【期末试卷】2017-2018学年 天津市八年级数学上册 期末强化练习卷02(含答案)
2017~2018学年天津河西区初二上学期期末数学试卷(解析)

7.
光的速度约是3
×
5 10 km/s
,太阳光照到地球表面所需的时间约是5
×
102s,那么地球与太阳之间的距离约是(用科学记数法
表示)( ).
A. 7 1.5 × 10 km
B. 8 1.5 × 10 km
C. 8 15 × 10 km
a
,
5a − 8
. = a
编辑
20. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C.(要求:尺规作图,保留作图痕迹,不写作法)
答 案 画图见解析.
解析
2018/12/11
21. 如图,点C,D在线段BF上, , AB//DE AB = , DF ∠A = ∠F.求证:BC = . DE
D. 7 15 × 10 km
答案 B
解析
. 5
2
8
S = vt = 3 × 10 × 5 × 10 = 1.5 × 10 km
8. 若代数式2a2 + 3a + 1的值是6,则代数式6a2 + 9a + 5的值为( ).
A. 20
B. 16
C. 12
答案 A
解析
∵ , 2 2a + 3a + 1 = 6
编辑
目录
选择题(共30分,每小题3分) 填空题(共18分,每小题3分) 解答题(共52分)
答 案 4a
解 析 ∵CD是高,
, ∘
∠A = 30
∴ , ∘
∘
∘
∠AC D = 90 − 30 = 60
天津市河西区2017-2018学年八年级上期末强化练习试卷含答案

2017-2018学年 八年级数学上册 期末强化练习卷一、选择题1.图中三角形的个数是( )A .8B .9C .10D .112.如图已知△ABE ≌△ACD, AB=AC, BE=CD ,∠B=40°,∠AEC=120°则∠DAC 的度数为 ()A .80°B .70°C .60°D .50°3.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB=ADB .AC 平分∠BCD C .AB=BD D .△BEC ≌△DEC4.要使多项式(x 2+px +2)(x-q)不含x 的二次项,则p 与q 的关系是( )A .相等B .互为相反数C .互为倒数D .乘积为-15.若x 2+2(m ﹣3)x+16是完全平方式,则m 的值等于( )A .3B .﹣5C .7D .7或﹣16.下列各式的分解因式中,没有用到公式法的是( )A .3m 2﹣6mn+3n 2=3(m ﹣n)2B .x 2b+ab 2+ab=ab(a+b+1)C.mx 2﹣4m=m(x ﹣2)(x+2) D .x 2+12x+36=(x+6)27.方程22221=-+--x x x 的解是( ) A.x=1 B .x=-1 C .x=2 D .x=-28.下列约分正确的是( )A .B .C .D .9.分式方程123-=x x 的解为( ) A .x=1B .x=2C .x=3D .x=4 10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A .﹣=20B .﹣=20C .﹣=500D .﹣=50011.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:512.附图(①)为一张三角形ABC 纸片,P 点在BC 上.今将A 折至P 时,出现折线BD ,其中D点在AC 上,如图(②)所示.若△ABC 的面积为80,△DBC 的面积为50,则BP 与PC 的长度比为何?( )A .3:2B .5:3C .8:5D .13:8二、填空题13.若a+3b ﹣2=0,则3a 27b = . 14.已知分式,当x=2时,分式无意义,则a= .15.如图,若∠1=∠2,加上一个条件 ,则有△AOC ≌△BOC .16.计算:(x-y)(x2+xy+y2)=__17.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S为.△ABD18.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△DEF的周长是11,则AB= .三、解答题19.化简:(3a+2b﹣1)(3a﹣2b+1)20.化简:(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a-b)21.分解因式:36a2-(a2+9)2.22.分解因式:(x+y)2+2(x+y)+123.化简:22a b b a a b a b+-÷-+24.化简:xx x x x x x x 4)44122(22-÷+----+.25.如图,在△ABD 和△ACE 中,有四个等式:①AB=AC ;②AD=AE ;③∠1=∠2;④BD=CE ,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)26.超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.(1)试销时该品牌苹果的进货价是每千克多少元?(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?27.如图,已知△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB﹣AC=2CF.参考答案1.答案为:B2.答案为:A3.答案为:C4.答案为:A5.答案为:D;6.答案为:B.7.答案为:A8.答案为:C9.答案为:C ;10.答案为:A11.答案为:C12.答案为:A13.答案为:9.14.答案为:6.15.答案为:∠A=∠B .16.答案为:x 3-y 3__.17.答案为:36.18.答案为:8.19.原式=9a 2﹣4b 2+4b ﹣1.20.原式=a 2﹣4ab+4b 2﹣b 2+4a 2﹣4a 2+4ab=a 2+3b 2;21.原式=-(a-3)2(a+3)2.22.原式=(x+y )2+2(x+y )+1=(x+y+1)2.23.答案为:1a b-. 24.原式=2)2(1-x . 25.解:解法一:如果AB=AC ,AD=AE ,BD=CE ,那么∠1=∠2.已知:在△ABD 和△ACE 中,AB=AC ,AD=AE ,BD=CE ,求证:∠1=∠2.证明:在△ABD 和△ACE 中,,∴△ABD ≌△ACE ,∴∠BAD=∠CAE ,∴∠1=∠2. 解法二:如果AB=AC ,AD=AE ,∠1=∠2,那么BD=CE.已知:在△ABD 和△ACE 中,AB=AC ,AD=AE ,∠1=∠2,求证:BD=CE.证明:∵∠1=∠2,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE.26.27.略。
[精校版]天津市八年级上期末数学试卷(有答案)
![[精校版]天津市八年级上期末数学试卷(有答案)](https://img.taocdn.com/s3/m/6accc307a417866fb94a8e51.png)
