no reflow phenomenon (60)

合集下载

病理生理学名词解释

病理生理学名词解释

病理生理学名词解释1.休克(shock):机体在各种强烈致病因素作用下时发生的一种以全身有效循环血量下降,组织血液灌流量减少为特征,进而有细胞代谢和功能紊乱及器官功能障碍的病理过程。

2.心源性休克(cardiogenic shock):是指由于心脏泵血功能障碍,心排出量急剧减少,有效循环血量下降而引起的休克,如得不到有效的治疗,死亡率极高。

见于大面积心肌梗死,心肌病,严重的心律失常及其他严重心脏病的晚期。

3.血管源性休克;分布异常性休克(maldistrubutive shock):由于广泛的小血管扩张,血管床容积增大,大量血液淤滞在舒张的小血管内,使有效血量减少而引起的休克,见于感染性,过敏性,神经源性休克等。

4.MODS:多器官功能障碍综合征是指在严重的创伤,感染和休克时,原无器官功能障碍的患者同时或在短时间内相继出现两个以上器官系统的功能障碍以致机体内环境的稳定必需靠临床干预才能维持的综合征。

6.ARDS(acute respiratory distress syndrome)急性呼吸窘迫综合征;休克肺:休克时所出现的急性呼吸功能衰竭,是指肺内、外严重疾病导致以肺毛细血管弥漫性损伤、通透性增强为基础,以肺水肿、透明膜形成和肺不张为主要病理变化,以进行性呼吸窘迫和难治性低氧血症为临床特征的急性呼吸衰竭综合征。

ARDS是急性肺损伤发展到后期的典型表现。

该病起病急骤,发展迅猛,预后极差,死亡率高达50%以上。

7.SIRS,全身炎症反应综合征:机体通过持续放大的级联反应,产生大量的促炎介质并进入循环,并在远隔部位引起全身性炎症,称为全身炎症反应综合征。

8.DIC:弥散性血管内凝血:由于某些致病因子的作用,以血液凝固性障碍为特征的病理过程。

微循环中形成大量微血栓,同时大量消耗凝血因子和血小板,同时引起继发性纤维蛋白溶解功能增强,导致患者出现明显的出血,休克,器官功能障碍,溶血性贫血等临床表现。

9.MHA,微血管病性溶血性贫血:DIC患者可伴有一种特殊类型的贫血,其特征是外周血涂片中可见一些特殊的形态各异的变形红细胞,称为裂体细胞,外形呈盔形,星形,新月形等,统称为红细胞碎片,该碎片脆性高,易发生溶血。

无复流现象(no-reflow phenomenon)-指局部血管严重痉挛、阻塞时,相应器官组织缺血,此时如使血管再通

无复流现象(no-reflow phenomenon)-指局部血管严重痉挛、阻塞时,相应器官组织缺血,此时如使血管再通

无复流现象(no-reflow phenomenon)-指局部血管严重痉挛、阻塞时,相应器官组织缺血,此时如使血管再通无复流现象(no-reflow phenomenon)-指局部血管严重痉挛、阻塞时,相应器官组织缺血,此时如使血管再通,重新恢复血流,但缺血区并不能得到充分的血流灌注,此现象称为无复流。

无复流现象常见于心肌,但也可见于脑、肾、骨骼肌等处。

学术术语来源——高压氧治疗肢体缺血再灌注无复流现象:血管内皮细胞生长因子及细胞间黏附分子1的表达文章亮点:1 高压氧对于治疗缺血再灌注损伤后血管内皮细胞生长因子、细胞间黏附分子1的水平变化在既往的研究中,主要是在脑损伤、心肌损伤方向较多,但在临床肢体缺血再灌注中对上述两指标的联合研究未见报道。

2 实验结果提示高压氧能诱导血管内皮细胞生长因子的高表达,抑制细胞间黏附分子1的表达,对于促进毛细血管的生长、内皮细胞生成、减轻缺血再灌注无复流现象对组织的损害有重要意义。

关键词:组织构建;组织工程;高压氧;缺血再灌注;无复流现象;血管内皮细胞生长因子;细胞间黏附分子1主题词:高压氧;再灌注损伤;血管内皮生长因子类;细胞粘附分子摘要背景:肢体血管损伤修复后缺血再灌注无复流现象严重影响患者的预后,高压氧对于治疗心肌缺血再灌注的效果确切,但对于治疗肢体缺血再灌注的疗效鲜有报道。

目的:检测患肢血清血管内皮细胞生长因子、细胞间黏附分子1的表达,探讨高压氧对肢体缺血再灌注后无复流现象预后的影响。

方法:临床筛选肢体主干动脉损伤病例,行血管修复,恢复肢体血供。

术后随机分为2组(外科治疗并高压氧组、外科治疗组),每组16例。

外科治疗并高压氧组以高压氧仓结合临床抗凝、趋聚等治疗,外科治疗术后仅使用临床抗凝、趋聚等治疗方案。

另外选取正常成年人体检志愿者16例单纯使用高压氧治疗为高压氧组。

3组均于术后8 h、72 h、7 d以酶联免疫吸附法检测再灌注肢体血清血管内皮细胞生长因子、细胞间黏附分子1表达水平。

基础医学分类模拟17

基础医学分类模拟17

基础医学分类模拟17一、名词解释1. 自由基(free radical)答案:自由基(free radical):自由基是外层轨道上有单个不配对电子的、可以独立存在的原子、原子团或分子。

自由基在元素符号右上角加黑点以表示未配对的电子,如H·、OH·等,其化学性质极为活泼,极易与其生成部位的其他物质发生反应,经失去电子(氧化)或接受电子(还原),成为稳定的分子,故大多数自由基寿命很短。

