]63k k ππππ-+()k ∈Z . …………………14分 19.(本小题14分)(I )解:1112n n n b b q --==, …………2分122log 311log 2311102n n n a b n n n -=-+=-+=-, …………4分21(1)92n n n S na d n n +=+=-+.…………7分(Ⅱ)解:由2211211()()102222n n n n n n n n n S S S S S S a a dS ++++++++-----====-<,得212n n n S S S +++<,故数列{}n S 适合条件①; …………………10分又229819()(*)24n S n n n n =-+=--+∈N ,故当4n =或5时,n S 有最大值20, 即n S ≤20,故数列{}n S 适合条件②. …………13分综上,数列{}n S 是“特界”数列. …………14分 20.(本小题14分)(Ⅰ)证:取AC 的中点O ,连接DO ,则DO AC ⊥, ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC ,∴DO ⊥BC . ………3分 又∵AD ⊥平面BCD ,∴AD ⊥BC . ………6分 ∵DO ∩AD =D ,∴BC ⊥平面ACD .…………………7分 (Ⅱ)解:取CD 的中点N ,连接,,MO NO MN ,则MO ∥BC ,∴MO ⊥平面ACD ,∴MO ⊥CD . …………………8分∵AD ⊥CD ,ON ∥AD ,∴ON ⊥CD . 又∵MO ∩ON =O ,∴CD ⊥平面MON , ∴CD ⊥MN ,∴∠MNO 是所求二面角的平面角. ………11分在Rt △MON中,12MO BC ==112ON AD ==, ∴MN =22NO MO +=3,∴cos ∠MNO =MNNO=33. ………………14分(其它解法相应给分) 21.(本题满分15分)(Ⅰ)解:23()ln 22f x x x x =--,2'321()(0)x x f x x x +-=->. ……………2分由'()0f x >,得103x <<,由'()0f x <,得13x >. ……………5分所以()y f x =存在极大值15()ln 336f =--. ……………7分(Ⅱ)解:2'21()(0)ax x f x x x +-=->,……………(第20题)O ACDMN8分依题意()0f x '<在(0,)+∞上有解,即2210ax x +->在(0,)+∞上有解. (9)分当0a ≥时,显然有解; ……………11分当0a <时,由方程2210ax x +-=至少有一个正根,得10a -<<; ……………14分所以1a >-. ……………15分另解:依题意()0f x '<在(0,)+∞上有解,即2210ax x +->在(0,)+∞上有解. ………9分 212x a x ->在(0,)+∞上有解,即2min 12x a x -⎛⎫> ⎪⎝⎭ , ………11分 由2min121x x -⎛⎫=- ⎪⎝⎭,得1a >-. ……………15分22.(本题满分15分)(Ⅰ)解:设()()1122,,,A x y B x y ,11(,)D x y -,l 的方程为1y kx =-,由21,4,y kx x y =-⎧⎨=⎩得2440x kx -+=, 从而124x x k +=,124x x =. …………2分直线BD 的方程为()211121y y y y x x x x --=++,即()2121144x x x y x x --=+, 令0x =,得1214x x y ==,所以点F 在直线BD 上. …………6分(Ⅱ)解:因为 ()()()()11221212,1,111FA FB x y x y x x y y ⋅=-⋅-=+-- 284k =-,故28849k -=,解得43k =±, …………9分所以l 的方程为4330,4330x y x y --=++=.又由(Ⅰ)得21x x -==,故直线BD的斜率为214x x -=, 因而直线BD33330y y -+=+-=. ……12分设DBK ∠的平分线与y 轴的交点为()0,M t ,则()0,M t 到l 及BD 的距离分别为315t + ,314t -, 由313154t t +-=,得19t =,或9t =(舍去),所以D B ∠的平分线与y轴的交点为10,9M ⎛⎫⎪⎝⎭. ……15分。
浙江省台州市2019届高三上学期期末质量评估数学试卷

台州市2019届高三年级期末质量评估试卷数 学 2019.01本试题卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:121()3V S S h = 其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24πV R =球的体积公式:34π3V R =,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3,4}A =,{B x =∈N |33}x -≤≤,则A B =A .{1,2,3,4}B .{3,2,1,0,1,2,3,4}---C .{1,2,3}D .{1,2}2.设复数z 满足i 2i z ⋅=+,其中i 为虚数单位,则复数z 对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.已知公差不为零的等差数列{}n a 满足2314a a a =,n S 为数列{}n a 的前n 项和,则31S S 的值为 A.94 B. 94- C. 32D. 32-4.已知实数a ,b 满足224a b +=,则ab 的取值范围是 A .[0,2]B .[2,0]-C .(,2][2,)-∞-+∞D .[2,2]-5.设不为1的实数a ,b ,c 满足:0a b c >>>,则 A .log log c a b b >B .log log a a b c >C .a cb b >D .b ba c >6.在341(2)x x x-+的展开式中常数项为A .28B .28-C .56-D .567.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则A. 12E E ξξ<,12D D ξξ<B. 12E E ξξ=,12D D ξξ>C. 12E E ξξ=,12D D ξξ<D. 12E E ξξ>,12D D ξξ>8.设1F ,2F 为双曲线C :22221x y a b-=的左右焦点,点P 为双曲线C 的一条渐近线l 上的点,记直线1PF ,l ,2PF 的斜率分别为1k ,k ,2k .若1PF 关于x 轴对称的直线与2PF 垂直,且1k ,2k ,2k 成等比数列,则双曲线C 的离心率为A .2 B . 2C D .2 9.已知函数sin cos y x a x =+,π[0,]3x ∈的最小值为a ,则实数a 的取值范围是A .B .[C .(-∞D .(-∞ 10.如图,在矩形ABCD 中,AB =2,AD =1,M 为AB 的中点,将△ADM 沿DM 翻折.在翻折过程中,当二面角A —BC —D 的平面角最大时,其正切值为A B .12C .3D .14非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019年台州市高三年级期末质量评估数学试卷

又因为
,所以
,即
.