2017-2018学年天津市八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠34.(3分)计算x3•x2的结果是()A.x6B.x5C.x2 D.x5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣D.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x= 时,分式的值为零.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为.12.(3分)分解因式:27x2+18x+3= .13.(3分)若关于x的分式方程无解,则m的值是.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F 在AB上,且满足DF=DE,则∠DFB的度数为.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH= .三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+3019.(8分)解分式方程:+=1.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?2017-2018学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)a x2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x【解答】解:x3•x2=x3+2=x5.故选:B.5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣D.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④【解答】解:式子:①,②,③,④,其中是分式的有:①,④.故选:B.7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.6 B.8 C.10 D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x= ﹣3 时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为 2.3×10﹣5..【解答】解:0.000023=2.3×10﹣5,故答案为:2.3×10﹣5.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为12 .【解答】解:x2m﹣n=(x m)2÷x n=36÷3=12.故答案为:12.12.(3分)分解因式:27x2+18x+3= 3(3x+1)2.【解答】解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.13.(3分)若关于x的分式方程无解,则m的值是 3 .【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是20°.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B的度数是20°.故答案为20°.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F 在AB上,且满足DF=DE,则∠DFB的度数为50°或130°.【解答】解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故答案是:50°或130°.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH= .【解答】证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,∴AD=BD,∠A=∠ABD=60°,在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴∠ADE=∠DBF,∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,∴∠CBM=∠CDG,∵△DBC是等边三角形,∴CD=CB,在△CDG和△CBM中,∴△CDG≌△CBM,∴∠DCG=∠BCM,CG=CM,∴∠GCM=∠DCB=60°,∴△CGM是等边三角形,∴CG=GM=BG+BM=BG+DG,∵(a+b)2=a2+b2+2ab=9,∴a+b=3,∴CG=3,∴GH=CG=.故答案为:.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)【解答】解:(1)(﹣2a)3﹣(﹣a)•(3a)2=﹣8a3﹣(﹣a)•9a2=﹣8a3+9a3=a3;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2.18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+30【解答】解:原式=•=,当x=()﹣1+30=3+1=4时,原式==2.19.(8分)解分式方程:+=1.【解答】解:去分母得:x2﹣x﹣2=x2﹣3x,解得:x=1,经检验x=1是分式方程的解.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.【解答】解:AE=CD,AC=BC,∴EC=BD;∵△ABC为等边三角形,∴∠C=∠ABC=60°,AB=BC,在△BEC与△ADB中,,∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∵∠BPQ是△ABP外角,∴∠ABP+∠BAP=60°=∠BPQ,又∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得,=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【解答】解:(1)△OBC≌△ABD.证明:∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.。
2017-2018年天津市武清区八年级上学期期末数学试卷带答案word版

2017-2018学年天津市武清区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣720172.(3分)下列图形中不是轴对称图形的是()A. B. C. D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,104.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10B.1.8×10﹣9C.1.8×10﹣8D.0.18×10﹣86.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣37.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2D.m2﹣mn+n28.(3分)下列计算正确的是()A.a8÷a3=a4B.3a3•2a2=6a6C.m6÷m6=m D.m3•m2=m59.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.510.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或1612.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为度.14.