工程热力学

合集下载

工程热力学的公式大全

工程热力学的公式大全

工程热力学公式大全1.梅耶公式:R c c v p =- R c c v p 0''ρ=-0R MR Mc Mc v p ==-2.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1.宏观动能:221mc E k =2.重力位能:mgz E p =式中g —重力加速度。

系统总储存能:1.p k E E U E ++= 或mgz mc U E ++=2212.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算)3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算) 4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。

适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=ni i i ni i n u m U U U U U 1121由理想气体组成的混合气体的热力学能等于各组成气体热力学能之与,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。

6.⎰-=∆21pdv q u适用于任何工质,可逆过程。

7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程。

9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。

10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。

工程热力学

工程热力学

第1章基本概念1.1 本章基本要求深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。

1.2 本章难点1.热力系统概念,它与环境的相互作用,三种分类方法及其特点,以及它们之间的相互关系。

2.引入准静态过程和可逆过程的必要性,以及它们在实际应用时的条件。

3.系统的选择取决于研究目的与任务,随边界而定,具有随意性。

选取不当将不便于分析。

选定系统后需要精心确定系统与外界之间的各种相互作用以及系统本身能量的变化,否则很难获得正确的结论。

4.稳定状态与平衡状态的区分:稳定状态时状态参数虽然不随时间改变,但是靠外界影响来的。

平衡状态是系统不受外界影响时,参数不随时间变化的状态。

二者既有所区别,又有联系。

平衡必稳定,稳定未必平衡。

5.注意状态参数的特性及状态参数与过程参数的区别。

名词解释闭口系统、开口系统、绝热系统、孤立系统、热力平衡状态、准静态过程、可逆过程、热力循环第2章理想气体的性质2.1 本章基本要求熟练掌握理想气体状态方程的各种表述形式,并能熟练应用理想气体状态方程及理想气体定值比热进行各种热力计算。

并掌握理想气体平均比热的概念和计算方法。

理解混合气体性质,掌握混合气体分压力、分容积的概念。

2.2 本章难点1.运用理想气体状态方程确定气体的数量和体积等,需特别注意有关物理量的含义及单位的选取。

2.考虑比热随温度变化后,产生了多种计算理想气体热力参数变化量的方法,要熟练地掌握和运用这些方法,必须多加练习才能达到目的。

3.在非定值比热情况下,理想气体内能、焓变化量的计算方法,理想混合气体的分量表示法,理想混合气体相对分子质量和气体常数的计算 2.5 自测题一、是非题1.当某一过程完成后,如系统能沿原路线反向进行回复到初态,则上述过程称为可逆过程。

( )2.只有可逆过程才能在p-v 图上描述过程进行轨迹。

( )3.可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。

工程热力学 名词解释

工程热力学 名词解释

工程热力学名词解释(4×5=20分)1.可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间变化,系统内外同时建立了热平衡和力平衡,这是系统的状态称为热力平衡状态,简称平衡状态。

准静态过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

2.膨胀功:在压力差作用下,由于系统工质容积发生变化而通过界面向外界传递的机械功。

技术功:热力过程中可被直接利用来做功的能量通称为技术功。

流动功:为推动流体通过控制体界面而传递的机械功,它是维持流体正常流动所必须传递的能量。

轴功:系统通过机械轴与外界传递的机械功。

3.理想气体:分子本身不具有体积、分子间没有作用力的气体称为理想气体。

实际气体:气体的状态处于很高的压力或很低的温度,气体有很高的密度,以致分子本身的体积及分子间的相互作用力不能忽略不计时的气体,称为实际气体。

4.热力学用:闭口系统从给定状态可逆地过渡到与环境状态相平衡,对外所作的最大有用功,称为热力学能用。

焓用:工质流从初态可逆过渡到环境状态,单位质量工质焓降可能做出的最大技术功是工质流的焓用。

热量用:当热源温度T高于环境温度T0时,从热源取得热量Q,通过可逆热机可对外界做出的最大功称为热量用。

冷量用:当热源温度T低于环境温度T0时,在可逆条件下,外界消耗的最小功即为冷量用。

5.闭口系统:没有物质穿过边界的系统。

开口系统:有物质流穿过边界的系统。

绝热系统:系统与外界之间没有热量传递的系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统。

6.定压比热容:单位质量的物质,在压力不变的条件下,作单位温度变化时相应的焓的变化。

定容比热容:单位质量的物质,在比体积不变的条件下,作单位温度变化时相应的热力学能的变化。

工程热力学课后习题及答案第六版(完整版)