而
,所以
,即
.
………………12分
又因为
,所以
.
19.(Ⅰ)证明:PC⊥平面 ABCD,故 PC⊥AC.
………………14分 ………………2分
又 AB=2,CD=1,AD⊥AB,所以 AC=BC= .
故 AC2+BC2=AB2,即 AC⊥BC. 所以 AC⊥平面 PBC,所以平面 ACE⊥平面 PBC.
,且
,
求
的取值范围.
19.(本小题满分 15分)如图,四棱锥
中,
垂直平面
,
,
,
, 为 的中点.
(Ⅰ) 证明:平面
平面
;
(Ⅱ)求直线 与平面
所成角的正弦值.
P A
E B
D
C
(第 19题)
高三数学期末质量评估试题第 3页 (共 4页)
20.(本小题满分 15分)在数列 中,
,
,且对任意的 N*,都有
.
D
A C
D
C
A
M
B
M
B
(第 10题)
A.
B.
C.
D.
非选择题部分(共 110分)
二、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共 36分。
11.我国古代数学著作《九章算术》中记载:“今有邑方不
知大小,各中开门.出北门三十步有木,出西门七百
五十步有木.问邑方几何?”示意图如右图,正方形
(Ⅰ)证明数列
是等比数列,并求数列 的通项公式;
(Ⅱ)设
,记数列
的前 项和为 ,若对任意的 N*都有
,
求实数 的取值范围.
2018-2019学年浙江省台州市高三(上)期末数学试卷

2018-2019学年浙江省台州市高三(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)设集合A={1,2,3,4},B={x∈N|﹣3≤x≤3},则A∩B=()A.{1,2,3,4}B.{﹣3,﹣2,﹣1,0,1,2,3,4} C.{1,2,3}D.{1,2}2.(4分)设复数z满足i•z=2+i,其中i为虚数单位,则复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)已知公差不为零的等差数列{a n}满足,S n为数列{a n}的前n项和,则的值为()A.B.C.D.4.(4分)已知实数a,b满足a2+b2=4,则ab的取值范围是()A.[0,2]B.[﹣2,0]C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]5.(4分)设不为1的实数a,b,c满足:a>b>c>0,则()A.log c b>log a b B.log a b>log a cC.b a>b c D.a b>c b6.(4分)在的展开式中常数项为()A.28B.﹣28C.﹣56D.567.(4分)一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为ξ1;当无放回依次取出两个小球时,记取出的红球数为ξ2,则()A.Eξ1<Eξ2,Dξ1<Dξ2B.Eξ1=Eξ2,Dξ1>Dξ2C.Eξ1=Eξ2,Dξ1<Dξ2D.Eξ1>Eξ2,Dξ1>Dξ28.(4分)设F1,F2为双曲线C:的左右焦点,点P为双曲线C的一条渐近线l上的点,记直线PF1,l,PF2的斜率分别为k1,k,k2.若PF1关于x轴对称的直线与PF2垂直,且k1,2k,k2成等比数列,则双曲线C的离心率为()A.B.C.D.29.(4分)已知函数y=sin x+a cos x,x∈[0,]的最小值为a,则实数a的取值范围是()A.[0,]B.[﹣,]C.(﹣∞,]D.(﹣∞,] 10.(4分)如图,在矩形ABCD中,AB=2,AD=1,M为AB的中点,将△ADM沿DM 翻折.在翻折过程中,当二面角A﹣BC﹣D的平面角最大时,其正切值为()A.B.C.D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)我国古代数学著作《九章算术》中记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步有木.问邑方几何?”示意图如右图,正方形ABCD 中,F,G分别为AD和AB的中点,若EF⊥AD,EF=30,GH⊥AB,GH=750,且EH 过点A,则正方形ABCD的边长为.12.(6分)已知则f(2)=;不等式f(x)>f(1)的解集为13.(6分)已知x,y满足条件则2x+y的最大值是,原点到点P(x,y)的距离的最小值是14.(6分)小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为.15.(6分)已知某多面体的三视图如图所示,则该几何体的所有棱长和为,其体积为.16.(4分)若函数在[﹣1,1]上有零点,则a2﹣3b的最小值为.17.(4分)设圆O1,圆O2半径都为1,且相外切,其切点为P,点A,B分别在圆O1,圆O2上,则的最大值为三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC中的内角A,B,C所对的边分别为a,b,c,若,且,求a2+c2的取值范围.19.(15分)如图,四棱锥P﹣ABCD中,PC垂直平面ABCD,AB⊥AD,AB∥CD,PD=AB=2AD=2CD=2,E为PB的中点.(Ⅰ)证明:平面EAC⊥平面PBC;(Ⅱ)求直线PD与平面AEC所成角的正弦值.20.(15分)在数列{a n}中,a1=1,a2=3,且对任意的n∈N*,都有a n+2=3a n+1﹣2a n.(Ⅰ)证明数列{a n+1﹣a n}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设,记数列{b n}的前n项和为S n,若对任意的n∈N*都有,求实数m的取值范围.21.(15分)设点P为抛物线Γ:y2=x外一点,过点P作抛物线Γ的两条切线P A,PB,切点分别为A,B.