反比例函数图象及解答题2

合集下载

第11章 11.2 反比例函数的图像和性质(解答题)

第11章 11.2 反比例函数的图像和性质(解答题)

11.2 反比例函数的图像和性质(解答题)1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.18.(2017•常州)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.19.(2017•黄冈)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A (﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.20.(2017•菏泽)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B 两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(2017•宜宾)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(2017•吉林)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.(2017•柳州)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(﹣1,m),B(m,﹣1)两点,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,(1)求m,n的值及反比例函数的解析式;(2)请问:在直线y=﹣x+2上是否存在点P,使得S△PAC=S△PBD?若存在,求出点P的坐标;若不存在,请说明理由.24.(2017•襄阳)如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.25.(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.26.(2017•湘西州)如图所示,一次函数y1=x+b(b为常数)的图象与反比例函数y2=的图象都经过点A(2,m).(1)求点A的坐标及一次函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时y1<y2.27.(2017•六盘水)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.28.(2017•资阳)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较y1与y2的大小.29.(2017•百色)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.30.(2017•攀枝花)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.31.(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.32.(2017•葫芦岛)如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.33.(2017•来宾)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于点A(﹣2,1),B(1,﹣2).(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式ax+b≤的解集.34.(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.35.(2017•兰州)如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y=(k<0)的图象于点D,y=(k<0)的图象过矩形OABC的顶点B,矩形OABC 的面积为4,连接OD.(1)求反比例函数y=的表达式;(2)求△AOD的面积.36.(2017•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.37.(2017•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B (﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.38.(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.39.(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.40.已知直线y=x上点C,过点C作CD∥y轴交x轴于点D,交双曲线y=于点B,过点C作NC∥x轴交y轴于点N,交双曲线y=于点E,若B是CD的中点,且四边形OBCE 的面积为.(1)求k的值;(2)若A(3,3),M是双曲线y=第一象限上的任一点,求证:|MC|﹣|MA|为常数6.(3)现在双曲线y=上选一处M建一座码头,向A(3,3),P(9,6)两地转运货物,经测算,从M到A,从M到P修建公路的费用都是每单位长度a万元,则码头M应建在何处,才能使修建两条公路的总费用最低?(提示:利用(2)的结论转化)参考答案与解析1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.【解答】解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),n>0点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∵PN=|﹣n|,||≥2∴0<n≤1或n≥3【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC 的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S可得答案;△PAB(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴k=3×4=12,在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•2•3k+•2•k=,解方程即可解决问题;【解答】解:(1)由题意A(1,2),把A(1,2)代入y=,得到3k=2,∴k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第四象限.利用反比例函数的性质即可解决问题;【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.【点评】此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.【分析】(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.【解答】解:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为y=,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数y=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质以及代数式的变形能力.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)由A在反比例函数图象上,把A的坐标代入反比例解析式,即可得出反比例函数解析式,又B也在反比例函数图象上,把B的坐标代入确定出的反比例解析式即可确定出m的值,从而得到B的坐标,由待定系数法即可求出一次函数解析式;(2)根据题意,结合图象,找一次函数的图象在反比例函数图象上方的区域,易得答案.【解答】解:(1)∵A(1,4)在反比例函数图象上,∴把A(1,4)代入反比例函数y1=得:4=,解得k1=4,∴反比例函数解析式为y1=的,又B(m,﹣2)在反比例函数图象上,∴把B(m,﹣2)代入反比例函数解析式,解得m=﹣2,即B(﹣2,﹣2),把A(1,4)和B坐标(﹣2,﹣2)代入一次函数解析式y2=ax+b得:,解得:,∴一次函数解析式为y2=2x+2;(2)根据图象得:﹣2<x<0或x>1.【点评】此题主要考查了反比例函数和一次函数的图象性质及待定系数法求解析式,要掌握它们的性质才能灵活解题.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.【分析】(1)利用待定系数法即可解决问题;(2)直线y=x+2,交y轴与D(0,2),可以根据S△AOB=S△BOD+S△AOD计算即可;(3)利用图象法解决问题即可;【解答】解:(1)∵y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点∴k1=8,m=﹣2,∴B(﹣4,﹣2),则有解得,∴k1=8,k2=1,b=2;(2)∵直线y=x+2,交y轴与D(0,2),∴S△AOB=S△BOD+S△AOD=×2×6=6.(3)观察图象可知,点M在第三象限,点N在第四象限;【点评】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.故直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴3=,∴k=﹣6.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m 表示出个点的坐标是关键.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.【分析】(1)把点A(4,2)代入反比例函数y=,可得反比例函数解析式,把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据C(3,0),可得CO=3,设P(a,),根据S△POC=9,可得×3×=9,解得a=,即可得到点P的坐标.【解答】解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足两个函数解析式.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.【分析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB的面积转化为S△AON﹣S△BON的面积即可.【解答】解:(1)∵点A 在反比例函数y=上,∴=4,解得m=1,∴点A的坐标为(1,4),又∵点B也在反比例函数y=上,∴=n,解得n=2,∴点B的坐标为(2,2),又∵点A、B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=﹣2x+6.(2)x的取值范围为1<x<2;(3)∵直线y=﹣2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON﹣S△BON=×3×4﹣×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x M=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或5<x<6,方法1:x﹣5=m,则x=m+5,<m+5,反比例函数y=与一次函数y=m+5的交点是(﹣6,﹣1),(1,6),函数y=与函数y=x的交点是(﹣1,﹣1),(6,6),综上,原不等式的解集是:x<﹣1或5<x<6.方法:2:由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.。