(3分)七边形的内角和是.15.(3分)分解因式:m2+2m=.16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为度.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.18.(3分)若x+3y﹣3=0,则2x•8y=.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.23.(6分)解分式方程:(1)(2).24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.2017-2018学年天津市武清区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣72017【解答】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=﹣3,则(a+b)2017=(4﹣3)2017=1.故选:A.2.(3分)下列图形中不是轴对称图形的是()A. B. C. D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,10【解答】解:A、4+3<8,不能组成三角形,故此选项错误;B、3+2=5,不能组成三角形,故此选项错误;C、>5,能组成三角形,故此选项正确;D、5+5=10,不能组成三角形,故此选项错误;故选:C.4.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形【解答】解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的.故选:B.5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10B.1.8×10﹣9C.1.8×10﹣8D.0.18×10﹣8【解答】解:0.0000000018=1.8×10﹣9.故选:B.6.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣3【解答】解:由题意,得x+3≠0,解得x≠﹣3,故选:C.7.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2D.m2﹣mn+n2【解答】解:A、m2﹣2m﹣1无法用完全平方公式分解因式,故此选项错误;B、m2﹣2m+1=(m﹣1)2,能用完全平方公式分解因式,故此选项正确;C、m2+n2无法用完全平方公式分解因式,故此选项错误;D、m2﹣mn+n2无法用完全平方公式分解因式,故此选项错误;故选:B.8.(3分)下列计算正确的是()A.a8÷a3=a4B.3a3•2a2=6a6C.m6÷m6=m D.m3•m2=m5【解答】解:A、a8÷a3=a5,故此选项错误;B、3a3•2a2=6a5,故此选项错误;C、m6÷m6=1,故此选项错误;D、m3•m2=m5,故此选项正确;故选:D.9.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.5【解答】解:,,,中,是整式,,是分式,故选:A.10.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或16【解答】解:∵(a﹣4)2+|b﹣6|=0,∴a﹣4=0,b﹣6=0,∴a=4,b=6,①当腰是4,底边是3时,三边长是4,4,6,此时符合三角形的三边关系定理,即等腰三角形的周长是4+4+6=14;②当腰是6,底边是4时,三边长是6,6,4,此时符合三角形的三边关系定理,即等腰三角形的周长是6+6+4=16.故选:D.12.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2【解答】解:设这个工程队原计划每天要铺建x米管道,则依题意可得:﹣=2.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为46度.【解答】解:∵△ABC中,∠ABC=44°,AD⊥BC,∴∠BAD=90°﹣44°=46°,故答案为:46.14.(3分)七边形的内角和是900°.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.15.(3分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为28度.【解答】解:∵∠ABE=60°,∠E=92°,∴∠BAE=28°,又∵△ABC≌△BAE,∴∠ABC=∠BAE=28°,故答案为:28.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=10cm.【解答】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;18.(3分)若x+3y﹣3=0,则2x•8y=8.【解答】解:∵x+3y﹣3=0,∴x=3﹣3y,∴2x•8y=23﹣3y•23y=23=8.故答案是:8.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.【解答】解:(1)(15x3y+10x2y﹣5xy2)÷5xy=3x2+2x﹣y;(2)(3x+y)(x+2y)﹣3x(x+2y)=3x2+6xy+xy+2y2﹣3x2﹣6xy=xy+2y2;(3)(x+2)(x﹣2)﹣(x+1)2=x2﹣4﹣x2﹣2x﹣1=﹣2x﹣5,当x=时,原式=﹣2×﹣5=﹣1﹣5=﹣6.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.【解答】证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).【解答】解:(1)原式=•(﹣)•=﹣;(2)原式=﹣==﹣22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.【解答】解:∵AD平分∠BAC∴∠BAD=∠DAE,∵∠BAD=29°,∴∠DAE=29°,∴∠BAC=58°,∵DE垂直平分AC,∴AD=DC,∴∠DAE=∠DCA=29°,∵∠BAC+∠DCA+∠B=180°,∴∠B=93°.23.(6分)解分式方程:(1)(2).【解答】解:(1)方程两边乘x(x+2),得3x=2x+4,解得:x=4,经检验x=4是分式方程的解;(2)方程两边乘(x﹣3)(x+1)得:4=x﹣3+x+1,解得:x=3,经检验x=3是增根,分式方程无解.24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为4xkm/h.依据题意得﹣=+解得:x=15.检验:x=15时,12x≠0.所以原分式方程的解为x=15.并且此解符合题意.答:骑车学生的速度为15km/h.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2017-2018年天津市武清区、宝坻区、蓟州区等五区八年级(上)期末数学试卷和参考答案