2. 氧自由基(oxygen-radical)答案:氧自由基(oxygen-radical):由氧诱发的自由基称为氧自由基,属非脂性自由基。

和OH·为氧自由基,单线态氧(1O2)和过氧化氢(H2O2)并非自由基,但化学性质十分活泼,称为活性氧。

3. 脂性自由基(lipid radical)答案:脂性自由基(lipid radical):多价不饱和脂肪酸在氧自由基或活性氧作用下,生成中间代谢产物如烷自由基(R·,L·)、烷氧自由基(RO·,LO·)等,均属于脂性自由基。

4. 缺血-再灌注损伤(ischemia-reperfusion injury)答案:缺氧-再灌注损伤(ischemia-reperfusion injury):当器官组织缺血时间较长,尽管没有造成器官组织不可逆损伤,在恢复血液灌流后,器官组织反而出现比再灌注前更明显、更严重的损伤,引起结构破坏和功能障碍加重的病理变化,这种现象被称为缺血-再灌注损伤。

5. 钙反常(calcium paradox)答案:钙反常(calcium paradox):在离体心脏灌注实验中,用无钙溶液灌流一定时间后再以富钙溶液灌流,引起心功能障碍和形态学变化,称之为钙反常。

6. 氧反常(oxygen paradox)答案:氧反常(oxygen paradox):在离体心脏灌注实验中,用缺氧溶液灌流后再改用富氧溶液灌流,可发生与钙反常类似的情况,称之为氧反常,但细胞内钙浓度增加和细胞受损程度较轻。

循环系统名词解释

循环系统名词解释

循环系统名词解释1.充血hyperemia :器官或局部组织的动脉血管内血液含量增多。

2淤血congestion:由于静脉血液回流受阻,血液淤积于小静脉和毛细血管内,使局部组织或器官血管内的血液含量增多。

3.心力衰竭细胞(heart failure cells):左心衰竭肺淤血时,有些巨噬细胞吞噬了红细胞并将其分解,胞浆内形成含铁血黄素,此时这种细胞称为心力衰竭细胞。

4.肺褐色硬化(brown induration) :长期的左心衰竭和慢性肺淤血,会引起肺间质网状纤维胶原化和纤维结缔组织增生,使肺质地变硬,加之大量含铁血黄素的沉积,肺呈棕褐色,称为肺褐色硬化。

5.槟榔肝(nutmeg liver) : 慢性肝淤血时,肝小叶中央区除淤血外,肝细胞因缺氧、受压而萎缩或消失,小叶外围肝细胞出现脂肪变,这种淤血和脂肪变的改变,在肝切面上构成红黄相间的网络状图纹,形似槟榔,故有槟榔肝之称。

6.血栓形成thrombosis 在活体的心脏和血管内,血液发生凝固或血液中某些有形成分凝集形成固体块状物的过程。

7.血栓thrombus:在活体的心脏和血管内,血液发生凝固或血液中某些有形成分凝集所形成的固体质块称为血栓。

8.白色血栓Pale thrombus :由血小板和纤维蛋白聚集形成的灰白色血栓称为白色血栓。

9.混合血栓Mixed thrombus 在血小板小梁间血流几乎停滞,血液乃发生凝固,可见红细胞被包裹于网状纤维蛋白中,肉眼上呈灰白色与红褐色相间的条纹状结构,这种血栓称为混合血栓。

10.红色血栓red thrombus :见于血管阻塞后,局部血流停滞,血液发生凝固,主要由红细胞形成的暗红色凝血块称为红色血栓。

11..透明血栓Hyaline thrombus :发生于微循环血管内,由纤维蛋白构成的半透明状、微小血栓称为透明血栓,又称微血栓。

12..栓塞embolus :在循环血液中出现的不溶于血液的异常物质,随血流运行阻塞血管腔的现象。

病生简答(1)

病生简答(1)

病生简答(1)名词解释:水肿:指过多的液体在组织间隙或体腔中积聚的病理过程。

(渗透压却没有明显改变)积水(hydrops):体腔内过多液体的积聚称为积水,如心包积水,胸腔积水、腹腔积水等。

水中毒(water intoxication):是指水在体内潴留,并伴有低钠血症、脑神经细胞水肿等一系列症状和体征的病理过程。

机制—肾排水功能不足;低渗性脱水晚期;给予ADH分泌增多的患者输入过多水分;有效循环血容量减少或肾上腺皮质功能低下。

发热(fever):指在发热激活物的作用下,体温调节中枢调定点上移而引起的调节性体温升高,并超过正常值的0.5℃。

过热:指由于体温调节障碍,或产热、散热功能异常,机体不能将体温控制在与调定点相适应的水平而引起的非调节性体温升高,是被动性体温升高。

弥散障碍(diffusion impairment):指由于呼吸膜面积减少、呼吸膜异常增厚或弥散时间明显缩短所引起的气体交换障碍。

限制性通气不足(restrictive hypoventilation):指因吸气时肺泡扩张受限而引起的肺泡通气不足。

原因—呼吸肌活动障碍;胸部和肺的顺应性降低。

阻塞性通气不足(obstructive hypoventilation ):气道狭窄或阻塞所致的通气障碍。

脱水热:指严重脱水患者,由于皮肤蒸发的水分减少,机体散热功能受到影响,而引起的体温升高,常见于婴幼儿。

缺氧:指组织、细胞因供氧不足或用氧功能障碍而导致功能、代谢和形态结构改变的病理过程。

有以下几类:乏氧性缺氧(青紫色):指由于动脉血氧分压降低,血氧含量减少,导致组织供氧不足的缺氧,又称低张性缺氧-----吸入氧分压过低;外呼吸功能障碍;静脉血分流入动脉。