考点05 反比例函数的图像和性质(解析版)

考点05 反比例函数的图像和性质(解析版)

考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。

反比例函数图像与性质第2课时

反比例函数图像与性质第2课时

反比例函数与幂函数的比较
幂函数
$y = x^n$,图像为单调递增或 递减的曲线,当n>0时,在第一 象限和第三象限;当n<0时,在
第二象限和第四象限。
反比例函数
$y = frac{k}{x}$,图像为双曲线, 与x轴交点为$(pmsqrt{k},0)$,与 y轴交点为$(0,-frac{1}{sqrt{k}})$。
在流体中,压强与高度之间存在 反比关系,即随着高度的增加, 压强减小;随着高度的减小,压 强增大。
反比例函数在经济中的应用
供需关系
在市场经济中,供给与需求之间存在反比关系。当需求增加 时,供给量减少;当需求减少时,供给量增加。
投资回报率
投资回报率与投资规模之间存在反比关系。随着投资规模的 增大,投资回报率可能会降低。
像上。
答案与解析
第一季度
第二季度
第三季度
第四季度
判断题答案与解析
错。反比例函数图像可 能在第一、三象限或第 二、四象限,取决于k 的正负。
选择题答案与解析
答案不唯一,如点(1, 1)或(-1,1)都在反比例 函数图像上。解析:反 比例函数图像上的点满 足xy = k (k ≠ 0),因此 只需验证给定点是否满
反比例函数图像与性 质第2课时
目录
• 反比例函数的图像 • 反比例函数的性质 • 反比例பைடு நூலகம்数的应用 • 反比例函数与其他函数的比较 • 习题与解答
01
反比例函数的图像
反比例函数图像的形状
反比例函数的图像通 常位于第一象限和第 三象限,呈双曲线状。
图像在x轴和y轴上都 没有截距。
当x为正数时,y为负 数;当x为负数时,y 为正数。
例函数图像上。