工程热力学课后习题及答案第六版(完整版)

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J • (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO 2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量 2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2)27311+=t T (3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。

《工程热力学》知识点整理(完整版)-第五版

《工程热力学》知识点整理(完整版)-第五版

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学复习资料-难点和易混点

工程热力学复习资料-难点和易混点

熵:一、任意过程熵与热量的关系系统的熵变是可以用可逆吸热计算的,当实际过程不可逆时,可以采用假设可逆过程的方法。

按假设可逆过程计算熵变,即用热温比计算,其中的热量度其实是包括两部分:实际传入的热量和耗散热量(可逆功-实际功)——总热量一个关系:(假设)可逆传热-(假设)可逆功=传热-功(实际)=系统内能变化(因为内能是状态参量,是只与前后状态有关的,与过程是否可逆无关)即:系统在某一温度下的熵变是系统在该温度下所得到的总热量除以该系统的温度,与可逆与否无关。

Tr Q W WQ ds T T T δδδδ-==+,注意用的是系统温度而不是热源温度,因为熵本身就是系统的状态量。

——第一熵方程二、微观解释系统微观粒子热运动能量增量与热运动强度之比(运动有序程度的度量)反应了系统宏观状态对应的微观状态数。

注:任何不可逆过程都将一定功化为等量热。

——效果与功生热一样。

——则任一不可逆过程都可能通过加功消除变化。

三、熵流与熵产熵产是真正的不可逆程度的度量,是不可逆的本质,是熵的根本来源。

闭系,熵变=熵流+熵产,任意系统熵变可正可负,熵流可正可负,但熵产必然是大于或等于0的,孤立系统,没有熵流,则熵变就是熵产,所以有孤立系熵增原理。

总方程:()r r r W W QQ Q ds T T T T δδδδδ-=+-+——第二熵方程熵流熵产:两部分组成——有有限温差温差的传热和系统内部功的耗散如果计算熵流用的是系统温度Q Tδ,则熵产中就只有耗散项,而不包括温差传热项。

两者熵产项不相等,是因为考虑的过程不同,所选择的系统也不同。

用热源温度计算熵流时,计算的是从热源流出的熵流,而熵变是系统的熵变,则系统的熵变 理应包括温差传热带来的熵产。

而用系统温度计算熵流时,计算的是流入系统的熵流,而流 入系统的熵流已经包括温差传热的熵产了。

——温差传热的熵产是最终到受热方的,是流入 的熵流的一部分。

开口系多用Q T δ计算熵流而不用rQ T δ,因为工质系统一般是研究对象,简单清楚。

工程热力学

工程热力学

实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡 势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
热力平衡状态满足: 热平衡:组成热力系统的各部分之间没有热量的 传递。 力平衡:组成热力系统的各部分之间没有相对位 移。
自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。 工程热力学通常只研究平衡状态。
1 2 Ek mc 2
E p mgz
系统的总储存能(简称总能)
热力学能 宏观动能
U
系统的储存能
Ek


宏观位能 系统的储存能
EP
E
E U Ek EP
1 2 e u c gz 2
1kg工质的总能为比总能:
二. 闭口系统的热力学第一定律表达式
能量平衡关系式: 输入系统的能量-输出系统的能量=系统总储存能
二、容积功
气缸
可逆过程的容积功在p—v图中的表示
飞轮 续41
热 源
左止点 右止点
p
1
2
w pdv
1
2
v
p 1