血液性缺氧:指由于Hb的含量减少或性质改变而导致的缺氧。

此时动脉血的氧分压和氧饱和度均正常,故又称等张性缺氧------Hb含量减少;血红蛋白性质改变(CO中毒—樱桃红色;高铁血红蛋白症—咖啡色—亚硝酸盐等中毒;血红蛋白氧亲和力异常增高—输入大量库存血或碱性液体)。

病理生理学名词解释

病理生理学名词解释

✧血氧分压(partial pressure of oxygen,PO2):指物理溶解于血液中的氧所产生的张力。

✧血氧容量(oxygen binding capacity,CO2max):指100ml血液中得血红蛋白完全氧和后的最大带氧量,取决于血液中血红蛋白的量及其与O2结合的能力。

✧血氧含量(oxygen content,CO2):指100ml血液中实际含氧量,包括物理溶解的和与Hb结合的氧量。

✧血氧饱和度(oxygen saturation,SO2):指Hb结合氧的百分数,约等于血氧含量/血氧容量。

✧低张性缺氧(hypotonic hypoxia):动脉氧分压降低,动脉血氧含量降低,又称乏氧性缺氧;吸入氧分压过低、外呼吸功能障碍和静脉血分流是其主要原因。

✧血液性缺氧(hemic hypoxia):主要因为血红蛋白含量减少或性质改变引起的血氧含量降低,但动脉氧分压正常,故又称等张性缺氧(isotonic hypoxia),主要特点为血氧含量降低或血红蛋白氧亲和力过高。

✧循环性缺氧(circulatory hypoxia):是指因组织血流量减少引起的组织供氧不足,又称低血流性缺氧或低动力性缺氧(hypokinetic hypoxia)。

主要特点是动-静脉血氧含量差增大。

✧组织性缺氧(histogenous hypoxia):指组织、细胞对氧的利用障碍,故又称氧利用障碍性缺氧(dysoxidative hypoxia)。

线粒体功能和结构障碍是主要原因,主要特点是动-静脉血氧含量差减少。

✧低氧通气反应(hypoxia ventilation reation HVR):动脉血氧分压降低时呼吸加深加快,肺通气量增加✧氧中毒(oxygen intoxication):吸入氧分压过高、吸氧时间过长,可引起细胞损害、器官功能障碍,称为氧中毒。

✧低渗性脱水(hypotonic dehydration):体液容量减少,以失纳多于失水,血清钠浓度<130mmol/L、血浆渗透压<280mOsm/L为主要病理变化过程。

病理生理学 名词解释 及大题

病理生理学 名词解释 及大题

病理生理学pathophysiology:是一门研究疾病发生、发展、转归的规律和机制的科学。

病理过程pathological process:多种疾病过程中出现的共同的功能、代谢和形态的病理变化。

疾病:在致病因素的损伤与机体的抗损伤作用下,因自稳调节紊乱而发生的异常生命活动过程。

致病因素etiological factors :能够引起某一疾病并决定疾病特异性的因素。

诱因(predisposing factor):作用于病因或机体促进疾病发生发展的因素。

恶性循环(vicious cycle):在某些疾病因果交替的发展过程中,几种变化互为因果,构成一个环式运动,每一次循环都使病情加重,称恶性循环。

完全康复(complete recovery)是指病因去除后,患病机体的损伤和抗损伤反应完全消失、形态结构损伤完全修复、机体功能和代谢完全恢复到正常状态,以及临床症状和体征完全消退。

不完全康复(incomplete recovery)是指原始病因消除后,患病机体的损伤性变化得以控制,但机体内仍存在病理变化,只是机体通过代偿反应维持相对正常的生命活动。

脑死亡(brain death)是指以脑干或脑干以上全脑不可逆转的永久性地功能丧失,使得机体作为一个整体功能的永久停止。

脱水dehydration:钠水代谢紊乱造成体液容量的明显减少导致机体功能和代谢紊乱的病理过程。

脱水热:由于从皮肤蒸发的水分减少,使散热受到影响,从而导致体温升高,称之为脱水热。

脱水征:因组织间液量减少,临床上出现皮肤弹性减退、眼窝下陷,婴幼儿囟门凹陷等体征。

水肿edema:过多的液体在组织间隙或体腔内积聚称为水肿。

隐性水肿(recessive edema)指全身水肿病人的组织液增多小于原体重的10%,增多的液体能被组织间隙中的胶状物完全吸附,故无游离液体存在,因此局部按压无凹陷出现。

凹陷性水肿(recessive edema)指全身水肿病人的组织液增多超过原体重的10%,增多的液体不能被组织间隙中的胶状物完全吸附,故有游离液体存在,皮肤肿胀,弹性差,皱纹变浅,按压有凹陷。

11心内科名词解释

11心内科名词解释

第十一节心血管名词解释加速性室性自主心律(Accelerated idioventricular rhythm)最常见急性心肌梗死的患者,在急性期可多次反复发作,是急性心肌梗死24h内常见的心律失常。

也是急性心肌梗死再灌注时最常见的心律失常,经溶栓或P丁。

人治疗后血管再通者其发生率为20.8%。

其发生机制系浦肯野纤维的自律性增加,伴或不伴有窦房结起搏功能低下。

按心率快慢分成两型:①心室率为60〜75次/min的患者,极少发生病理性阵发性持续性室性心动过速;②心室率为75〜100次/min者,容易发生病理性阵发性持续性室性心动过速.酒精性心肌病(Alcoholic cardiomyopathy):长期大量饮酒史,临床显示心脏扩大和心衰等类似扩张型心肌病临床表现,既往无其他心脏病病史,早期发现并戒酒6个月后心肌病临床表现改善,可诊断为酒精性心肌病。