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。

有时也用k xy =或1−=kx y 表示。

2. 反比例函数的图像:反比例函数的图像是双曲线。

3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y 随x 的增大而增大。

对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP =S△ABO,若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)双曲线的函数关系式为y=﹣;(2)当x<﹣1时,0<y<2;(3)存在;点P坐标为(﹣,4).【解析】(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP =S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.试题解析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵yA =yB,∴AB∥x轴,∴S△ABP =S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(yP ﹣2)=5,即×5×(yP﹣2)=5,解得yP=4,∴点P坐标为(﹣,4).【考点】1、相似三角形的判定与性质;2、待定系数法;3、函数大小的比较;4、反比例函数2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是____________________.【答案】y3<y2<y1.【解析】∵k=6>0,∴图象在一、三象限,且在每一象限内y随x的增大而减小.∵x1<x2,∴y1>y2>0,∵x3<0,∴y3<0,∴y3<y2<y1.故答案是y3<y2<y1.【考点】反比例函数图象上点的坐标特征.3.已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是()A.>>B.>>C.>>D.>>【答案】A.【解析】试题解析:∵-k2-1<0∴反比例函数y=的图象在第二、四象限∴>>故选A.【考点】反比例函数图象上点的坐标特征.4.已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中的()A.B.C.D.【答案】A【解析】由长方形的面积公式得y=,且x>0,y>0,而B中有x<0,y<0的情况,C,D中有x=0或y=0的情况,据此即可得出结果.解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.已知反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为12,求此函数的解析式.【答案】(1)k<0 (2)y=﹣【解析】(1)直接根据反比例函数的性质求解即可,k<0;(2)直接根据k的几何意义可知:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,所以|k|=12,而k<0,则k=﹣12.解:(1)∵反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,∴k<0;(2)设A(x,y),由已知得,|xy|=|k|=12,∵k<0,∴k=﹣12,所以,反比例函数的解析式为y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.在同一平面直角坐标系中,正比例函数y=(m﹣1)x与反比例函数y=的图象的大体位置不可能是()A.B.C.D.【答案】D【解析】根据题意,依次分析选项中的图象,根据图象,求出其参数的范围,并解看有无公共解,若有,则可能是它们的图象,若无解,则不可能是它们的图象;即可得答案.解:依次分析选项可得:A、4m>0,m﹣1>0;解可得m>1;故可能是它们的图象.B、4m>0,m﹣1<0;解可得0<m<1;故可能是它们的图象.C、4m<0,m﹣1<0;解可得m<1;故可能是它们的图象.D、4m<0,m﹣1>0;无解;故不可能是它们的图象.故选D.点评:本题考查正比例函数与反比例函数的图象性质,注意①正比例函数与反比例函数的图象与k的关系,②两个函数中参数的关系.7.若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<c B.b>c C.b=c D.无法判断【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.解:∵,∴故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1,过点B作轴垂线,垂足为C,连接AC、AB.(1)m= ;(2)若△ABC的面积为4,则点B的坐标为【答案】(1)4;(2)【解析】(1)把A的坐标代入反比例函数的解析式,即可求出m和得出反比例函数的解析式;(2)设B的坐标是(a,b),根据B在反比例函数上得出ab的值,再根据△ABC的面积为4求解即可.(1)把A(1,4)代入得;(2)设B的坐标是(a,b),∵B在反比例函数上,∴ab=4∵△ABC的面积为4,∴×a×(4-b)=4,∴2a ab=4,∴2a-2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).【考点】反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,三角形的面积点评:待定系数法求函数的解析式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S=。

反比例函数经典例题(含详细解答)解析

反比例函数经典例题(含详细解答)解析

反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。

2021年九年级数学下册第二十六章《反比例函数》经典习题(答案解析)(2)

2021年九年级数学下册第二十六章《反比例函数》经典习题(答案解析)(2)