(Ⅰ)若点P为(﹣1,0),求直线AB的方程;(Ⅱ)若点P为圆(x+2)2+y2=1上的点,记两切线P A,PB的斜率分别为k1,k2,求的取值范围.22.(15分)设函数,x∈R.(Ⅰ)求函数f(x)在x=1处的切线方程;(Ⅱ)若对任意的实数x,不等式f(x)≥a﹣2x恒成立,求实数a的最大值;(Ⅲ)设m≠0,若对任意的实数k,关于x的方程f(x)=kx+m有且只有两个不同的实根,求实数m的取值范围.2018-2019学年浙江省台州市高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)设集合A={1,2,3,4},B={x∈N|﹣3≤x≤3},则A∩B=()A.{1,2,3,4}B.{﹣3,﹣2,﹣1,0,1,2,3,4} C.{1,2,3}D.{1,2}【解答】解:B={0,1,2,3};∴A∩B={1,2,3}.故选:C.2.(4分)设复数z满足i•z=2+i,其中i为虚数单位,则复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由i•z=2+i,得z=,∴复数z对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.(4分)已知公差不为零的等差数列{a n}满足,S n为数列{a n}的前n项和,则的值为()A.B.C.D.【解答】解:公差不为零的等差数列{a n}满足,∴=a1(a1+3d),解得a1=﹣4d,∵S n为数列{a n}的前n项和,∴==.故选:A.4.(4分)已知实数a,b满足a2+b2=4,则ab的取值范围是()A.[0,2]B.[﹣2,0]C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【解答】解:∵a2+b2=4;∴根据基本不等式得,4=a2+b2≥2|ab|;∴|ab|≤2;∴﹣2≤ab≤2;∴ab的取值范围是[﹣2,2].故选:D.5.(4分)设不为1的实数a,b,c满足:a>b>c>0,则()A.log c b>log a b B.log a b>log a cC.b a>b c D.a b>c b【解答】解:对于选项A:当c=3,a=2,b=2时,不等式不成立.对于选项B:当0<a<1时,不等式不成立.对于选项C:当0<b<1时,不等式不成立.故选:D.6.(4分)在的展开式中常数项为()A.28B.﹣28C.﹣56D.56【解答】解:的展开式的通项公式:T r+1=.(x3﹣2x)4﹣r的通项:T k+1==.则展开式的通项为.令12﹣4r﹣2k=0,可得:k=0,r=3;k=2,r=2.∴的展开式中常数项为.故选:A.7.(4分)一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为ξ1;当无放回依次取出两个小球时,记取出的红球数为ξ2,则()A.Eξ1<Eξ2,Dξ1<Dξ2B.Eξ1=Eξ2,Dξ1>Dξ2C.Eξ1=Eξ2,Dξ1<Dξ2D.Eξ1>Eξ2,Dξ1>Dξ2【解答】解:一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为ξ1,则ξ1的可能取值为0,1,2,ξ1~B(2,),E(ξ1)=2×=,D(ξ1)==,当无放回依次取出两个小球时,记取出的红球数为ξ2,则ξ2的可能取值为0,1,P(ξ2=0)==,P(ξ2=1)==,∴E(ξ2)==,D(ξ2)=(0﹣)2×+(1﹣)2×=.∴Eξ1=Eξ2,Dξ1>Dξ2.故选:B.8.(4分)设F1,F2为双曲线C:的左右焦点,点P为双曲线C的一条渐近线l上的点,记直线PF1,l,PF2的斜率分别为k1,k,k2.若PF1关于x轴对称的直线与PF2垂直,且k1,2k,k2成等比数列,则双曲线C的离心率为()A.B.C.D.2【解答】解:直线PF1,l,PF2的斜率分别为k1,k,k2,PF1关于x轴对称的直线与PF2垂直,∴﹣k1k2=﹣1∴k1k2=1,∵k1,2k,k2成等比数列,∴4k2=k1k2=1,∴k2=,∴=,∴4(c2﹣a2)=a2,∴2c2=5a2,∴2c=a,∴e==,故选:B.9.(4分)已知函数y=sin x+a cos x,x∈[0,]的最小值为a,则实数a的取值范围是()A.[0,]B.[﹣,]C.(﹣∞,]D.(﹣∞,]【解答】解:由题设知f(0)=a,又三角函数的周期是2π,所以此函数在[0,]的左端点处取到最小值,所以必有f(0)≤f(),即a≤+a,解得a≤,故选:C.10.(4分)如图,在矩形ABCD中,AB=2,AD=1,M为AB的中点,将△ADM沿DM 翻折.在翻折过程中,当二面角A﹣BC﹣D的平面角最大时,其正切值为()A.B.C.D.【解答】解:在图1中,过A作DM的垂线,垂足为E,交CD于F,交BC于G,在图2中,设A在平面BCD内的射影为O,则O在直线EG上,过O作BC的垂线,垂足为H,连接AH,则∠AHO为二面角A﹣BC﹣D的平面角,设∠AEO=θ,(0<θ<π),AE=,AO=AE sinθ=sinθ,由∠GAB=45°,可得AG=,OG=2﹣﹣=2﹣(1+cosθ),OH=OG=2﹣(1+cosθ),即有tan∠AHO===(0<θ<π),令t=,0<θ<π,可得sinθ+t cosθ=3t≤,解得t≤,则tan∠AHO≤.∴当二面角A﹣BC﹣D的平面角最大时,其正切值为.故选:B.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)我国古代数学著作《九章算术》中记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步有木.问邑方几何?”