2017-2018学年天津市武清区、宝坻区、蓟州区等五区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣720172.(3分)下列图形中不是轴对称图形的是()A. B. C. D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,104.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10B.1.8×10﹣9C.1.8×10﹣8D.0.18×10﹣86.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣37.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2D.m2﹣mn+n28.(3分)下列计算正确的是()A.a8÷a3=a4B.3a3•2a2=6a6C.m6÷m6=m D.m3•m2=m59.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.510.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或1612.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为度.14.(3分)七边形的内角和是.15.(3分)分解因式:m2+2m=.16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为度.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.18.(3分)若x+3y﹣3=0,则2x•8y=.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.23.(6分)解分式方程:(1)(2).24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.2017-2018学年天津市武清区、宝坻区、蓟州区等五区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣72017【解答】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=﹣3,则(a+b)2017=(4﹣3)2017=1.故选:A.2.(3分)下列图形中不是轴对称图形的是()A. B. C. D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,10【解答】解:A、4+3<8,不能组成三角形,故此选项错误;B、3+2=5,不能组成三角形,故此选项错误;C、>5,能组成三角形,故此选项正确;D、5+5=10,不能组成三角形,故此选项错误;故选:C.4.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形【解答】解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的.故选:B.5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10B.1.8×10﹣9C.1.8×10﹣8D.0.18×10﹣8【解答】解:0.0000000018=1.8×10﹣9.故选:B.6.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣3【解答】解:由题意,得x+3≠0,解得x≠﹣3,故选:C.7.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2D.m2﹣mn+n2【解答】解:A、m2﹣2m﹣1无法用完全平方公式分解因式,故此选项错误;B、m2﹣2m+1=(m﹣1)2,能用完全平方公式分解因式,故此选项正确;C、m2+n2无法用完全平方公式分解因式,故此选项错误;D、m2﹣mn+n2无法用完全平方公式分解因式,故此选项错误;故选:B.8.(3分)下列计算正确的是()A.a8÷a3=a4B.3a3•2a2=6a6C.m6÷m6=m D.m3•m2=m5【解答】解:A、a8÷a3=a5,故此选项错误;B、3a3•2a2=6a5,故此选项错误;C、m6÷m6=1,故此选项错误;D、m3•m2=m5,故此选项正确;故选:D.9.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.5【解答】解:,,,中,是整式,,是分式,故选:A.10.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或16【解答】解:∵(a﹣4)2+|b﹣6|=0,∴a﹣4=0,b﹣6=0,∴a=4,b=6,①当腰是4,底边是3时,三边长是4,4,6,此时符合三角形的三边关系定理,即等腰三角形的周长是4+4+6=14;②当腰是6,底边是4时,三边长是6,6,4,此时符合三角形的三边关系定理,即等腰三角形的周长是6+6+4=16.故选:D.12.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2【解答】解:设这个工程队原计划每天要铺建x米管道,则依题意可得:﹣=2.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为46度.【解答】解:∵△ABC中,∠ABC=44°,AD⊥BC,∴∠BAD=90°﹣44°=46°,故答案为:46.14.(3分)七边形的内角和是900°.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.15.(3分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为28度.【解答】解:∵∠ABE=60°,∠E=92°,∴∠BAE=28°,又∵△ABC≌△BAE,∴∠ABC=∠BAE=28°,故答案为:28.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=10cm.【解答】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;18.(3分)若x+3y﹣3=0,则2x•8y=8.【解答】解:∵x+3y﹣3=0,∴x=3﹣3y,∴2x•8y=23﹣3y•23y=23=8.故答案是:8.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.【解答】解:(1)(15x3y+10x2y﹣5xy2)÷5xy=3x2+2x﹣y;(2)(3x+y)(x+2y)﹣3x(x+2y)=3x2+6xy+xy+2y2﹣3x2﹣6xy=xy+2y2;(3)(x+2)(x﹣2)﹣(x+1)2=x2﹣4﹣x2﹣2x﹣1=﹣2x﹣5,当x=时,原式=﹣2×﹣5=﹣1﹣5=﹣6.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.【解答】证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).【解答】解:(1)原式=•(﹣)•=﹣;(2)原式=﹣==﹣22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.【解答】解:∵AD平分∠BAC∴∠BAD=∠DAE,∵∠BAD=29°,∴∠DAE=29°,∴∠BAC=58°,∵DE垂直平分AC,∴AD=DC,∴∠DAE=∠DCA=29°,∵∠BAC+∠DCA+∠B=180°,∴∠B=93°.23.(6分)解分式方程:(1)(2).【解答】解:(1)方程两边乘x(x+2),得3x=2x+4,解得:x=4,经检验x=4是分式方程的解;(2)方程两边乘(x﹣3)(x+1)得:4=x﹣3+x+1,解得:x=3,经检验x=3是增根,分式方程无解.24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为4xkm/h.依据题意得﹣=+解得:x=15.检验:x=15时,12x≠0.所以原分式方程的解为x=15.并且此解符合题意.答:骑车学生的速度为15km/h.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.。