一、选择题1.反比例函数(0)k y k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( ) A . B . C . D . 2.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .53.一次函数y kx b =+和反比例函数xb y k =的部分图象在同一坐标系中可能为( ) A . B . C . D . 4.关于反比例函数3y x =,下列说法错误的是( ) A .图象关于原点对称 B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab = 5.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A .3B .4C .5D .6 6.与点()2,3-在同一反比例函数图象上的点是( ) A .()1.5,4- B .()1,6-- C .()6,1 D .()2,3-- 7.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .58.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12 9.反比例函数k y x =经过点(2,1),则下列说法错误..的是( ) A .2k = B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小 10.如图,函数k y x=与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( )A .B .C .D .11.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x =(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .16 12.若函数2m y x +=的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是( )A .2m ≥B .2m <C .2m ≤-D .2m -< 13.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 14.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形, 45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A.16 B.24 C.36 D.4815.已知1 (3 A-,1)y、1(2B-,2)y、3(1,)C y是一次函数3y x b=-+的图象上三点,则1y,2y,3y的大小关系是()A.123y y y<<B.213y y y<<C.312y y y<<D.321y y y<<二、填空题16.双曲线y=kx经过点A(a,﹣2a),B(﹣2,m),C(﹣3,n),则m_____n (>,=,<).17.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间的函数关系如图所示,即2,(04)32,(4)x xyxx≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.18.如图,已知双曲线()0ky xx=>经过矩形OABC边BC的中点E,与AB交于点F,且四边形OEBF的面积为3,则k=________.19.已知点(,7)M a 在反比例函数21y x =的图象上,则a=______. 20.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.21.如图,一次函数y 1=ax+b 与反比例函数2k y x=的图像交于A(1,4)、B(4,1)两点,若使y 1>y 2,则x 的取值范围是___________.22.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)k y k x==的图象过点C ,则该反比例函数的解析式为_________.23.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接) 24.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.25.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.26.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.三、解答题27.如图,在平面直角坐标系xOy 中,一次函数y =ax+b (a≠0)的图象与反比例函数k y x =(k≠0,x >0)的图象相交于A (1,5),B (m ,1)两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数k y x=(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积. 28.如图,已知A (−4,2),B (n ,−4)是一次函数y kx b =+的图象与反比例函数m y x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式0m kx b x+->的解集(请直接写出答案).29.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.30.已知x1,x2,x3是y=1x图象上三个点的横坐标,且满足x3>x2>x1>0.请比较11x+21x与32x的大小,并说明理由.。