示意图如右图,正方形ABCD 中,F,G分别为AD和AB的中点,若EF⊥AD,EF=30,GH⊥AB,GH=750,且EH 过点A,则正方形ABCD的边长为300.【解答】解:正方形ABCD中,F,G分别为AD和AB的中点,若EF⊥AD,EF=30,GH⊥AB,GH=750,且EH过点A,如图所示:则:设AF=AG=x,由于AG∥EM,则:,解得:x=150,故:正方形ABCD的边长为2×150=300.故答案为:30012.(6分)已知则f(2)=5;不等式f(x)>f(1)的解集为(﹣2,0)∪(1,+∞)【解答】解:根据题意,,则f(2)=4+2﹣1=5,f(1)=1+1﹣1=1,对于f(x)>f(1),即f(x)>1,当x<0时,f(x)>1即x+3>1,解可得﹣2<x<0,当x≥0时,f(x)>1即x2+x﹣1>1,解可得:x>1,综合可得:不等式的解集为(﹣2,0)∪(1,+∞);故答案为:5,(﹣2,0)∪(1,+∞).13.(6分)已知x,y满足条件则2x+y的最大值是6,原点到点P(x,y)的距离的最小值是【解答】解:作出x,y满足条件的可行域如图:目标函数z=2x+y在的交点A(2,2)处取最大值为z=2×2+1×2=6.原点到点P(x,y)的距离的最小值是:|OB|=.故答案为:6;;14.(6分)小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有32种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为.【解答】解:小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有8种情况:①6张全取;②1张10元3张20元;③2张10元2张20元;④3张10元1张20元;⑤2张20元1张10元;⑥3张20元;⑦3张10元2张20元;⑧2张10元,3张20元.∴现从中掏出纸币超过45元的方法有n=++++++=32.小明每次掏出纸币的概率是等可能的,不放回地掏出4张,基本事件总数N==15,刚好是50元包含的基本事件个数M==3,∴刚好是50元的概率P===.故答案为:32;.15.(6分)已知某多面体的三视图如图所示,则该几何体的所有棱长和为,其体积为.【解答】解:几何体的直观图如图,是正方体的一部分,其中E,F是所在棱的中点,正方体的棱长为2,所以几何体的棱长的和:2×7+2=16+3+2.几何体的体积为:2×2×2﹣×2×=.故答案为:;.16.(4分)若函数在[﹣1,1]上有零点,则a2﹣3b的最小值为﹣.【解答】解:函数在[﹣1,1]上有零点,可得△≥0,即(a+)2≥4b,且f(﹣1)f(1)≤0,即(﹣a+b)(+a+b)≤0;或f(﹣1)≥0,f(1)≥0,﹣1<﹣<1,即a﹣b≤,a+b≥﹣,﹣7<a<5.即有a2﹣3b≥a2﹣=[(a﹣1)2﹣]≥×(﹣)=﹣,当且仅当a=1时,取得最小值﹣,故答案为:﹣.17.(4分)设圆O1,圆O2半径都为1,且相外切,其切点为P,点A,B分别在圆O1,圆O2上,则的最大值为【解答】解:以P为原点,两圆圆心所在直线为x轴建立如图所示的平面直角坐标系则⊙O1:(x+1)2+y2=1,⊙O2:(x﹣1)2+y2=1设A(﹣1+cosα,sinα),B(1+cosβ,sinβ)所以•=(﹣1+cosα)(1+cosβ)+sinαsinβ=﹣1+cosα+(﹣1+cosα)cosβ+sinαsinβ=﹣1+cosα+sin(φ+β)(其中sinφ=,sinφ=)≤﹣1+cosα+=﹣(1﹣cosα)+=﹣()2+=﹣(﹣)2+≤,故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC中的内角A,B,C所对的边分别为a,b,c,若,且,求a2+c2的取值范围.【解答】(本题满分为14分)解:(Ⅰ)==.………………………………………(3分)所以,解得,k∈Z.所以函数f(x)的单调递增区间为,k∈Z.……………(7分)(Ⅱ)因为,所以.所以.…………………(9分)又因为,所以3=a2+c2﹣ac,即a2+c2=3+ac.而a2+c2≥2ac,所以ac≤3,即a2+c2≤6.………………(12分)又因为a2+c2=3+ac>3,所以3<a2+c2≤6.………………(14分)19.(15分)如图,四棱锥P﹣ABCD中,PC垂直平面ABCD,AB⊥AD,AB∥CD,PD=AB=2AD=2CD=2,E为PB的中点.(Ⅰ)证明:平面EAC⊥平面PBC;(Ⅱ)求直线PD与平面AEC所成角的正弦值.【解答】(Ⅰ)证明:PC⊥平面ABCD,故PC⊥AC.………………(2分)又AB=2,CD=1,AD⊥AB,所以AC=BC=.故AC2+BC2=AB2,即AC⊥BC.………………(4分)所以AC⊥平面PBC,所以平面ACE⊥平面PBC.…………………………(6分)(Ⅱ)解:PC⊥平面ABCD,故PC⊥CD.又PD=2,所以PC=.…………(8分)在平面ACE内,过点P作PF垂直CE,垂足为F.由(Ⅰ)知平面ACE⊥平面PBC,所以PF垂直平面ACE.…………(10分)由面积法得:即.又点E为AB的中点,.所以.……………………………………(12分)又点E为AB的中点,所以点P到平面ACE的距离与点B到平面ACE的距离相等.连结BD交AC于点G,则GB=2DG.所以点D到平面ACE的距离是点B到平面ACE的距离的一半,即.所以直线PD与平面AEC所成角的正弦值为.……………………(15分)另解:如图,取AB的中点F,如图建立坐标系.因为PD=2,所以.所以有:C(0,0,0),D(0,1,0),,A(1,1,0),B(1,﹣1,0),.…………(9分).,.设平面ACE的一个法量为=(x,y,z),则取x=1,得y=﹣1,.即=.…………(13分)设直线PD与平面AEC所成角为θ,则sinθ=|cos<,=.