21. p v 图上曲线下面的面积代表容积功 2. dv 0 有 w 0 w 称为膨胀功
dv 0 有 w 0 w 称为压缩功
q2 wnet
q1 热泵循环的经济性-热泵系数: wnet
热源
Q1
热机
W Q1 Q2
Q2
冷源
第二章 热力学第一定律
2.1 循环过程、热力学第一定律 2.2 闭口系的热力学第一定律表达式
2.3 开口系统的热力学第一定律表达式
2.1
循环过程、热力学第一定律

工程热力学(基本概念)

工程热力学(基本概念)

国际实用温标的固定点
平衡状态
平衡氢三相点 平衡氢沸点 氖沸点 氧三相点 氧冷凝点
国际实用温标指定

T,K
t,℃
13.81 -259.34
20.28 -252.87
20.102 -246.048
54.361 -218.789
90.183 -182.962
平衡状态
水三相点 水沸点
锌凝固点 银凝固点 金凝固点
一、热力过程
定义:热力系从一个状态向另一个状态变化时所经 历的全部状态的总和。
二、准平衡(准静态)过程
准平衡过程的实现
工程热力学 Thermodynamics
二、准平衡(准静态)过程
定义:由一系列平衡态组成的热力过程 实现条件:破坏平衡态存在的不平衡势差(温差、
力差、化学势差)应为无限小。 即Δp→0 ΔT→0 (Δμ→0)
工程热力学 Thermodynamics
三、可逆过程
力学例子:
定义: 当系统完成某一热力过程后,如果有可能使系统再
沿相同的路径逆行而恢复到原来状态,并使相互中所涉 及到的外界亦恢复到原来状态,而不留下任何变化,则 这一过程称为可逆过程。
实现条件:准平衡过程加无耗散效应的热力过程 才是可逆过程。
工程热力学 Thermodynamics
用来实现能量相互转换的媒介物质称为工质。
理想气体
工 质
实际气体
蒸气
工程热力学 Thermodynamics
二、平衡状态
(一)热力状态:热力系在某一瞬间所呈现的宏观
物理状况。(简称状态)
(二)平衡状态 1、定义:一个热力系统,如果在不受外界影响的条件下,
系统的状态能够始终保持不变,则系统的这种状态称为平衡 状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气源热泵以消耗一定高品质能量为代价,利用环境中的低品质热能
供热,实现了能量利用过程的能质匹配,供热量大部分取自室外空气
又还给空气,对环境基本没有污染,是一种最有竞争力的节能、环保
技术。但空气源热泵供暖受低温环境温度影响,随着低温环境温度的
降低其供热效果降低,以至于无法启动运行。为使热泵在低温环境中
高效、安全运行,人们进行了许多技术研发和改进,目前应用较多的
是涡旋式压缩机喷气增焓系统。
1 涡旋式压缩机喷气增焓系统的热力学分析
喷气增焓系统又称经济器系统,分为一次节流和二次节流系统,图1
示出了二次节流涡旋压缩机喷气增焓系统的循环过程。一般单级制热
循环为1-2-3-4-5-1,采用喷气增焓技术的二次节流制热循环与传统
制热循环的主要区别在于:从冷凝器出来后的高压制冷剂液体分为两
路:制冷回路和补气回路。其中,2′-4 为冷凝过程,4-6 为绝热节
流过程,6-7 为补气吸热蒸发过程,6-4′为制冷剂蒸气冷凝放热过
程,4′-5′为制冷剂蒸气绝热节流过程,5′-1 为制冷剂蒸气蒸发
吸热过程,1-8 为压缩
机的压缩过程,8-9-7 为制冷蒸气与补气蒸气混和过程,9-2′为压
缩过程。应该指出的是对于采用喷气增焓技术的制热循环,每个过程
线所代表的循环工质的数量并不
完全相同。对于涡旋式压缩机喷气增焓循环系统的热力学分析首先需