反比例函数图像与性质试题及详细答案

反比例函数图像与性质试题及详细答案

反比例函数图像与性质试题及详细答案反比例函数图像与性质试题一.选择题(共21小题)1.(2013•安顺)若是反比例函数,则a的取值为()A.1B.﹣l C.±l D.任意实数2.(1998•山西)若函数y=(m+1)是反比例函数,则m的值为()A.m=﹣2 B.m=1 C.m=2或m=1 D.m=﹣2或﹣13.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m ≥4.下列函数中,是反比例函数的为()A.y=2x+1 B.y =C.y =D.2y=x5.下列函数中,y是x的反比例函数是()A.B.C.D.6.已知函数是反比例函数,且图象在第二、四象限内,则m的值是()2A.2B.±2 C.﹣2 D.7.若函数y=是反比例函数,则m的值为()A.±2 B.2C.±D.8.(2014•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.9.(2014•泉州)在同一平面直角坐标系中,函数y=mx+m 与y=(m≠0)的图象可能是()A.B.C.D.10.(2014•牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()11.(2014•海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.12.(2014•乐山)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.13.(2014•怀化)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A.B.C.D.15.(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC 的面积为()A.1B.2C.D.16.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小17.(2014•黔西南州)已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b >的解集为()A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1D.﹣3<x<118.(2014•贵港)如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是()A . 1<x <3B . x <0或1<x <3C . 0<x <1D . x >3或0<x <119.(2013•贺州)当a ≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是( ) A .B .C .D .20.(2013•汕头)已知k 1<0<k 2,则函数y=k 1x ﹣1和y=的图象大致是( ) A .B .C .D .21.(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.二.填空题(共8小题)22.已知函数y=(k+1)是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k 的值为_________.23.若反比例函数y=(m﹣1)x﹣|m|的图象经过第二、四象限,则m=_________.24.(2002•兰州)已知函数y=(m2﹣1),当m=_________时,它的图象是双曲线.25.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=_________.26.(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为_________.27.(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA 的面积为2,则k的值是_________.28.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是_________.29.(2012•宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y 1>y2,则x的取值范围是_________.三.解答题(共1小题)30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数图像与性质试题参考答案与试题解析一.选择题(共21小题)1.(2013•安顺)若是反比例函数,则a的取值为()A.1B.﹣l C.±l D.任意实数考点:反比例函数的定义.专题:探究型.分析:先根据反比例函数的定义列出关于a的不等式组,求出a的值即可.解答:解:∵此函数是反比例函数,∴,解得a=1.故选A.点评:本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.2.(1998•山西)若函数y=(m+1)是反比例函数,则m的值为()A.m=﹣2 B.m=1 C.m=2或D.m=﹣2或m=1 ﹣1考点:反比例函数的定义.专题:计算题.分析:根据反比例函数的定义.即y=(k≠0),只需令m2+3m+1=﹣1,m+1≠0即可.解答:解:∵y=(m+1)是反比例函数,∴,解之得m=﹣2.故选A.点评:本题考查了反比例函数的定义,特别要注意不要忽略k≠0这个条件.3.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m ≥考点:反比例函数的定义.分析:反比例函数(m为常数)当x<0时,y随x的增大而增大,即反比例系数小于0,据此即可求得m的取值范围.解答:解:根据题意得:1﹣2m<0,解得:m >.故选:C.点评:正确理解反比例函数的性质,能把函数的增减性与比例系数的符号相结合解题,是最基本的要求.4.下列函数中,是反比例函数的为()A.y=2x+1 B.y =C.y =D.2y=x考点:反比例函数的定义.分析:根据反比例函数的定义,解析式符合(k≠0)这一形式的为反比例函数.解答:解:A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.点评:本题考查了反比例函数的定义,注意在解析式的一般式(k≠0)中,特别注意不要忽略k≠0这个条件.5.下列函数中,y是x的反比例函数是()A.B.C.D.考点:反比例函数的定义.分析:根据反比例函数的定义,反比例函数的一般式是(k≠0),即可判定各函数的类型是否符合题意.解答:解:A、为正比例函数,不符合题意;B、整理后为正比例函数,不符合题意;C、y与x+3成反比例,不符合题意;D、符合反比例函数的定义,符合题意;故选D.点评:本题考查反比例函数的定义,熟记反比例函数解析式的一般式(k≠0),是解决此类问题的关键.6.已知函数是反比例函数,且图象在第二、四象限内,则m的值是()A.2B.±2 C.﹣2 D.考点:反比例函数的定义;反比例函数的性质.分析:根据反比例函数的定义可得m2﹣5=﹣1,根据函数图象分布在第二、四象限内,可得m+1<0,然后求解即可.解答:解:根据题意得,m2﹣5=﹣1且m+1<0,解得m1=2,m2=﹣2且m<﹣1,所以m=﹣2.故选C.点评:本题考查了反比例函数的定义,反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.7.若函数y=是反比例函数,则m的值为()A.±2 B.2C.±D.考点:反比例函数的定义.分析:根据反比例函数的定义.即y=(k≠0),只需令3﹣m2=1即可.解答:解:∵函数y=是反比例函数,∴3﹣m2=1解答:m=±,故选C.点评:本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.8.(2014•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D正确;故选:D.