【精选】天津市八年级上期末数学试卷((有答案))

2017-2018学年天津市红桥区八年级(上)期末数学试卷一、选择题(本大题12小题,每小题3分,共36分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cmC.2cm、3cm、4cm D.6cm、2cm、3cm3.计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣D.﹣4.如果把分式中x和y都扩大10倍,那么分式的值()A.不变B.缩小10倍C.扩大2倍D.扩大10倍5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.﹣7或1 D.7或﹣17.下列从左到右的变形哪个是分解因式()A.x2+2x﹣3=x(x+2)﹣3B.ma+mb+na+nb=m(a+b)+n(a+b)C.x2﹣12x+36=(x﹣6)2D.﹣2m(m+n)=﹣2m2﹣2mn8.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm9.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠1 10.小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的平均速度为n千米/时,则小明上学和放学路上的平均速度为()千米/时.A.B.C.D.11.在化简时,甲、乙两位同学的解答如下:甲: ===﹣乙: ===﹣.A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错12.已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为()A.10°B.20°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)13.一个等腰三角形的两边长分别为2和5,则它的周长为.14.若|x+2|+=0,则y x的值为.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用分解因式的公式,这个公式是.16.在数轴上,点A、B对应的数分别为2,,且A、B两点关于原点对称,则x的值为.17.已知OC平分∠AOB,点P为OC上一点,PD⊥OA于D,且PD=3cm,过点P作PE∥OA交OB于E,∠AOB=30°,求PE的长度cm.18.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.三、解答题(本大题6小题,共46分)19.(6分)①计算(x+2)2﹣(x+1)(x﹣1)②因式分解(x2﹣3)2﹣2(x2﹣3)+1.20.(6分)①解方程﹣=3②计算(﹣1)2+.21.(8分)先化简后求值:已知:x=﹣2,求分式1﹣的值.22.(8分)(1)如图,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E.求证:BD=DE﹣CE;(2)上题中,变成如图,B,C在AE的异侧时,BD,DE,CE关系如何?并加以证明.23.(8分)为了迎接“十•一”小长假的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?24.(10分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.参考答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.2.【解答】解:A、1+2=3,不能构成三角形;B、1+2<4,不能构成三角形;C、2+3>4,能构成三角形;D、2+3<6,不能构成三角形.故选:C.3.【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.4.【解答】解:分别用10x和10y去代换原分式中的x和y,可得=.可见分式的值不变.故选:A.5.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原完全一样的;第三块不仅保留了原三角形的两个角还保留了一边,则可以根据ASA配一块一样的玻璃.应带③去.故选:C.6.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)=±8,即m=7或﹣1.故选:D.7.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、没把一个多项式化成几个整式乘积的形式,故B错误;C、把一个多项式化成几个整式乘积的形式,故C正确;D、是整式的乘法,故D错误;故选:C.8.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD+DE=AD+CD=AC=6cm,∴△AED的周长=6+3=9cm.故选:A.9.【解答】解:∵在实数范围内有意义,∴x≥0且x﹣1≠0,∴x≥0且x≠1.故选:D.10.【解答】解:设上学路程为1,则往返总路程为2,上坡时间为,下坡时间为,则平均速度==(千米/时).故选:C.11.【解答】解:甲进行分母有理化时不能确定﹣≠0,故不能直接进行分母的有理化,故甲错误;乙分子因式分解,再与分母约分,故乙正确.故选:B.12.【解答】解:连接OD,∵BC⊥x轴于点C,∠OBC=35°,∴∠AOB=∠OBC=35°,∠BOC=90°﹣35°=55°.∵点A关于直线OB的对称点D恰好在BC上,∴OB是线段AD的垂直平分线,∴∠BOD=∠AOB=35°,∴∠DOC=∠BOC﹣∠BOD=55°﹣35°=20°.∵点E与点O关于直线BC对称,∴BC是OE的垂直平分线,∴∠DOC=∠OED=20°.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.14.【解答】解:由题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,y x=3﹣2=.故答案为:.【解答】解:首先用分割法计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.16.【解答】解:根据题意得: =﹣2,去分母得:x﹣5=﹣2(x+1),化简得:3x=3,解得:x=1.经检验:x=1是原方程的解,所以x=1.17.