要确定与传统的普通单级压缩制热循环系统的比较基准。在以下的分
析中以二次节流循环为例,取两种循环过程中蒸发器制冷剂循环量相
同。若取对于蒸发器每千克循环工质的补气量为αkg,则对喷气增焓
制热循环过程的热力学分析如下。
1.1 蒸发器制冷量
对照图1(b)所示,喷气增焓系统的制冷量为:
Q′2=(h1-h5′)=[(h5-h′5)+(h1-h5)] (1)
根据经济器的能量平衡关系式,又可以进一步写出:
(h5-h′5)=(h6-h′4)=α(h7-h6) (2)
将(2)式代回(1)式,则有:
Q′2=α(h7-h6)+(h1-h5) (3)
由于:h6=h5,所以:
Q′2=α(h7-h1)+(1+α)(h1-h5) (4)
分析上述公式可以看出:采用喷气增焓技术后,循环工质在蒸发器的
吸热量可以看作由两部分组成,补气部分工质的吸热量为(3)式右
边第一部分;其余部分为工质在蒸发压力下吸热量,吸热量为(3)
式右边第二部分。在蒸发器循环工质数量相同的情况下,二次节流喷
气增焓制热循环与普通单级压缩热泵循环相比,蒸发器吸热量每kg
循环工质增加了α(h7-h5)。
1.2 压缩机的耗功量
w0′=(h8-h1)+(1+α)(h2′-h9) (5)
压缩机的耗功量可以看作由低压段和高压段两部分耗功量组成,低压
段部分仅对制冷部分工质压缩,高压部分则对全部工质压缩。二次节
流喷气增焓制热循环与普通单级压缩热泵循环相比压缩机耗功量增
加:
△w=w0′-w0=(1+α)(h2′-h9)-(h2-h8) (6)
对照图1(b)所示,如果近似认为压缩机两条绝热压缩过程线平行的
话,则有:(h2′-h9)=(h2-h8),因此:
△w=w0′-w0=α(h2′-h9)>0 (7)
即:采用喷气增焓技术后,压缩机耗功量增加。其原因是高压段还要
对补气进行压缩做功,但由于采用了中间冷却措施,使得单位工质耗
功量减少,并且随着补气量的增加,节省的耗功量也越多,而节省的
耗功量与补气压力之间的关系,应该有一个最佳中间压力的选择。
1.3 冷凝器放热量
Q1′=(1+α)(h2′-h4) (8)
二次节流喷气增焓制热循环与普通单级压缩热泵循环相比冷凝器放
热量增加:
△Q1=α(h2′-h4)-(h2-h2′ ) (9)
增加的供热量为补气增加的供热量扣除压缩机排气过热温度降低减
少的供热量,由于仅仅是温度不同造成的过热蒸气的焓的差值不会很
大,因此总的供热量增加。
1.4 制冷系数
ε= Q2′/ω′0=(h1-h5)+(h5-h5′ )/(h8-h1)+(1+α)*(h2′
-h9)
1.5 制热系数
ε′1= Q1′/ω0′ =(1+α)*(h2′-h4)/(h8-h1)+(1+α)*
(h2′-h9)
= (ω0′+Q2′)/ω0′ =1+ Q2′/
ω′0=1+{(h1-h5)+(h5-h5′ )/[(h8-h1)+(1+α)*(h2′-h9)]}
(10)
可以看出:在相同工况下若制冷系数增大,则制热系数也一定增大。
蒸发器吸热量不一定增加,耗功量一定增加,冷凝器放热量一定增加,
而制冷系数和制热系数的变化还与制冷量、制热量与耗功量变化率有
关。
2 涡旋式压缩机喷气增焓系统的优化设计
以一台涡旋压缩机的热泵机组为例进行优化设计分析,假定:蒸发温
度为-20 ℃;冷凝温度为48 ℃;吸气过热度为8 ℃;冷凝器出口过
冷度为6 ℃。试对二次节流喷气增焓制热循环与普通单级压缩热泵循
环进行性能比较;对二次节流喷气增焓制热循环最佳补气压力进行

化选择。

相关文档
最新文档