有资料认为日饮白酒150ml,持续5年以上可导致酒精性心肌病的发生。

醛固酮逃逸(Aldosterone escape):在高血压或者心衰的治疗时,在经过ACEI或ARB治疗一段时间以后,一部分患者血浆醛固酮水平有所升高,这种现象叫做醛固酮逃逸。

踝臂指数(Ankle-brachial index),又称踝肱指数,为踝部动脉收缩压和双侧肱动脉收缩压的最高值之比。

正常范围为0.9-1.0,<0.9提示下肢供血不足;0.5-0.8轻中度动脉病变和下肢缺血;0.1- 0.5提示下肢严重缺血,需要手术;<0.1提示下肢出现坏死,危急生命。

致心律失常性右室心肌病(Arrhythmogenic rightventricular cardiomyopathy):旧称致心律失常性右室发育不良,其特征为右心室心肌被进行性纤维脂肪组织所替代,临床常表现为右心室扩大、心律失常和猝死。

阿司匹林抵抗(Aspirin resistance):阿司匹林可减少高危患者心肌梗死、心源性猝死及脑卒中,但在规律服用治疗剂量阿司匹林的情况下,仍出现血栓性或栓塞性事件的现象,又名阿司匹林无反应或阿司匹林耐受。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Symposium PaperThe metamorphosis of myocardial infarction followingcoronary recanalizationCristina Basso ⁎,Stefania Rizzo,Gaetano ThieneDepartment of Medical Diagnostic Sciences and Special Therapies,University of Padua Medical School,Padua,ItalyReceived 30April 2009;accepted 26June 2009AbstractThe “metamorphosis ”of acute myocardial infarction (AMI)in terms of pathological features and complications in the reperfusion era is herein discussed.Typically,the AMI following coronary artery recanalization is characterized by frequent subendocardial location,since a prompt coronary lumen recanalization is able to prevent the transmural progression of myocardial necrosis from the endocardium towards the epicardium.Transmural AMI may develop when recanalization occurs late (>6hours)or is not effective (persistent coronary occlusion).Moreover,reperfused AMI frequently appears reddish because of interstitial haemorrhage,which is thought to be caused by vascular cell damage with leakage of blood out of the injured vessels.Hemorrhage occurs always within the area of necrosis and it is significantly related to the infarct size and to the coronary occlusion time.At histology,typical features of reperfused AMI consist of contraction band necrosis and interstitial hemorrhage.Moreover,a more pronounced inflammatory cellular response is visible within the necrotic area when comparing reperfused with non-reperfused AMI.Reperfusion after prolonged coronary occlusion is also associated with secondary impairment of microcirculatory flow (“no-reflow ”phenomenon),that is due to endothelial swelling,luminal obstruction and external compression but may also be aggravated by distal embolization.Finally,the reperfused AMI with its typical subendocardial,non-trasmural location,is characterized by a lower incidence of expansive remodelling and related complications,in terms of cardiogenic shock,myocardial rupture,aneurysm and pseudoaneurysm formation and thromboembolism.Moreover,pericardial involvement is a rare occurrence.Unfavorable mechanical consequences of intramyocardial haemorrhage could consist in increased myocardial stiffness,propensity to wall rupture and delayed healing process.However,prospective in vivo large-scale studies in patients with reperfused AMI are needed to assess the prognostic value of hemorrhagic AMI in terms of morbidity and mortality.The knowledge and correct interpretation of these findings at post-mortem by the general and forensic pathologists is of great importance,to provide useful information to the clinicians.©2010Elsevier Inc.All rights reserved.Keywords:Myocardial infarction;Coronary recanalizationAcute myocardial infarction (AMI)remains a major cause of morbidity and mortality in Western countries [1].In the preinterventional era,the management of AMI focused on treatment and/or prevention of complications.After thediscovery of the “wave-front phenomenon ”[2,3]and the identification of coronary artery thrombosis as primum movens of AMI [4],multiple therapeutic strategies were developed to rapidly restore blood flow to the myocardium with the ultimate goal of infarct size reduction and improvement in clinical outcome [5].Mortality from AMI has been significantly decreasing,and this drop appears to be mainly the consequence of the decline in the incidence of ST-segment elevation myocardial infarction (STEMI)and of an absolute reduction in case fatality rate once STEMI has occurred [6].Most deaths in hospitalized patients are now due to heart failure and mechanical pared with the prereperfusion era,fatal ventricular tachyarrhyth-mias are less common,although sudden cardiac deathCardiovascular Pathology 19(2010)22–28Presented at the United States and Canadian Academy of Pathology Society for Cardiovascular Pathology Companion Meeting,Denver,CO,March 2,2008.The study was supported by the Registry for Cardio-cerebro-vascular Pathology,Veneto Region,Venice,Italy.⁎Corresponding author.Department of Medical Diagnostic Sciences and Special Therapies,University of Padua Medical School,Via A.Gabelli,61,Padua,Italy.Tel.:+390498272286;fax:+390498272284.E-mail address:cristina.basso@unipd.it (C.Basso).1054-8807/09/$–see front matter ©2010Elsevier Inc.All rights reserved.doi:10.1016/j.carpath.2009.06.010remains the main cause of death in out-of-hospital AMI and a substantial cause of late mortality in those with severe impairment of left ventricular function.This review will focus on the pathological features and complications of AMI,to address its“metamorphosis”from the pre-to the postinterventional era.The knowledge and correct interpretation of these findings at postmortem by the general and forensic pathologists are of great importance,to provide useful information to the clinicians.1.Pathobiology of acute myocardial ischemiaIschemic heart disease refers to a group of clinical-pathological conditions caused by a discrepancy between myocardial oxygen supply and demand,including acute coronary syndromes like unstable angina,non-STEMI (NSTEMI)and STEMI,and chronic ischemic heart disease[7].Occlusive or mural thrombosis due to plaque disruption/ fissuring or erosion,complicating an atherosclerotic plaque, represents the main cause of acute coronary syndromes[8]. Although spontaneous reperfusion of