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PE∥OA,∴∠EPO=∠AOP=15°,∴∠BEP=∠BOC+∠EPO=30°,∴PE=2PF,∵OC平分∠AOB,PD⊥OA于D,PF⊥OB于F,PD=3cm,∴PD=PF=3cm,∴PE=6cm,故答案为:6.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC +S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.三、解答题(本大题6小题,共46分)19.【解答】解:①(x+2)2﹣(x+1)(x﹣1)=(x2+4x+4)﹣(x2﹣1)=x2+4x+4﹣x2+1=4x+5;②(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.20.【解答】解:①x+3=3(x﹣1),x+3=3x﹣3,x=3,检验:把x=3代入最简公分母x﹣1=2≠0,所以,x=3是原方程的解;②原式=(3﹣2+1)+(﹣1)=3﹣.21.【解答】解:原式=1﹣•(÷)=1﹣••=1﹣=,当x=﹣2时,原式===.22.【解答】证明:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE(2)BD=DE+CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;23.【解答】解:(1)依题意得, =,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.24.【解答】(1)解:∵在Rt△ABO中,∠BAO=30°,∴AB=2BO=2;(2)证明:连接OD,∵△ABE为等边三角形,∴AB=AE,∠EAB=60°,∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,∴∠DAO=60°.∴∠EAO=∠NAB又∵DO=DA,∴△ADO为等边三角形.∴DA=AO.在△ABD与△AEO中,∵,∴△ABD≌△AEO(SAS).∴BD=OE.(3)证明:作EH⊥AB于H.∵AE=BE,∴AH=AB,∵BO=AB,∴AH=BO,在Rt△AEH与Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD.又∵∠EHF=∠DAF=90°,在△HFE与△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF.∴F为DE的中点.。
★试卷3套精选★天津市2018届八年级上学期期末学业质量检查模拟数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在解分式方程1211xx x+=--时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合B.转化思想C.模型思想D.特殊到一般【答案】B【详解】解:在解分式方程1211xx x+=--时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B.【点睛】本题考查解分式方程;最简公分母.2.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°【答案】C【详解】∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.3.下列图案中不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16【答案】A【详解】∵x2+16x+k是完全平方式,∴对应的一元二次方程x2+16x+k=1根的判别式△=1.∴△=162-4×1×k=1,解得k=2.故选A.也可配方求解:x2+16x+k=(x2+16x+2)-2+k= (x+8)2-2+k,要使x2+16x+k为完全平方式,即要-2+k=1,即k=2.5.如果等腰三角形两边长为3cm和7cm,那么它的周长是().A.13cm B.17cm C.13cm或17cm D.16cm【答案】B【分析】分两种情况:①底为3cm,腰为7cm时,②底为7cm,腰为3cm时;还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:①底为3cm,腰为7cm时,+>,∵377=++=(cm);∴等腰三角形的周长37717②底为7cm,腰为3cm时,+<,∵337∴不能构成三角形;综上,等腰三角形的周长为17cm;故选:B.【点睛】本题考查了等腰三角形的性质、三角形的三边关系定理;解此类题注意分情况讨论,还要看是否符合三角形的三边关系.6.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()A.63°B.113°C.55°D.62°【答案】D【分析】由AB//DE,可知∠DEC=∠A,利用三角形内角和定理求出∠A即可.【详解】解:∵AB//DE,∴∠DEC=∠A,∵∠A=180°-∠B-∠C=180°-55°-63°=62°,∴∠DEC=62°故选:D .【点睛】本题考查三角形内角和定理,平行线的性质等知识,熟练掌握基本知识是解题的关键.7.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2B .2C .3D .﹣3 【答案】B【详解】把11x y =⎧⎨=-⎩代入方程组231ax by ax by +=⎧⎨-=⎩得:231a b a b -=⎧⎨+=⎩, 解得:4313a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以a−2b=43−2×(13-)=2. 故选B.8.在ABC ∆和A B C '''∆中,①AB A B ''=,②BC B C ''=,③AC A C ''=,④A A '∠=∠,⑤B B '∠=∠,⑥C C '∠=∠,则下列各组条件中使ABC ∆和A B C '''∆全等的是( )A .④⑤⑥B .①②⑥C .①③⑤D .②⑤⑥ 【答案】D【解析】根据全等三角形的判定方法对各选项分别进行判断.【详解】A. 由④⑤⑥不能判定△ABC ≌△A′B′C′;B. 由①②⑥不能判定△ABC ≌△A′B′C′;C. 由①③⑤,不能判定△ABC ≌△A′B′C′;D. 由②⑤⑥,可根据“ASA”判定△ABC ≌△A′B′C′.故选:D.【点睛】考查全等三角形的判定定理,三角形全等的判定定理有:SSS ,SAS ,ASA ,AAS,HL.9.若一个等腰三角形的两边长分别是2和5,则该等腰三角形的周长是( )A .9B .12C .13D .12或9 【答案】B【分析】根据等腰三角形的定义,即可得到答案.【详解】∵一个等腰三角形的两边长分别是2和5,∴等腰三角形的三边长分别为:5,5,2,即:该等腰三角形的周长是1.故选B.【点睛】本题主要考查等腰三角形的定义以及三角形三边之间的关系,掌握等腰三角形的定义,是解题的关键.10.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF 的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED 的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS【答案】B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】47【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为322-=;437②长为3、322435;∴7或4.考点:3.勾股定理;4.分类思想的应用.12.计算(2a)3的结果等于__.【答案】8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方13.如果关于x 的不等式1532223x x x x a +⎧-⎪⎪⎨+⎪+⎪⎩><只有4个整数解,那么a 的取值范围是________________________。