…………(15分)20.(15分)在数列{a n}中,a1=1,a2=3,且对任意的n∈N*,都有a n+2=3a n+1﹣2a n.(Ⅰ)证明数列{a n+1﹣a n}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设,记数列{b n}的前n项和为S n,若对任意的n∈N*都有,求实数m的取值范围.【解答】解:(Ⅰ)由a n+2=3a n+1﹣2a n可得a n+2﹣a n+1=2(a n+1﹣a n).………………(2分)又a1=1,a2=3,所以a2﹣a1=2.所以{a n+1﹣a n}是首项为2,公比为2的等比数列.…………………(3分)所以.…………………(4分)所以a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)=1+2+22+…+2n=2n﹣1.…………(7分)(Ⅱ)因为==.………(9分)所以S n=b1+b2+…+b n==.………(12分)又因为对任意的n∈N*都有,所以恒成立,即,即当n=1时,.………(15分)21.(15分)设点P为抛物线Γ:y2=x外一点,过点P作抛物线Γ的两条切线P A,PB,切点分别为A,B.(Ⅰ)若点P为(﹣1,0),求直线AB的方程;(Ⅱ)若点P为圆(x+2)2+y2=1上的点,记两切线P A,PB的斜率分别为k1,k2,求的取值范围.【解答】解:(Ⅰ)设直线P A方程为x=m1y﹣1,直线PB方程为x=m2y﹣1.由可得y2﹣m1y+1=0.………(3分)因为P A与抛物线相切,所以,取m1=2,则y A=1,x A=1.即A(1,1).同理可得B(1,﹣1).所以AB:x=1.………(6分)(Ⅱ)设P(x0,y0),则直线P A方程为y=k1x﹣k1x0+y0,直线PB方程为y=k2x﹣k2x0+y0.由可得.………(8分)因为直线P A与抛物线相切,所以△=1﹣4k1(﹣k1x0+y0)=.同理可得,所以k1,k2时方程的两根.所以,.………(11分)则=..………(12分)又因为,则﹣3≤x0≤﹣1,所以====..………(15分)22.(15分)设函数,x∈R.(Ⅰ)求函数f(x)在x=1处的切线方程;(Ⅱ)若对任意的实数x,不等式f(x)≥a﹣2x恒成立,求实数a的最大值;(Ⅲ)设m≠0,若对任意的实数k,关于x的方程f(x)=kx+m有且只有两个不同的实根,求实数m的取值范围.【解答】解:(Ⅰ)f'(x)=x3﹣3x2,f'(1)=﹣2..………(1分)且,所以在x=1处的切线方程为.………(3分)(Ⅱ)因为对任意的实数x,不等式f(x)≥a﹣2x恒成立.所以恒成立..………(4分)设,则g'(x)=x3﹣3x2+2=(x﹣1)(x2﹣2x﹣2)=所以g(x)在,单调递增,在,单调递减.………(6分)所以,因为,是方程x2﹣2x﹣2=0的两根.所以====﹣1.(其中)所以a的最大值为﹣1.………(9分)(Ⅲ)若对任意的实数k,关于x的方程f(x)=kx+m有且只有两个不同的实根,当x=0,得m=0,与已知矛盾.所以有两根,即与y=k有两个交点.…(10分)令,则.令p(x)=3x4﹣8x3+4m,p'(x)=12x2(x﹣2),则p(x)在(﹣∞,2)单调递减,(2,+∞)单调递增,所以p(x)min=p(2)=4m﹣16.…(11分)(ⅰ)当4m﹣16≥0时,即m≥4时,则h'(x)≥0,即h(x)在(﹣∞,0),(0,+∞)单调递增,且当x→﹣∞时,h(x)→﹣∞;当x→0﹣时,h(x)→+∞;当x→0+时,h(x)→﹣∞;当x→+∞时,h(x)→+∞.此时对任意的实数k,原方程恒有且只有两个不同的解.………(12分)(ⅱ)当0<m<4时,p(x)有两个非负根x1,x2,所以h(x)在(﹣∞,0),(0,x1),(x2,+∞)单调递增,(x1,x2)单调递减,所以当k∈(h(x2),h(x1))时有4个交点,k=h(x1)或k=h(x2)有3个交点,均与题意不合,舍去.………(13分)(ⅲ)当m<0时,则p(x)有两个异号的零点x1,x2,不妨设x1<0<x2,则h(x)在(﹣∞,x1),(x2,+∞)单调递增;h(x)在(x1,0),(0,x2)单调递减.又x→﹣∞时,h(x)→﹣∞;当x→0﹣时,h(x)→﹣∞;当x→0+时,h(x)→+∞;当x→+∞时,h(x)→+∞.所以当h(x1)=h(x2)时,对任意的实数k,原方程恒有且只有两个不同的解.所以有,,得.由h(x1)=h(x2),得,即.所以,x1x2=﹣2,x1+x2=2.故==﹣8.所以m=﹣1.所以当m≥4或m=﹣1时,原方程对任意实数k均有且只有两个解.………(15分)。
2018-2019学年浙江省台州市高三(上)期末数学试卷(解析版)

(Ⅱ)设
,记数列{bn}的前 n 项和为 Sn,若对任意的 n∈N*都有
,
第 3 页(共 16 页)
求实数 m 的取值范围. 21.(15 分)设点 P 为抛物线Γ:y2=x 外一点,过点 P 作抛物线Γ的两条切线 PA,PB,
切点分别为 A,B. (Ⅰ)若点 P 为(﹣1,0),求直线 AB 的方程; (Ⅱ)若点 P 为圆(x+2)2+y2=1 上的点,记两切线 PA,PB 的斜率分别为 k1,k2,求
第 1 页(共 16 页)
A.
B.
C.
D.2
9.(4 分)已知函数 y=sinx+acosx,x∈[0, ]的最小值为 a,则实数 a 的取值范围是( )
A.[0, ]
B.[﹣ , ]
C.(﹣∞, ]
D.(﹣∞, ]
10.(4 分)如图,在矩形 ABCD 中,AB=2,AD=1,M 为 AB 的中点,将△ADM 沿 DM 翻折.在翻折过程中,当二面角 A﹣BC﹣D 的平面角最大时,其正切值为( )
第 4 页(共 16 页)
2018-2019 学年浙江省台州市高三(上)期末数学试卷