the infarct-related coronary artery may occur,thrombotic occlusion usually persists in the majority of patients suffering from AMI.Myocardial necrosis progresses with the duration of coronary occlusion,extending from the subendocardium towards the subepicardium,as to involve the full thickness ventricular wall.Coronary occlusion leads to transmural AMI when exceeding6h.This concept of“wavefront phenomenon of myocardial death”was established in the 1970s by Reimer and Jennings[2,3]using a canine model of acute coronary occlusion.After an acute coronary occlusion, infarct size depends mainly on the extent of the territory distal to the culprit coronary plaque(area at risk),the presence and magnitude of residual flow(subtotal occlusion, collaterals),and the duration of ischemia.The knowledge that the vast majority of AMI is caused by an occlusive coronary thrombosis and that the myocardium can be salvaged for a period of time after the onset of occlusion(“time is muscle”)has led to a revolution in the therapeutic strategies.Aggressive pharmacological or inter-ventional approaches were then searched for,with the aim to restore coronary artery patency as early as possible to produce effective myocardial reperfusion and prevent further loss of viable myocardium.The earlier the reperfusion therapy after the onset of AMI,the greater the potential for reduction of infarct size and mortality.In fact,the highest number of lives saved by reperfusion therapy is within the first hour after symptom onset,the so-called golden hour[9].In the experimental setting,myocardial ischemia results in a characteristic pattern of metabolic and ultrastructural altera-tions of the cardiomyocytes,including the mitochondria, nuclei,myofilaments,other organelles,and sarcolemma[10]. If ischemia persists,myocardial injury becomes irreversible, usually between20and45min after coronary occlusion,thus accounting for AMI.The microvasculature also shows damages,although typically postponed as compared to cardio-myocyte injury(i.e.,between45and60min),and this explains why the reperfused AMI is often hemorrhagic[11,12].At difference from data obtained from experimental animal models,we must consider that the pathologic features of human AMI are“biased”by the selection criteria,since they are obviously based upon patients who die due to AMI. Most patients with AMI who are admitted early to intensive care units and interventional labs undergo timely successful revascularization and have a good prognosis and,as a consequence,are not studied at postmortem.On the contrary, fatal AMI seen in the autopsy room usually refers to cases occurring out of the hospital or to patients who came late to the emergency room,thus receiving either no or late coronary revascularization.2.The“classic”pathology of AMI in the prerecanalization eraThe gross features of AMI and their histological counter-parts are quite variable,depending on the time interval between the onset of coronary occlusion and death and on whether coronary occlusion does exist.AMI can be divided into two major types,i.e.,transmural,when themyocardial Fig.1.Gross features of AMI in the pre-and postrecanalization era:(A) white,anemic transmural AMI with wall thinning and expansion;(B) hemorrhagic,red transmural AMI.23C.Basso et al./Cardiovascular Pathology19(2010)22–28necrosis involves the full thickness of the ventricular wall,and subendocardial (or nontransmural),when the myocardial necrosis remains confined to the inner layers.While the transmural AMI is usually precipitated by an occlusive thrombosis of the infarct-related coronary artery,the subendocardial AMI frequently occurs in the setting of multivessel obstructive coronary atherosclerosis,without lumen occlusion [13].According to the recent definition [7],AMI can be classified by size —microscopic (focal necrosis),small (b 10%of the left ventricular myocardium),moderate (10–30%),and large (N 30%)—and by location.Moreover,myocardial infarction can be defined “pathologically ”as acute,healing,or healed,and “temporally ”as evolving (b 6h),acute (6h –7days),healing (7–28days),and healed (29days and beyond).Noteworthy,the clinical and electrocardiographic timing of an AMI may not correspond exactly with the pathological timing.It takes several hours before myocardial necrosis can be identified by macroscopic or microscopic postmortem examination [14,15].At gross examination,myocardial changes are in fact difficult to identify in the early hours after coronary occlusion (b 6h from onset)and histochemical methods are available to help in the identification of AMI in the acute phase.They consist in the immersion of a slice of the myocardium in a solution of nitro blue tetrazolium or triphenyiltetrazolium that imparts a blue or red stain,respectively,to the noninfarcted area preserving the dehydrogenase enzymes.From 6to 12h,the infarcted region is pale,anemic,and turns grayish from 18to 24h.From days 1to 3,the infarct area is centered by a yellow-tan core,then surrounded by the hyperemic borders on days 3–7and eventually involving the entire infarct area on days 7–10(Fig.1A).Fibrous gray scar starts to develop from the periphery to the center from the second week,to be completed after the secondmonth.Fig.2.Histological features of AMI.