【期末试卷】2017-2018学年 天津市八年级数学上册 期末强化练习卷01(含答案)

2017-2018学年 八年级数学上册 期末强化练习卷一、选择题1.在下列绿色食品、循环回收、节能、节水四个标志中,属于轴对称图形的是( )A B C D2.现有两根木棒,它们的长度分别为20cm 和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A .10cm 的木棒B .20cm 的木棒;C .50cm 的木棒D .60cm 的木棒3.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )A .AB=ACB .∠BAE=∠CADC .BE=DCD .AD=DE4.下列计算正确的是( )A .2x+1=2x2 B .x 2•x 3=x 5 C .(x 2)3=x 5 D .(2x)3=2x3 5.已知x 2+axy+y 2是一个完全平方式,则a 的值是( )A .2B .﹣2C .±2D .0 6.下列多项式中能用平方差公式分解因式的是( )A .a 2+(﹣b)2B .5m 2﹣20mnC .﹣x 2﹣y 2D .﹣x 2+9 7.分式方程123-=x x 的解为( ) A .x=1B .x=2C .x=3D .x=4 8.下列分式中,属于最简分式的是( )9.方程22221=-+--x x x 的解是( )A.x=1 B.x=-1 C.x=2 D.x=-210.市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20 C.﹣=20 D. +=2011.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③12.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD二、填空题13.计算:(x2+2x+3)(2x-5)= .14.若分式在实数范围内有意义,则x的取值范围是.15.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.16.若x2-2mx+9是一个完全平方式,则m的值为.17..如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .18.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题19. 化简:(x+1)2﹣(x+2)(x﹣2).20.化简:(x+y+4)(x+y﹣4)21.分解因式:a2(x-2a)2+a(2a-x)3.22.分解因式:2x3(a-1)+8x(1-a).23.化简:22a b b a a b a b+-÷-+24.化简:1112221222-++++÷--x x x x x x .25.已知:BE ⊥CD ,BE=DE ,BC=DA ,求证:①△BEC ≌△DEA ;②DF ⊥BC .26.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a 万元(a >0),市政府如何确定方案才能使费用最少?27.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.参考答案1.答案为:A .2.答案为:B3.答案为:D4.答案为:B .5.答案为:C;6.答案为:D.7.答案为:C ;8.答案为:B9.答案为:A10.答案为:A11.答案为:A .12.答案为:B13.答案为:2x 3-x 2-4x-15.14.答案是:x≠5.15.答案为:第1,利用SAS 得出全等三角形,即可配成与原来同样大小的一块.16.答案为:±3.17.答案为:125°.18.答案为:4.19.原式=x 2+2x+1﹣x 2+4=2x+5.20.原式=[(x+y )+4][(x+y )﹣4]=(x+y )2﹣16=x 2+2xy+y 2﹣16.21.原式=a(x-2a)2(3a-x).22.原式=2x(a-1)(x-2)(x+2). 23.答案为:1a b-. 24.原式=22-x x . 25.证明:(1)∵BE ⊥CD ,BE=DE ,BC=DA ,∴△BEC ≌△DEA (HL );(2)∵△BEC ≌△DEA ,∴∠B=∠D .∵∠D+∠DAE=90°,∠DAE=∠BAF ,∴∠BAF+∠B=90°.即DF ⊥BC .26.(1)设甲种套房每套提升费用为x 万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升m 套,那么乙种套房提升(80﹣m )套,依题意,得解得:48≤m ≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W元.则W=25m+28×(80﹣m)=﹣3m+2240,∵k=﹣3<0,∴W随m的增大而减小,∴当m=50时,W最少=2090元,即第三种方案费用最少.(3)在(2)的基础上有:W=(25+a)m+28×(80﹣m)=(a﹣3)m+2240当a=3时,三种方案的费用一样,都是2240万元.当a>3时,k=a﹣3>0,∴W随m的增大而增大,∴m=48时,费用W最小.当0<a<3时,k=a﹣3<0,∴W随m的增大而减小,∴m=50时,W最小,费用最省.27.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年 八年级数学上册 期末强化练习卷
一、选择题
1.图中三角形的个数是( )
A .8
B .9
C .10
D .11
2.如图已知△ABE ≌△ACD, AB=AC, BE=CD ,∠B=40°,∠AEC=120°则∠DAC 的度数为 (
)
A .80°
B .70°
C .60°
D .50°
3.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )
A .AB=AD
B .A
C 平分∠BC
D C .AB=BD D .△BEC ≌△DEC
4.要使多项式(x 2+px +2)(x-q)不含x 的二次项,则p 与q 的关系是( )
A .相等
B .互为相反数
C .互为倒数
D .乘积为-1
5.若x 2+2(m ﹣3)x+16是完全平方式,则m 的值等于( )
A .3
B .﹣5
C .7
D .7或﹣1
6.下列各式的分解因式中,没有用到公式法的是( )
A .3m 2﹣6mn+3n 2=3(m ﹣n)2
B .x 2b+ab 2+ab=ab(a+b+1)
C.mx 2﹣4m=m(x ﹣2)(x+2) D .x 2+12x+36=(x+6)2
7.方程222
21
=-+--x x x 的解是( ) A.x=1 B .x=-1 C .x=2 D .x=-2
8.下列约分正确的是( )
A .
