3理想光学系统(内有第三次作业题)

合集下载

前六章工程光学习题及解答

前六章工程光学习题及解答

第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。

应用光学0322-3

应用光学0322-3

意义:J 不仅对一个折射球面的两个空间是不变量,而且对整个 共轴球面系统的每一个面的每一个空间都是不变量. 三, 共轴球面系统的放大率 利用转面公式去求出具有 k 个面的光学系统这些量. 1. 垂轴放大率β 整个光学系统的垂轴放大率(横向放大率)定义为:
' yk β= (即最终像高与物高之比) y1
由图
' = I 2 = 2.8746 0 h2 (0.02) L'2 = = = 0.4426 ' 0.045 tg ( I 2 )
L'2 = 0.4426 (与光轴交点)
(4)说明问题: a) 实际光线计算得到和光轴的交点为截距,与高斯像面不重合, 存在轴向偏移. b) 实际光线在高斯像平面上交点与理想像点不重合,有高度 h2 , 垂直方向也有偏移,发光点发出近轴光与实际光线在像平面上 的偏差,使成像不能点点对应,即像差,故像由点变成斑,因 而成像不清晰. 说明实际光线成像确有像差. 一个透镜对光轴上一个点物成像(用单色光), 具有单色像差.
利用单球面的折射截距公式:
n ' n n ' n = l' l r
利用 n ' = n ,代入上式得
1 1 2 + = l' l r
此为反射球面的成像公式. 另一形式的反射球面为中心"凸" ,如图所示. 注意:这时成像是利用了实际光线的延长线. 讨论: 球面反射应用广泛,具有许多优点:如反光镜,聚光镜;无色差,波 长范围广,没有吸收;所用材料广泛,如用金属作非球面.
(A)
(此处β为共轴球面系统的) 3. 角放大率γ
' uk 定义式: γ = u1
由转面公式: u2 = u1' , u3 = u2' , , uk = uk' 1 ,作变换

第三章理想光学模型(6)

第三章理想光学模型(6)
i1
k
注意:以上公式中的各个h值是 l1 ,U1 0,h1 为 有限高度时的平行于光轴的光线在各光组主面上 的投射高。
光组在不同位置时对总光焦度贡献不同
3 2 1
H1 H1
1 2
H2 H2 F1
1 2 3
3
增加了第二个光组以后像面的位置不变,但 是它的存在使轴外光束收拢可以减小后面光组的 尺寸。
几何关系:
xF ' lF ' F2 ' xF lF F1
xH ' lH ' f 2 ' xH lH F1
xH ' xF ' f ' xH xF f
牛顿形式的两光组组合公式:
f f 1 2 f f1 f 2 f
f2 f2 ' xF' f1 f1 ' xF
nk tgU k nk tgUk hk k
(二)截距法
l1 ' l2 ' lk ' f ' l2l3 lk
利用高斯公式求物像距:
n1 n1 n1 , l2 l1 d1 l1 l1 f1 n2 n2 n2 , l3 l2 d 2 l2 l2 f 2 nk nk nk lk lk f k
d lH lF f f f2
以上两光组组合公式中的间隔用 d 表示,组合物、像 方基点的位置分别是用H1 和H2'为原点来确定。因此称 为高斯形式的两光组组合公式。
2.牛顿形式的两光组组合公式
牛顿形式的两光组组合物方焦点 F 的位置是以第1光组 的物方焦点F1到 F 点的距离表示;物方主点 H 的位置是以 F1到 H 的距离表示。它们的符号是以 F1为原点按沿轴线段 的符号规则确定。 牛顿形式的两光组组合像方焦点F’的位置是以第2光组的 像方焦点 F2 '到 F '点的距离表示;像方主点H '的位置是F2 ' 到H '的距离表示。它们的符号是以 F2 '为原点按沿轴线段的 符号规则确定。