(A)Waviness of cardiomyocytes;(B)coagulative cardiomyocyte necrosis and neutrophil infiltrates;(C)macrophage infiltrates;(D)contraction band necrosis (reperfused AMI);(E)interstitial hemorrhage (reperfused AMI);(F)small vessel damage and massive interstitial hemorrhage (reperfused AMI)Hematoxylin and eosin stain.24 C.Basso et al./Cardiovascular Pathology 19(2010)22–28The histological features also reflect the age of AMI (Fig.2A–C).The characteristic findings cannot be recognized on light microscopic examination until6–8h after coronary occlusion,with the only exception of the so-called myocyte waviness,especially at the periphery of the infarct.After8h,interstitial edema becomes evident.After 12h,early neutrophilic infiltrates appear and coagulative necrosis(hypereosinophilic changes in myocytes and nuclear pyknosis)starts and progresses with loss of the nuclei(days1–3).Between days1and3,polymorpho-nuclear leukocytes accumulate first at the periphery and then in the center of the infarct,with release of lytic enzymes.Between days3and7,early removal of necrotic debris by macrophages begins,and then a progressive infiltration of lymphocytes and fibroblasts occurs.By8 days,the necrotic cardiomyocytes are dissolved.Finally, granulation tissue and neo-vessel formation first appear at the periphery on day10,evolving through loose(week2) and dense collagen deposition(from3to6weeks).plications of AMI in the prerecanalization eraMajor complications of AMI in terms of mortality and morbidity include ventricular arrhythmias,cardiogenic shock,cardiac rupture,and electromechanical dissociation [16].Moreover,infarct expansion with wall thinning and aneurysm formation,mitral valve incompetence,mural thrombosis,and thromboembolism can occur(Table1).Postinfarction remodeling has been divided into an early phase(b72h)and a late phase(N72h).The early phase involves expansion of the infarct zone,which may result inearly ventricular rupture or aneurysm te remode-ling involves the left ventricle globally and is associated with dilatation and mural compensatory hypertrophy,which are adaptive responses during postinfarction remodeling[17].Infarct expansion,thinning,and disproportionate dilation of the infarct segment seem to begin within hours of AMI and to be associated with hypertension,anterior transmural location,persistent occlusion of the infarct artery,and poor collaterals.Wall rupture and late aneurysm formation are structural consequences of infarct expansion.True ventricular aneurysms are circumscribed,thin-walled fibrous,noncontractile outpouchings of the ventricle and occur as a consequence of transmural AMI[18].They are mostly apical(in the setting of anteroseptal AMI),since the apex is the thinnest region of the ventricle and is an area of the heart that is particularly vulnerable to expansion,and their clinical sequelae include congestive heart failure,throm-boembolism,and ventricular tachyarrhythmias(Fig.3).Postinfarction cardiac ruptures include free wall rupture, ventricular septal defects,and papillary muscle rupture [19,20].After ventricular arrhythmias and cardiogenic shock,cardiac rupture is the third most common cause of death in AMI.Free wall rupture occurs10times more frequently than septal or papillary muscle ruptures.Old age, female gender,hypertension,first AMI,and long interval between symptoms onset and treatment are independent factors of free wall rupture.Rupture usually occurs in the first4days after AMI onset,when coagulation necrosis and neutrophilic infiltration are at their peak,accounting for a fragile wall.At difference from nonruptured AMI,those with rupture show a more extensive inflammation and ofteneosinophils.Fig. plications of transmural AMI:aneurysm,mural thrombus formation,and pericarditis.(A)Anteroseptal transmural white AMI with expansion,aneurysm formation,and mural endocardial thrombosis;(B) fibrinous pericarditis(hematoxylin and eosin stain).Table1Pathologic features of AMI in the pre-and postrecanalization eraNonreperfused AMI Reperfused AMI Extension Transmural Subendocardial Aspect White,anemic Red,hemorrhagic Expansion and relatedcomplicationsRare–Aneurysm Frequent Rare–Cardiogenic shock Frequent Rare–Cardiac rupture Frequent Rare–Mural thrombosis Frequent Rare–Embolism Frequent Rare Pericardial involvement Frequent RareRight ventricular infarction Frequent RareHistologic features–Contraction band necrosis Rare Frequent–Interstitial hemorrhage Rare Frequent–Microembolization Rare Frequent 25C.Basso et al./Cardiovascular Pathology19(2010)22–28Three types of post-AMI cardiac ruptures have been identified:an abrupt tear in the wall without thinning(Type I), erosion of the necrotic myocardium covered by thrombus (Type II),and marked thinning of the necrotic wall with expansion and aneurysm formation(Type III)[21],the last one being particularly frequent in the prereperfusion era(Fig.4).Some patients may have a subacute course as a result of a “contained”rupture by adhesion of the surrounding pericardium,with pseudoaneurysm formation[22].Emboli-zation from thrombotic material entrapped in the cavity of the pseudoaneurysm,congestive heart failure,and late cardiac rupture have been reported.Ventricular septal defects complicate1–2%of all nonreperfused AMI[23]and are more common in females and in those with advanced age and single-vessel disease with poorly developed collaterals.In cases of anterior transmural AMI,the rupture is usually located in the anteroapical part of the interventricular septum,whereas in inferior AMI the defect occurs in its basal part.Fibrinous pericarditis complicates up to25%of trans-mural AMI[24](Fig.3B).The organization of fibrinous pericarditis may lead to pericardial adhesion and prevent late cardiac rupture.In3–4%of patients suffering from AMI, Dressler syndrome appears weeks or months after the onset of AMI,probably due to immune response.Right ventricular AMI occurs exclusively in transmural posteroseptal infarc-tion in the setting of concomitant obstructive disease of the left anterior descending coronary artery[25].3.The pathology of AMI in the reperfusion era:a metamorphosisThe amount of salvaged myocardium is related to the duration of total coronary artery occlusion,the level of myocardial oxygen consumption,and the collateral blood flow.In other words,the effects of reperfusion are quite variable and depend on the duration and severity of preceding ischemia.Typically,the AMI following coronary artery recanalization is characterized by frequent subendo-cardial location,since a prompt coronary lumen recanaliza-tion,either pharmacological or interventional,is able to prevent the transmural progression of myocardial necrosis from the endocardium towards the epicardium.Transmural AMI may develop when recanalization occurs late(N6h)or is not effective(persistent coronary occlusion)(Table1).Reperfused AMI frequently appears reddish because of interstitial hemorrhage[26–28](Fig.1B).Experimental plications of transmural AMI:cardiac rupture.