点评:考查反比例函数和一次函数图象的性质:(1)反比例函数y=:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;(2)一次函数y=kx+b:当k>0,图象必过第一、三象限,当k<0,图象必过第二、四象限.当b>0,图象与y轴交于正半轴,当b=0,图象经过原点,当b<0,图象与y轴交于负半轴.9.(2014•泉州)在同一平面直角坐标系中,函数y=mx+m 与y=(m≠0)的图象可能是()考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故A选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故B选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故C选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故D选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.(2014•牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,﹣k <0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B 选项错误;C、对于y=kx+1经过第二、四象限,则k<0,﹣k>0,所以反比例函数图象应该分布在第一、三象限,所以C 选项错误;D、对于y=kx+1经过第二、四象限,则k<0,﹣k>0,所以反比例函数图象应该分布在第一、三象限,所以D 选项正确.故选:D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.11.(2014•海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:数形结合.分析:根据反比例函数y=(k≠0),当k<0时,图象分布在第二、四象限和一次函数图象与系数的关系进行判断;解答:解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.点评:本题考查了反比例函数的图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k <0时,图象分布在第二、四象限.也考查了一次函数图象.12.(2014•乐山)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据反比例函数所在的象限判定k的符号,然后根据k 的符号判定一次函数图象所经过的象限.解答:解:A、如图所示,反比例函数图象经过第一、三象限,则k>0,所以一次函数图象必定经过第一、三象限,与图示不符,故本选项错误;B、如图所示,反比例函数图象经过第二、四象限,则k <0.﹣k+2>0,所以一次函数图象经过第一、二、四象限,与图示不符,故本选项错误;C、如图所示,反比例函数图象经过第二、四象限,则k <0.﹣k+2>0,所以一次函数图象经过第一、二、四象限,与图示不符,故本选项错误;D、如图所示,反比例函数图象经过第一、三象限,则k >0,所以一次函数图象必定经过第一、三象限,与图示一致,故本选项正确;点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.13.(2014•怀化)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象;一次函数图象与系数的关系.分析:根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定正比例函数y=kx和反比例函数y=图象所在的象限.解答:解:如图所示,∵一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0.∴正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A.B.C.D.考点:反比例函数的性质;一次函数的图象.专题:数形结合.分析:根据反比例函数y=的图象所在的象限确定k>0.然后根据k>0确定一次函数y=kx﹣k的图象的单调性及与y 轴的交点的大体位置,从而确定该一次函数图象所经过的象限.解解:根据图示知,反比例函数y=的图象位于第一、三答:象限,∴k>0,∴一次函数y=kx﹣k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx﹣k的图象经过第一、三、四象限;故选:B.点评:本题考查了反比例函数、一次函数的图象.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.15.(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC 的面积为()A.1B.2C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC =,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选:A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小考点:反比例函数系数k的几何意义.专题:几何图形问题.分析:由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.解答:解:设点P的坐标为(x ,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.点评:本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.17.(2014•黔西南州)已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b >的解集为()A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1D.﹣3<x<1考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b >.解答:解:不等式ax+b >的解集为﹣3<x<0或x>1.故选:B.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.18.(2014•贵港)如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是()A . 1<x <3B . x <0或1<x <3C . 0<x <1D . x >3或0<x <1考点:反比例函数与一次函数的交点问题.分析:当一次函数的值>反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值>反比例函数的值x 的取值范围,可得答案. 解答: 解:由图象可知,当x <0或1<x <3时,y 1<y 2, 故选:B .点评: 本题考查了反比例函数与一函数的交点问题,反比例函数图象在下方的部分是不等的解.19.(2013•贺州)当a ≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是( ) A .B .C .D .考反比例函数的图象;一次函数的图象.点:专题:压轴题.分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解答:解:当a>0时,y=ax+1过一、二、三象限,y=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.20.