参考答案与试题解析
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.【解答】解:B={0,1,2,3};
∴A∩B={1,2,3}.
故选:C.
2.【解答】解:由 i•z=2+i,得 z=
D.56
7.(4 分)一个袋中放有大小、形状均相同的小球,其中红球 1 个、黑球 2 个,现随机等可
能取出小球.当有放回依次取出两个小球时,记取出的红球数为 ξ1;当无放回依次取出 两个小球时,记取出的红球数为 ξ2,则( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
台州市2019届高三年级期末质量评估试卷数 学 2019.01本试题卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式:13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:11221()3V S S S S h =++ 其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24πV R = 球的体积公式:34π3V R =,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3,4}A =,{B x =∈N |33}x -≤≤,则A B =A .{1,2,3,4}B .{3,2,1,0,1,2,3,4}---C .{1,2,3}D .{1,2}2.设复数z 满足i 2i z ⋅=+,其中i 为虚数单位,则复数z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知公差不为零的等差数列{}n a 满足2314a a a =,n S 为数列{}n a 的前n 项和,则31S S 的值为 A.94 B. 94- C. 32D. 32-4.已知实数a ,b 满足224a b +=,则ab 的取值范围是 A .[0,2]B .[2,0]-C .(,2][2,)-∞-+∞D .[2,2]-5.设不为1的实数a ,b ,c 满足:0a b c >>>,则 A .log log c a b b >B .log log a a b c >C .a cb b >D .b ba c >6.在341(2)x x x-+的展开式中常数项为A .28B .28-C .56-D .567.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球.当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则A. 12E E ξξ<,12D D ξξ<B. 12E E ξξ=,12D D ξξ>C. 12E E ξξ=,12D D ξξ<D. 12E E ξξ>,12D D ξξ>8.设1F ,2F 为双曲线C :22221x y a b-=的左右焦点,点P 为双曲线C 的一条渐近线l 上的点,记直线1PF ,l ,2PF 的斜率分别为1k ,k ,2k .若1PF 关于x 轴对称的直线与2PF 垂直,且1k ,2k ,2k 成等比数列,则双曲线C 的离心率为A .62 B . 52C .5D .2 9.已知函数sin cos y x a x =+,π[0,]3x ∈的最小值为a ,则实数a 的取值范围是A .[0,3]B .[3,3]-C .(,3]-∞D .3(,]3-∞ 10.如图,在矩形ABCD 中,AB =2,AD =1,M 为AB 的中点,将△ADM 沿DM 翻折.在翻折过程中,当二面角A —BC —D 的平面角最大时,其正切值为A .33B .12C .23D .14非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.我国古代数学著作《九章算术》中记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步有木.问邑方几何?”示意图如右图,正方形ABCD 中,F ,G 分别为AD 和AB 的中点,若EF AD ⊥,=30EF ,GH AB ⊥,=750GH ,且EH 过点A ,则正方形ABCD 的边长为 ▲ .12.已知23,0,()1,0,x x f x x x x +<⎧=⎨+-≥⎩则(2)f = ▲ ;不等式()(1)f x f >的解集为 ▲ .13.已知x ,y 满足条件0,40,10,x y x y x -≤⎧⎪+-≤⎨⎪-≥⎩则2x y +的最大值是 ▲ ,原点到点(),P x y 的距离的最小值是 ▲ .14.小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有 ▲ 种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为 ▲ .15.已知某多面体的三视图如图所示,则该几何体的所有棱长和为 ▲ ,其体积为 ▲ .16.若函数21()()3f x x a x b =+++在[1,1]-上有零点,则23a b -的最小值为 ▲ .17.设圆1O ,圆2O 半径都为1,且相外切,其切点为P .点A ,B 分别在圆1O ,圆2O 上,则PA PB ⋅的最大值为 ▲ .三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分14分)已知函数()sin (3sin cos )222x x xf x =+. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)设△ABC 中的内角A ,B ,C 所对的边分别为a ,b ,c ,若3()2f B =,且3b =,求22a c +的取值范围.19.