(A)Diagram illustrating the three types of post-AMI cardiac rupture:an abrupt tear in the wall without thinning(Type I),erosion of the necrotic myocardium(Type II),and marked thinning of the necrotic wall with expansion and aneurysm formation(Type III). Modified from Becker and van Mantgem[21].(B)Gross features of Type I postinfarction free wall rupture.(C)Gross features of Type III postinfarction free wall rupture.26 C.Basso et al./Cardiovascular Pathology19(2010)22–28models first showed myocardial hemorrhage in the setting of prolonged coronary occlusion and reperfusion[2,24,26]. Then,myocardial hemorrhage after reperfusion has been described also in humans,following cardiac surgery, percutaneous transluminal coronary angioplasty,and fibri-nolysis.Hemorrhagic infarcts are thought to be caused by vascular cell damage with leakage of blood out of the injured vessels.It is well known that vascular cell damage occurs after myocardial cell necrosis and thus it represents a relatively late event in the course of AMI at the time of already irreversible myocyte damage.Moreover,infarct hemorrhage occurs always within the area of necrosis and it is significantly related to the infarct size and to the coronary occlusion time.As such,hemorrhage is not related to the type of recanalization as it was originally thought,since hemorrhagic infarcts can develop both after percutaneous coronary interventions and after thrombolysis.In each instance,the major determinant of hemorrhage is the time interval between the onset of coronary occlusion and the reflow,which is the extent of hemorrhage increased by the delay in reperfusion.At histology,typical features of reperfused AMI consist of contraction band necrosis and interstitial hemorrhage [5,26,29](Fig.2D–F).During the earliest minutes of reperfusion,contraction band necrosis has been ascribed to cardiomyocyte calcium overload.Although ischemic myo-cytes following reperfusion suddenly develop ultrastruc-tural changes indicative of cell death,they are still apparently normal from a histological point of view;it is likely that most of the myocytes are already irreversibly injured by the time reperfusion occurred,due to loss of plasma membrane integrity,and reperfusion simply accel-erates the phenomenon.When comparing reperfused with nonreperfused AMI at the same time intervals,besides interstitial hemorrhage,a more pronounced inflammatory cellular response is visible within the necrotic area in the former.Finally,reperfusion after prolonged coronary occlusion is associated with secondary impairment of microcirculatory flow(“no-reflow”phenomenon),which is due to endothelial swelling,luminal obstruction(viscosity,neutrophil plug-ging,platelet),and external compression(edema,hemor-rhage,myocyte swelling),but may also be aggravated by distal embolization of plaque debris and thrombus into the microvasculature.This embolization can occur sponta-neously or as a result of intracoronary manipulation[5]. plication of reperfused AMIEarly mortality due to ventricular arrhythmias is reduced after successful percutaneous coronary intervention[30]. Overall,the reperfused AMI with its typical subendocar-dial,nontrasmural location,is characterized by a lower incidence of expansive remodeling and related complica-tions,in terms of cardiogenic shock,myocardial rupture, aneurysm and pseudo-aneurysm formation,and throm-boembolism[29].Moreover,pericardial involvement is a rare occurrence[31,32].Although reperfusion therapy has decreased the inci-dence of cardiac rupture,and particularly that of ventricular septal defect(0.2%of reperfused AMI)[33],this complica-tion has a higher rate among patients subjected to late fibrinolysis(i.e.,several hours after the onset of symptoms), in comparison to those with early drug administration (within6–8h of the onset of symptoms)[34].Moreover,it manifests earlier in the postinfarct period(within the first 24h),in contrast with the nonreperfused AMI.Typically, early ruptures are of Type I and occur in AMI with large intramural hematomas that dissect the myocardium and rupture[35].Further unfavorable mechanical consequences of intra-myocardial hemorrhage could consist in increased myocar-dial stiffness,propensity to wall rupture,and delayed healing process.However,at present,the clinical implications of hemorrhagic vs.anemic infarcts remain undetermined and are based almost exclusively upon postmortem data. Prospective in vivo large-scale studies in patients with reperfused AMI are needed to assess the prognostic value of hemorrhagic AMI in terms of morbidity and mortality. Cardiac imaging techniques able to provide not only morpho-functional but also tissue characterization informa-tion,such as magnetic resonance with gadolinium enhance-ment[28],will be of help in solving these issues. References[1]White HD,Chew DP.Acute myocardial ncet2008;372:570–84.[2]Reimer KA,Lowe JE,Rasmussen MM,Jennings RB.The wavefrontphenomenon of ischemic cell death:1.Myocardial infarct size vs duration of coronary occlusion in dogs.Circulation1977;56:786–94.[3]Reimer KA,Jennings RB.The“wavefront phenomenon”of myocar-dial ischemic cell death:II.Transmural progression of necrosis within the framework of ischemic bed size(myocardium at risk)and collateral b Invest1979;40:633–44.