(2013•汕头)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分根据反比例函数的图象性质及正比例函数的图象性质可析:作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.21.(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.解答:解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.点评:本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.二.填空题(共8小题)22.已知函数y=(k+1)是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为2.考点:反比例函数的定义;正比例函数的性质.专题:计算题.分析:此题可根据反比例函数的定义.即y=(k≠0)先求得k 的值,再由k>0得出k的最终取值.解答:解:∵y=(k+1)是反比例函数,∴,解之得k=±2.又因为正比例函数y=kx的图象经过第一、三象限,所以k>0,所以k的值只能为2.故答案为:2.点评:本题考查了反比例函数的定义及正比例函数的性质,较为简单,容易掌握.23.若反比例函数y=(m﹣1)x﹣|m|的图象经过第二、四象限,则m=﹣1.考点:反比例函数的定义;反比例函数的性质.专题:计算题.分析:根据反比例函数的定义求得m的值,然后根据反比例函数图象的性质求得m的取值范围,从而确定m的值.解答:解:由函数y=(m﹣1)x﹣|m|为反比例函数可知,,解得,m=﹣1;①又∵反比例函数y=(m﹣1)x﹣|m|的图象经过第二、四象限,∴m﹣1<0,即m<1;②由①②,得m=﹣1.故答案是:﹣1.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.24.(2002•兰州)已知函数y=(m2﹣1),当m=0时,它的图象是双曲线.考点:反比例函数的定义.分析:根据反比例函数的定义.即y=(k≠0),只需令m2﹣m ﹣1=﹣1、m2﹣1≠0即可.解答:解:依题意有m2﹣m﹣1=﹣1,所以m=0或1;但是m2﹣1≠0,所以m≠1或﹣1,即m=0.故m=0时图象为双曲线.故答案为:m=0.点评:此题考查了反比例函数的概念和图象的基本性质,难易程度适中.25.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=0.考点:反比例函数的定义;解一元二次方程-因式分解法.分析:首先根据反比例函数定义可得3k2﹣2k﹣1=﹣1,解出k 的值,再根据反比例函数所在象限可得2k﹣1<0,求出k的取值范围,然后在确定k的值即可.解答:解:∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k <,∴k=0,故答案为:0.点评:此题主要考查了反比例函数的定义与性质,关键是掌握反比例函数的定义,一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.26.(2013•娄底)如图,已知A 点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为6.考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△ABO =|k|=3,由于反比例函数的图象位于第一象限,k>0,则k=6.故答案为:6.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.27.(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA 的面积为2,则k的值是2.考点:反比例函数系数k的几何意义;等腰直角三角形.分析:过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA 为等腰直角三角形,所以OB=AB,于是S △POB=S△POA =×2=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k的值.解解:过P作PB⊥OA于B,如图,答:∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,∴S△POB =S△POA =×2=1,∴k=1,∴k=2.故答案为2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.28.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x <+b的解集是﹣5<x<﹣1或x>0.考点:反比例函数与一次函数的交点问题.专题:压轴题;数形结合.分析:根据不等式与直线和双曲线解析式的关系,相当于把直线向下平移2b个单位,然后根据函数的对称性可得交点坐标与原直线的交点坐标关于原点对称,再找出直线在双曲线下方的自变量x的取值范围即可.解答:解:由k1x <+b,得,k1x﹣b <,所以,不等式的解集可由双曲线不动,直线向下平移2b 个单位得到,直线向下平移2b个单位的图象如图所示,交点A′的横坐标为﹣1,交点B′的横坐标为﹣5,当﹣5<x<﹣1或x>0时,双曲线图象在直线图象上方,所以,不等式k1x <+b的解集是﹣5<x<﹣1或x>0.故答案为:﹣5<x<﹣1或x>0.点评:本题主要考查了反比例函数与一次函数的交点问题,根据不等式与函数解析式得出不等式的解集与双曲线和向下平移2b个单位的直线的交点有关是解题的关键.29.(2012•宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是x<0或1<x<4.考点:反比例函数与一次函数的交点问题.专题:压轴题;数形结合.分析:根据图形,找出一次函数图象在反比例函数图象上方的x的取值范围即可.解答:解:根据图形,当x<0或1<x<4时,一次函数图象在反比例函数图象上方,y1>y2.故答案为:x<0或1<x<4.点评:本题考查了反比例函数一次函数的交点问题,要注意y 轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方.三.解答题(共1小题)30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.考点:反比例函数的定义;函数值;正比例函数的定义.专题:探究型.分析:(1)先根据题意得出y1=k1(x﹣1),y2=,根据y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1得出x、y的函数关系式即可;(2)把x=代入(1)中的函数关系式,求出y的值即可.解答:解:(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.点评:本题考查的是反比例函数及正比例函数的定义,能根据题意得出y与x的函数关系式是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数及其图象解答题2
解答题:
1、 已知21y y y -=,1y 与x 成反比例,2y 与2-x 成正比例,且x =1时,y =-1;x =3时, y =5,求x =5时y 的值。

2、已知1y 是正比例函数,2y 是反比例函数,并且当自变量取1时,1y =2y ;当自变量取2时, 1y -2y =9,求1y 和2y 的解析式。

3、正比例函数x y 2=与双曲线x
k y =的一个交点坐标为A (2,m )。

(1) 画出x y 2=的图象; (2)求出点A 的坐标;
(3)求反比例函数关系式; (4)求这两个函数图象的另一个交点坐标
4、反比例函数的图象与正比例函数的图象相交于A 、B 两点,若点A 在第二象限,且点A 的横坐标为-1,且AB ⊥x 轴,垂足为B ,△AOB 的面积是2。

(1)写出反比例函数的解析式;(2)求出点B 的坐标;(3)若点C 的坐标为(3,0),求△ABC 的面积。

相关文档
最新文档