(本小题满分15分)如图,四棱锥P ABCD -中,PC 垂直平面ABCD ,AB AD ⊥,AB CD ∥,222PD AB AD CD ====,E 为PB 的中点. (Ⅰ) 证明:平面EAC ⊥平面PBC ;(Ⅱ)求直线PD 与平面AEC 所成角的正弦值.20.(本小题满分15分)在数列{}n a 中,11a =,23a =,且对任意的n ∈N *,都有2132n n n a a a ++=-. (Ⅰ)证明数列{}+1n n a a -是等比数列,并求数列{}n a 的通项公式;(Ⅱ)设12nn n n b a a +=,记数列{}n b 的前n 项和为n S ,若对任意的n ∈N *都有1n nS m a ≥+,求实数m 的取值范围.21.(本小题满分15分)设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA ,PB ,切点分别为A ,B .(Ⅰ)若点P 为(1,0)-,求直线AB 的方程;(Ⅱ)若点P 为圆22(2)1x y ++=上的点,记两切线PA ,PB 的斜率分别为1k ,2k ,求1211||k k -的取值范围.22.(本小题满分15分)设函数431()4f x x x =-,x ∈R . (Ⅰ)求函数()f x 在1x =处的切线方程;(Ⅱ)若对任意的实数x ,不等式()2f x a x ≥-恒成立,求实数a 的最大值;(Ⅲ)设0m ≠,若对任意的实数k ,关于x 的方程()f x kx m =+有且只有两个不同的实根,求实数m 的取值范围.台州市2018学年第一学期高三年级期末质量评估试题 数学参考答案 2019.01一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1—5 CDADD 6—10 ABBCB二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11. 300 12. 5;()()2,01,-+∞ 13. 6;2; 14. 32;1515. 163225++;173 16. 13- 17. 12三、解答题:本大题共 5 小题,共74分.解答应写出文字说明、证明过程或演算步骤。
18.解:(Ⅰ)2()3sinsin cos 222x x x f x =+31(1cos )sin 22x x =-+ π3sin()32x =-+. ………………………………………3分所以πππ2π2π232k x k -+<-<+,解得π5π2π2π66k x k -+<<+,k ∈Z. 所以函数()f x 的单调递增区间为π5π(2π,2π)66k k -++,k ∈Z. ……………7分(Ⅱ)因为π33()sin()322f B B =-+=,所以πsin()03B -=. 所以π=3B . …………………9分 又因为3b =,所以223=a c ac +-,即22=3+a c ac +.而222a c ac +≥,所以3ac ≤,即226a c +≤. ………………12分 又因为22=3+3a c ac +>,所以2236a c <+≤. ………………14分 19.(Ⅰ)证明: PC ⊥平面ABCD ,故PC ⊥AC . ………………2分又AB =2,CD =1,AD ⊥AB ,所以AC =BC =2.故AC 2+BC 2=AB 2,即AC ⊥BC . ………………4分所以AC ⊥平面PBC ,所以平面ACE ⊥平面PBC . …………………………6分 (Ⅱ)解: PC ⊥平面ABCD ,故PC ⊥CD .又PD =2,所以PC =3. …………8分 在平面ACE 内,过点P 作PF 垂直CE ,垂足为F .由(Ⅰ)知平面ACE ⊥平面PBC ,所以PF 垂直平面ACE . …………10分 由面积法得:即12CE PF PC BC ⋅=⋅. 又点E 为AB 的中点,1522CE PB ==. 所以305PF =. ……………………………………12分 又点E 为AB 的中点,所以点P 到平面ACE 的距离与点B 到平面ACE 的距离相等. 连结BD 交AC 于点G ,则GB =2DG .所以点D 到平面ACE 的距离是点B 到平面ACE 的距离的一半,即12PF . 所以直线PD 与平面AEC 所成角的正弦值为130220PFPD =.……………………15分 另解:如图,取AB 的中点F ,如图建立坐标系. 因为2PD =,所以3CP =.所以有:(0,0,0)C ,(0,1,0)D ,(0,0,3)P ,(1,1,0)A ,(1,1,0)B -,113(,,)222E -. …………9分 ABCDPE(第19题)x y zF(0,1,3)PD =-.(1,1,0)CA =,113(,,)222CE =-.设平面ACE 的一个法量为n (,,)x y z =,则0,30,222x y x y z +=⎧⎪⎨-+=⎪⎩取1x =,得1y =-,233z =-. 即n 23(1,1,)3=--. …………13分 设直线PD 与平面AEC 所成角为θ,则sin |cos θ=<n ,|PD >130204223==+. …………15分 20.解:(Ⅰ)由2132n n n a a a ++=-可得2112()n n n n a a a a +++-=-. ………………2分又11a =,23a =,所以212a a -=.所以1{}n n a a +-是首项为2,公比为2的等比数列. …………………3分 所以12nn n a a +-=. …………………4分 所以1211()()n n n a a a a a a -=+-++-21222n =++++21n =-. …………7分(Ⅱ)因为12(21)(21)n n n n b +=--11(21)(21)(21)(21)n n n n ++---=--1112121n n +=---.