B .
C .
D .
9.分式方程1
23-=x x 的解为( ) A .x=1
B .x=2
C .x=3
D .x=4 10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )
A .﹣=20
B .﹣=20
C .﹣=500
D .﹣=500
11.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三
角形,则S △ABO :S △BCO :S △CAO 等于( )
A .1:1:1
B .1:2:3
C .2:3:4
D .3:4:5
12.附图(①)为一张三角形ABC 纸片,P 点在BC 上.今将A 折至P 时,出现折线BD ,其中D
点在AC 上,如图(②)所示.若△ABC 的面积为80,△DBC 的面积为50,则BP 与PC 的长度比为何?( )
A .3:2
B .5:3
C .8:5
D .13:8
二、填空题
13.若a+3b ﹣2=0,则3a 27b = . 14.已知分式,当x=2时,分式无意义,则a= .
15.如图,若∠1=∠2,加上一个条件 ,则有△AOC ≌△BOC .
16.计算:(x-y)(x2+xy+y2)=__
17.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S
为.
△ABD
18.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△
DEF的周长是11,则AB= .
三、解答题
19.化简:(3a+2b﹣1)(3a﹣2b+1)
20.化简:(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a-b)
21.分解因式:36a2-(a2+9)2.
22.分解因式:(x+y)2+2(x+y)+1
23.化简:22a b b a a b a b
+-÷-+
24.化简:x
x x x x x x x 4)44122(
22-÷+----+.
25.如图,在△ABD 和△ACE 中,有四个等式:①AB=AC ;②AD=AE ;③∠1=∠2;④BD=CE ,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)
26.超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.
(1)试销时该品牌苹果的进货价是每千克多少元?
(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?
27.如图,已知△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB﹣AC=2CF.
参考答案
1.答案为:B
2.答案为:A
3.答案为:C
4.答案为:A
5.答案为:D;
6.答案为:B.
7.答案为:A
8.答案为:C
9.答案为:C ;
10.答案为:A
11.答案为:C
12.答案为:A
13.答案为:9.
14.答案为:6.
15.答案为:∠A=∠B .
16.答案为:x 3-y 3__.
17.答案为:36.
18.答案为:8.
19.原式=9a 2﹣4b 2+4b ﹣1.
20.原式=a 2﹣4ab+4b 2﹣b 2+4a 2﹣4a 2+4ab=a 2+3b 2;
21.原式=-(a-3)2(a+3)2.
22.原式=(x+y )2+2(x+y )+1=(x+y+1)2.
23.答案为:1a b
-. 24.原式=2
)2(1-x . 25.解:解法一:如果AB=AC ,AD=AE ,BD=CE ,那么∠1=∠2.
已知:在△ABD 和△ACE 中,AB=AC ,AD=AE ,BD=CE ,
求证:∠1=∠2.
证明:在△ABD 和△ACE 中,,∴△ABD ≌△ACE ,∴∠BAD=∠CAE ,∴∠1=∠2. 解法二:如果AB=AC ,AD=AE ,∠1=∠2,那么BD=CE.
已知:在△ABD 和△ACE 中,AB=AC ,AD=AE ,∠1=∠2,
求证:BD=CE.
证明:∵∠1=∠2,∴∠BAD=∠CAE.
在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE.
26.
27.略。