工程光学习题参考答案第二章理想光学系统

工程光学习题参考答案第二章理想光学系统

第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

应用光学第3章 理想光学系统

应用光学第3章 理想光学系统

nytgU nytgU (10)
此式即为理想光学系统 的拉赫不变量公式。
3.5 理想光学系统的放大率
一、垂轴放大率
1.定义:共轭面像高与物高之比
y
y
2.表达式:
根据牛顿公式,得以焦点为原点的放大率公式
y f x (1)
y x f
根据高斯公式,得以主点为原点的放大率公式
fl (2)
f l
根据两焦距的关系,可得 nl (3)
nl
结论:此式与单个折射球面和共轴球面系统的放 大率公式一致。
④当系统处于同一种介质中时
l (4)
l
结论:垂轴放大率随物体位置不同而不同,在不同 共轭面上,垂轴放大率不同;在同一共轭面上, 放大率是一个常数。
二、轴向放大率
1.定义:轴上像点移动微小距离与物点移动的微小 距离之比。 dl dx dl dx
三、由已知共轭面和共轭点确定一切物点的像点 a.已知两对共轭面的位置和垂轴放大率
b.已知一对共轭面的位置和垂轴放大率以及两对共轭 点的位置
3.2理想光学系统的基点和基面
1.物像方焦点、焦平面 2.物像方主点、主平面, 3.物象方焦距 4.单个折射球面的主平面 5.单个折射球面的焦距 6.单个球面反射镜的主平面和焦距
像距:以像方焦点F为原点,到像点的距离(F'A')为像 距,用x’表示。
牛顿公式:
用f和f ' 表示理想光学系统物、象方焦距,用
x和x'表示物体和像位置。
三角形ABF和三角形MHF相似,得:
y f
yx
三角形A’B’F’和三角形H’N’F’相似,得:
y x
y f xx ff
————此式即为牛顿公式。

工程光学基础教程 习题答案(完整)

工程光学基础教程 习题答案(完整)

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

第三章 理想光学模型

第三章 理想光学模型

dl'
dl
fl'2 f'l2
ff'2n nl'l'22
当物像方介质折射率相同时
l '2 l2
2
当 0 时,表示物体移动方向和像移动方向相
同。
三.角放大率g 角放大率是轴上一对共 轭点上,轴上物点 A 发出 的一对共轭光线孔径角U ' 和 U 的正切比。 高斯形式:
tgU ' u '
tgU u
物方焦平面——过物方焦点 F 的垂轴平面; 像方焦平面——过像方焦点F '的垂轴平面。
主平面:有相同高度 ,在光轴的同一侧,并且 垂轴 放大率+1为的共轭平面。
物方主点H——物方主面和光轴的交点;
像方主点H '——像方主面和光轴的交点。
物、像方焦点F、F ′ ,物、像方主点H、H ′称 为理想光学系统的基点,物、像方焦平面和物、 像方主平面称为它们的基面。
F
J J'
F'
F'
J J'
F
H H'
H H'
f '> 0
f '< 0
特 殊 光 线 的 共 轭 出 射 光 线
辅助线的作法
下面列举了对任意入射光线 a 借助于利用基点、基面性 质的辅助光线 b ,作出光线 a 的共轭出射光线可能的四种方 法。
f '> 0
折射后的出射光线平行于光轴; (3)过物方节点J的入射光线,经过光学
系统后的出射光线必通过像方节点J'。
• 有时为了作图方便,可根据焦平面性质 作图:
• (1)入射光线可认为是由轴外无限远物 点发出的平行光束(斜光束)中的一条。

第三章理想光学系统

第三章理想光学系统

引入理想光学系统的意义: 1、提供了方便的研究方法和工具; 2、指明了实际系统的设计方向和目标; 3、提供了衡量实际系统成像质量的标准。
3
二、理想光学系统的基本性质(共线理论)
理想光学系统 —— 物经这种光学系统所成的像是完善的。