………9分 所以12n n S b b b =+++223+1111111212121212121n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭+11=121n --. ………12分又因为对任意的n ∈N *都有1n nS m a ≥+,所以+11112121n n m ≤----恒成立, 即1min1112121n n m +⎛⎫≤-- ⎪--⎝⎭,即当1n =时,13m ≤-. ………15分 21.解:(Ⅰ)设直线PA 方程为11x m y =-,直线PB 方程为21x m y =-.由121,,x m y y x =-⎧⎨=⎩可得2110y m y -+=. ………3分 因为PA 与抛物线相切,所以21=40m ∆-=,取12m =,则1A y =,1A x =.即(1,1)A . 同理可得(1,1)B -.所以AB :1x =. ………6分 (Ⅱ)设00(,)P x y ,则直线PA 方程为1100y k x k x y =-+, 直线PB 方程为2200y k x k x y =-+.由11002,,y k x k x y y x =-+⎧⎨=⎩可得211000k y y k x y --+=. ………8分 因为直线PA 与抛物线相切,所以1100=14()k k x y ∆--+20101=441=0x k y k -+.同理可得20202441=0x k y k -+,所以1k ,2k 时方程200441=0x k y k -+的两根.所以0120y k k x +=,12014k k x =. ………11分 则20122001y k k x x -=-200y x x -= . .………12分 又因为2200(2)1x y ++=,则031x -≤≤-,所以1211||=k k -1212=k k k k -204=y x -20041(2)x x -+- 20513=4()24x -++4,213⎡⎤∈⎣⎦. .………15分 22. (Ⅰ)解:32()3f x x x '=-,'(1)2f =-. .………1分且3(1)4f =-,所以在1x =处的切线方程为524y x =-+. ………3分 (Ⅱ)证明:因为对任意的实数x ,不等式()2f x a x ≥-恒成立.所以4324x a x x ≤-+恒成立. .………4分 设43()24x g x x x =-+,则32'()32g x x x =-+2(1)(22)x x x =---(1)(13)(13)x x x =----+ 所以()g x 在()13,1-,()1+3,+∞单调递增,在(),13-∞-,()1,1+3单调递减. ………6分 所以min ()min{(13),(13)}g x g g =-+, 因为13-,1+3是方程222=0x x --的两根.所以430000()24x g x x x =-+20000(22)(22)24x x x x +=-++ 2200(1)2x x =+-20021x x =-++1=-. (其中013x =±) 所以a 的最大值为1-. ………9分 (Ⅲ)解:若对任意的实数k ,关于x 的方程()f x kx m =+有且只有两个不同的实根, 当0x =,得0m =,与已知矛盾.所以43444x x m k x --=有两根,即43444x x my x --=与y k =有两个交点. …10分令4344()4x x m h x x --=,则432384'()4x x mh x x-+=. 令43()384p x x x m =-+,2'()12(2)p x x x =-,则()p x 在(,2)-∞单调递减,(2,)+∞单调递增,所以min ()(2)416p x p m ==-. …11分(ⅰ)当4160m -≥时,即4m ≥时,则'()0h x ≥,即()h x 在(,0)-∞,(0,)+∞单调递增,且当x →-∞时,()h x →-∞;当0x -→时,()h x →+∞;当0x +→时,()h x →-∞;当x →+∞时,()h x →+∞.此时对任意的实数k ,原方程恒有且只有两个不同的解. ………12分(ⅱ)当04m <<时,()p x 有两个非负根1x ,2x ,所以()h x 在(,0)-∞,1(0,)x ,2(,)x +∞单调递增,12(,)x x 单调递减,所以当21((),())k h x h x ∈时有4个交点,1=()k h x 或2=()k h x 有3个交点,均与题意不合,舍去. ………13分(ⅲ)当0m <时,则()p x 有两个异号的零点1x ,2x ,不妨设120x x <<,则()h x 在1(,)x -∞,2(,)x +∞单调递增;()h x 在1(,0)x ,2(0,)x 单调递减.又x →-∞时,()h x →-∞;当0x -→时,()h x →-∞;当0x +→时,()h x →+∞;当x →+∞时,()h x →+∞.所以当12()()h x h x =时,对任意的实数k ,原方程恒有且只有两个不同的解.所以有43113840x x m -+=,43223840x x m -+=,得2222121212123()()8()x x x x x x xx ++=++.由12()()h x h x =,得3232112233x x x x -=-,即221212123()x x x x x x ++=+. 所以22128x x +=,122x x =-,122x x +=. 故3344121288()3()m x x x x =+-+22222212112212128()()3[()2()]x x x x x x x x x x =+-+-+-8=-.所以1m =-.所以当4m ≥或1m =-时,原方程对任意实数k 均有且只有两个解.………15分。