[4]DeWood MA,Spores J,Notske R,Mouser LT,Burroughs R,GoldenMS,Lang HT.Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction.N Engl J Med1980;303: 897–902.[5]Basso C,Thiene G.The pathophysiology of myocardial reperfusion:apathologist's perspective.Heart2006;92:1559–62.[6]Fox KA,Steg PG,Eagle KA,Goodman SG,Anderson FA,GrangerCB,Flather MD,Budaj A,Quill A,Gore JM,GRACE Investigators.Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006.JAMA2007;297:1892–900.[7]Braunwald E,Antman EM,Beasley JW,Califf RM,Cheitlin MD,Hochman JS,Jones RH,Kereiakes D,Kupersmith J,Levin TN,Pepine CJ,Schaeffer JW,Smith EE,Steward DE,Theroux P,Gibbons RJ, Alpert JS,Faxon DP,Fuster V,Gregoratos G,Hiratzka LF,Jacobs AK, Smith SC.ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002:summary article:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(Committee on the Management of Patients With Unstable Angina).Circulation2002;106:1893–900.[8]Davies MJ.The pathophysiology of acute coronary syndromes.Heart2000;83:361–6.27C.Basso et al./Cardiovascular Pathology19(2010)22–28[9]Boersma E,Maas AC,Deckers JW,Simoons ML.Early thrombolytictherapy in acute myocardial infarction:reappraisal of the golden hour.Lancet1996;348:771–5.[10]Buja LM.Myocardial ischemia and reperfusion injury.CardiovascPathol2005;14:170–5.[11]Reimer KA,Jennings RB,Tatum AH.Pathobiology of acutemyocardial ischemia:metabolic,functional and ultrastructural studies.Am J Cardiol1983;52:72A–81A.[12]Kloner RA,Rude RE,Carlson N,Maroko PR,DeBoer LW,BraunwaldE.Ultrastructural evidence of microvascular damage and myocardialcell injury after coronary artery occlusion:which comes first?Circulation1980;62:945–52.[13]Roberts WC,Buja LM.The frequency and significance of coronaryarterial thrombi and other observations in fatal acute myocardial infarction:a study of107necropsy patients.Am J Med1972;52:425–43.[14]Fishbein MC,Maclean D,Maroko PR.The histopathologic evolutionof myocardial infarction.Chest1978;73:843–9.[15]Robbins SL,Cotran RS.Pathologic basis of disease.Philadelphia:Elsevier Saunders,2005.[16]Hochman JS.Cardiogenic shock complicating acute myocardialinfarction:expanding the paradigm.Circulation2003;107:2998–3002.[17]French BA,Kramer CM.Mechanisms of post-infarct left ventricularremodeling.Drug Discov Today Dis Mech2007;4:185–96.[18]Friedman BM,Dunn MI.Postinfarction ventricular aneurysms.ClinCardiol1995;18:505–11.[19]Reddy SG,Roberts WC.Frequency of rupture of the left ventricularfree wall or ventricular septum among necropsy cases of fatal acute myocardial infarctions since introduction of coronary care units.Am J Cardiol1989;63:906H–11H.[20]Pollak H,Nobis H,Mlczoch J.Frequency of left ventricular free wallrupture complicating acute myocardial infarction since the advent of thrombolysis.Am J Cardiol1994;74:184–6.[21]Becker AE,van Mantgem JP.Cardiac tamponade.A study of50hearts.Eur J Cardiol1975;3:349–58.[22]Waller BF.The pathology of acute myocardial infarction:definition,location,pathogenesis,effects of reperfusion,complications,and sequelae.Cardiol Clin1988;6:1–28.[23]Birnbaum Y,Fishbein MC,Blanche C,Siegel RJ.Ventricular septalrupture after acute myocardial infarction.N Engl J Med2002;347: 1426–32.[24]Galve E,Garcia-Del-Castillo H,Evangelista A,Batlle J,Permanyer-Miralda G,Soler-Soler J.Pericardial effusion in the course of myocardial infarction:incidence,natural history,and clinical rele-vance.Circulation1986;73:294–9.[25]Isner JM,Roberts WC.Right ventricular infarction complicating leftventricular infarction secondary to coronary heart disease.Frequency, location,associated findings and significance from analysis of236 necropsy patients with acute or healed myocardial infarction.Am J Cardiol1978;42:885–94.[26]Fishbein MC,Y-Rit J,Lando U,Kanmatsuse K,Mercier JC,Ganz W.The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion.Circulation1980;62:1274–9.[27]Garcia-Dorado D,Théroux P,Solares J,Alonso J,Fernandez-Avilés F,Elizaga J,Soriano J,Botas J,Munoz R.Determinants of hemorrhagic infarcts.Histologic observations from experiments involving coronary occlusion,coronary reperfusion,and reocclusion.Am J Pathol1990;137:301–11.[28]Basso C,Corbetti F,Silva C,Abudureheman A,Lacognata C,Cacciavillani L,Tarantini G,Perazzolo Marra M,Ramondo A,Thiene G,Iliceto S.Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance.Am J Cardiol2007;100:1322–7.[29]Pasotti M,Prati F,Arbustini E.The pathology of myocardial infarctionin the pre-and post-interventional era.Heart2006;92:1552–6. [30]Piccini JP,Berger JS,Brown DL.Early sustained ventriculararrhythmias complicating acute myocardial infarction.Am J Med 2008;121:797–804.[31]Aydinalp A,Wishniak A,van den Akker-Berman L,Or T,RoguinN.Pericarditis and pericardial effusion in acute ST-elevation myocardial infarction in the thrombolytic era.Isr Med Assoc J 2002;4:181–3.[32]Correale E,Maggioni AP,Romano S,Ricciardiello V,Battista R,Santoro E.Pericardial involvement in acute myocardial infarction in the post-thrombolytic era:clinical meaning and value.Clin Cardiol 1997;20:327–31.[33]Figueras J,Alcalde O,Barrabés JA,Serra V,Alguersuari J,Cortadellas J,Lidón RM.Changes in hospital mortality rates in 425patients with acute ST-elevation myocardial infarction and cardiac rupture over a30-year period.Circulation2008;118: 2783–9.[34]Okino S,Nishiyama K,Ando K,Nobuyoshi M.Thrombolysisincreases the risk of free wall rupture in patients with acute myocardial infarction undergoing percutaneous coronary intervention.J Interv Cardiol2005;18:167.[35]Honan MB,Harrell FE,Reimer KA,Califf RM,Mark DB,PryorDB,Hlatky MA.Cardiac rupture,mortality and the timing of thrombolytic therapy:a meta-analysis.J Am Coll Cardiol1990;16: 359–67.28 C.Basso et al./Cardiovascular Pathology19(2010)22–28。

相关文档
最新文档