本 性 质
物空间 点 直线 平面
像空间 点 直线 平面
R M S
光 学 系 统
重要性质:射向物方主面上某点的 光线,必从像方主面等高点出射。 H H′
f’
节点J、J’,节平面(略)
8
三、焦距
物方焦距 f : 定 物方主点H到物方焦点F的距离;
F
-f
H
H’
f’
F’
像方焦距 f′: 义 像方主点H′到像方焦点F′的距离。
特别注意:1、系统有两个焦距: f 、f′; 2、注意两个焦距的起点和终点; 3、折射系统两个焦距的符号相反; 4、两个焦距的绝对值不一定相等。 理想系统的一对焦点、一对主点确定后,焦距也就随之确定, 并且该理想系统的模型也完全确定了,进一步可方便地建立理 想光学系统理论的两个重要基本方法——图解法和解析法。
H H′ F′
F
A′
H
F
H′
F′
A′
12
练习:作图求像
A
H′ F H F′
A
H F H′ F′
A′
A′
F
A′
A
A A′
F′ H H′ F
H
H′
F′
A
F H
H
H′ F′
A′
A′ H′ F′
A
F
A
F
H
H′ F′
A′
13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/8/10
OE of HUST
8
二、 理想光学系统的物象关系
(一)、图解法
根据基点的性质及共轭成像理论,只需确定由物点发出的两条特 殊的光线及其共轭光线。(过焦点、平行光轴)
例:正光组( f′> 0 )
实物成实像
2020/8/10
物在焦面上,成像无限远
OE of HUST
9
实物点成实像点
F′
H
F
H′
2020/8/10
OE of HUST
6
4. 节点 定义:角放大率为+1的一对共轭点。(γ=+1) 性质:通过这对共轭点的光线方向不变 。
优先级:焦点 节点 若光学系统在同一介质中,则节点与主点重合。
2020/8/10
OE of HUST
7
小结:
1、理想光学系统的概念、求像点的两种方法; 2、理想光学系统的主要内容——思路; 3、焦点、焦平面、焦距(图示) ; 4、主点(图示)、主平面、特性; 5、节点(图示) 、节平面、特性。
1
主要内容: 三基点、基面(焦点、主点、节点、焦距) 物象关系(位置、放大率) 光学系统组合 透镜 焦点和焦距的计算 理想典型光学系统的性质
2020/8/10
OE of HUST
2
一、理想光学系统的基点、基面(焦点、主点、节点、焦距)
1. 焦点、焦平面
焦点
物方焦点:对应像点在像方光轴上无限远处 像方焦点:对应物点在物方光轴上无限远处
15
3.垂轴放大率特性曲线:
β<0, 物象虚实一致。
β>0, 物象虚实相反。
2020/8/10
OE of HUST
16
作业三:
题1:空气中有一薄光组,当把一高20mm的物置于物方焦点左方 400mm处时,将会在光组像方焦点右方25mm处成一虚像。 求:1. 光组的焦距;
2. 像的大小; 3. 物右移200mm,像移动多大距离?
l2tgU2 l1tgU1 d1tgU1
tgU
1
tgU1
h1 f1
h2 h1 d1tgU1
OE of HUST
32
若平行光入射到系统的第一光组,
则有
tgU1 0
tgU1
tgU 2
h1 f1
h2 h1 d1tgU1
tgU 2
tgU3
tgU 2
h2 f 2
h3 h2 d 2tgU 2
密接薄透镜组: 1 2 (d=0)
2020/8/10
OE of HUST
28
c. 组合系统的垂轴放大率β
f x
x f
x
x1
xF
x1
f1 f1
f1 f2
f1 f1 x1
(x1为物点相对于第一光组物方焦点的距离)
2020/8/10
OE of HUST
29
2)高斯公式:以第二光组象方主点H2′及第一光组物方主点H1为 坐标原点来计算等效系统的基点位置和焦距 。
题2:有一光组将物放大3倍,成像在影屏上,当透镜向物体方向移 动18mm时,物象放大率为4倍。求光组焦距。
2020/8/10
OE of HUST
17
(三)、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
lk …lk1 d k 1
d1 H1H 2
(主面间隔)
相应于牛顿公式:
F H’ H F’
2020/8/10
OE of HUST
12
(二)、解析法
1. 牛顿公式
物和象的位置以焦点F、 F′为原点来确定,以x、 x′表示。
x FA, x F A
由图,有:
y f , y x y x y f
由此,得:
xx f f (牛顿公式)
放大率公式为:
y f x
hk hk1 d k1tgU k1
tgU k
tgUk
hk f k
说明:
若需求复合光组的物方基点位 置和焦距大小,可以反向光路按 类似方法计算,然后将结果f′和 lF′反号求得物方焦点位置lF和物 方焦距f。
2020/8/10
OE of HUST
33
例:已知三共轴薄光组,其参数分别为f1′=100mm, d1=10mm, f2′=-50mm, d2=20mm, f3′=50mm,试求 复合光组的基点位置和焦距大小。
令 l1 用高斯公式依次求出该光学系统中每个光组的物方截
距和象方截距,代入上式 求出焦距。
lF lk lH lF f
2020/8/10
OE of HUST
35
3. 各光组光焦度对等效系统光焦度的贡献 :
2020/8/10
OE of HUST
22
3.角放大率:
tgU
tgU
tgU y f 1 f 1 n tgU y f f n
1
f x
x f
1 f x f f f x
4.三者关系:
5. 拉赫不变量:
2020/8/10
nytgU nytgU
OE of HUST
一般情况下,光组位于空气中,故有 f1 f1, f2 f2 , f f 由图,有: lF f2 xF ,lF f1 xF
lF
f2
f 2 f 2
f 2 f 2 f 2
d f1 f2
lF
f
1
d f1
同理,可得:
lF
f 1
d f2
又由图,有:
llHH
lF lF
第三章 理想光学系统
1、近轴光学系统(细光束) 理想光学系统(宽光束)。 任意宽的光束成完善像
2、点 共轭 点, 直线 共轭 直线, 面 共轭 面。
3、已知物点求像点的两种方法: a、已知两对共轭面的位置和放大率; b、已知一对共轭面的位置和放大率,以及轴上两对共轭
点的位置。
2020/8/10
OE of HUST
f f
lH
l
H
f f
d
f1 d
f2
2020/8/10
OE of HUST
30
例:一组合系统,薄正透镜f1′=20mm,薄负透镜f2′=20mm,d=10mm,一物体位于正透镜前100mm处,求组合系
统像方基点位置及垂轴放大率和像的位置。
2020/8/10
OE of HUST
31
二、多个光组的组合:
负光组Φ<0,对光束起发散作用,Φ越小,发散本领越大。
3)光焦度的单位为折光度或屈光度。
注:在求光学系统的光焦度时,焦距应以m为单位,再按倒数来计 算。 其值乘上100即为通常所说的“度数”。
2020/8/10
OE of HUST
20
例:有一理想光组位于空气中,其光焦度Φ=5屈光度,求位于光 组前方300mm处的物体经过光组后的成像位置。
y x f
2020/8/10
OE of HUST
13
2. 高斯公式
物和象的位置以主点H、 H′为原点来确定,以l、 l′表示。
l HA,l H A
由图,有: x l f , x l f
代入牛顿公式,得:
lf lf ll
f f 1 l l
n n n n l l f f
焦平面:过焦点的垂轴平面
说明:
1)F、F′不是一对共轭点,物方焦 平面和像方焦平面也不为共轭面。
2)由物方无限远处射来的任何方向 的平行光束,汇聚于像方焦平面上一点。
2020/8/10
OE of HUST
3
2. 主点、主平面
虚物点Q与虚像点Q′
定义:物象方β= +1 的共轭平面为物象方主平面。 主平面与光轴的交点为主点:H、H′。
象方主点H′到象方焦点F′的距离称为 象方焦距(后焦距或第二焦距)
说明:
f h tgU
f h tgU
1)对于理想光学系统,不管其结构(r,d,n)如何,只要 知道其焦距值和焦点或主点的位置,其光学性质就确定了。
2020/8/10
OE of HUST
5
2) f n n =n′ f f
fn
h ltgU ltgU
x f tgU x f tgU
x y f , x y f
y
y
yftgU yf tgU
yfu yf u nuy nuy
f n fn
3)正光组 f′> 0; 负光组 f′< 0
若系统中有k个反射面,则:
f (1)k1 n
f
n
F H
F′ H′
f f1f 2
f f2 f1
f f1 f2
xH
x
H
f 2 f1
f1 f1
f2 f2
2020/8/10
OE of HUST
27
b.同一介质中, f 2 f 2
f f1 f 2 f1 f 2 f1 f 2
d f1 f 2 d f1 f 2
1 2 d12
x2 x1 1
………
xk … xk 1 k 1
1 F1F2
(光学间隔)
光学间隔Δ和主面间隔d的关 系为:
1 d1 f1 f 2
………
k 1 …d k 1 f k1 f k 1
垂轴放大率为:
2020/8/10
yk y1 y2 yk
y1 OE oyf 1HUyST2
yk
1 2 k
23
三、 理想光学系统的组合
目的:求等效光组的基点、基面或将一个理想光组分解为几个 光组,求每个光组的基点。
相关文档
最新文档