新北师大版七年级数学上册《有理数的乘方》学案
有理数的乘方北师大版数学初一上册教案

有理数的乘方北师大版数学初一上册教案教案如下:教学目标:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
3. 能够计算简单的有理数的乘方。
教学重点:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
教学难点:1. 计算涉及有理数的乘方的运算。
教学准备:1. 教师准备教材《北师大版数学初一上册》。
2. 学生准备教材、作业本和课堂笔记。
教学过程:Step 1: 引入新知识1. 教师通过简单的实例引入有理数的乘方的概念。
2. 教师解释有理数的乘方的定义和运算规则。
Step 2: 讲解和练习运算规则1. 教师通过教材的相关内容,逐步讲解有理数的乘方的运算规则。
2. 教师通过练习题让学生熟练掌握有理数的乘方的运算规则。
Step 3: 拓展练习1. 教师提供一些涉及有理数的乘方的计算题目,让学生进行拓展练习。
2. 教师引导学生分析、解决问题,并给予适当指导。
Step 4: 总结和归纳1. 教师和学生共同总结有理数的乘方的运算规则。
2. 学生进行复习和整理,将学到的知识进行总结和归纳。
Step 5: 课堂小结1. 教师进行课堂小结,强调有理数的乘方的重点和难点。
2. 学生进行自我评价,发现自己的不足之处。
教学反思:1. 教师在讲解有理数的乘方的概念时,要注重提供简单易懂的实例,加深学生对该概念的理解。
2. 教师在讲解有理数的乘方的运算规则时,要通过练习题帮助学生熟练掌握该规则并能够灵活运用。
3. 教师要根据学生的实际情况,进行灵活性的调整,确保每个学生都能够理解和掌握有理数的乘方的知识。
最新北师大版数学七年级上册教案2.9《有理数的乘方》

《有理数的乘方》教案教学目标1、通过现实背景理解有理数乘方的意义.2、能进行有理数的乘方运算,并会用计算器完成乘方运算.3、已知一个数,会求出它的正整数指数幂,渗透转化思想.4、通过对乘方意义的探究过程,向学生渗透比较、归纳、猜想,建立数学模型的数学思想.教学重难点重点:理解乘方的意义,会进行有理数的乘方运算.难点:负数的乘方运算.教学过程(一)创设情境,导入新课故事导入:古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感激.国王答应满足这个大臣的一个要求.大臣说:“就在这个棋盘里放些米粒吧.第一个格放2粒米,第二格放4粒米,第三格放8粒米,然后是16粒米,32粒米……一直到第64格.”“你真傻,就要这么一点米粒?”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多大米?”你认为国王的国库里有这么多大米吗? 课本引例:一个细胞30分钟后分裂成2个,1小时后分裂成2×2个,32小时后分裂成2×2×2个…… 用a 来表示2:a a ⋅简记为2a ,读作a 的平方(二次方)、a a a ⋅⋅简记为3a ,读作a 的立方(三次方) 类推:a a a a ⋅⋅⋅可以简记为__________,读作_________a a a a a ⋅⋅⋅⋅可以简记为___________,读作_________个n a a a a ⋅⋅⋅⋅可以简记为___________,读作_________ 引出概念:求n 个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.对照各部分名称:指数、底数、幂.如果底数是9,指数是4,那么49读作9的4次方,表示有4个9相乘,结果叫9的4次幂.师:你能写出一个乘方运算的例子吗?能读出这个乘方运算,并指出底数和指数分别是多少吗?练习1(概念辨析):指出下列乘方运算的底数和指数:(1)3)5(- (2)35 (3)35- (4)53师:大家都能分辨底数、指数了,接下来我们一起来运算一下吧.师生共同学习例题:例1.计算3431(1)5(2)(3)(3)()2-- 例2.计算2343(1)(2)(2)2(3)4---- (二)重点突出 用计算器计算4)8(-和6)3(-根据学生手中计算器类型的不同,可以有两种较常见的按法:一是用带符号键(-)的计算器,二是用符号转换键+/-的计算器(三)自主交流,归纳小结师:从之前的例子,你发现负数的幂的正负有什么规律?学生相互讨论交流.概括:负数的奇次幂是负数,负数的偶次幂是正数.问:正数的任何次幂都是正数吗?0的任何次幂是多少?紧接着,师生共同学习例3: 23452345(1)10101010(2)(10)(10)(10)(10)----,,,;,,,.(四)活学活用,解决难题现在来解决开头的那个数学问题第一格放2粒米,即12粒第二格放4粒米,即22粒第三格放8粒米,即32粒……第六十四格放________米,即642粒,用计算器验证一下第六十四格要放多少粒米? 以此类推,最后一格——第六十四格里是2连乘63次,大约等于922亿亿粒.如一斤米以两万粒计算,就合461万亿斤!将全中国的耕地都拿来种稻米,要好几百年才能收这么多.如果将前面的63格里的米粒也算在内,总数还要增加近一倍!这就是指数的威力,难怪国王不知所措了.趣味探索:一张薄薄的纸对折56次后有多厚?试验一下你能折这么厚吗?(五)作业P59页1、2和P61页1。
七年级数学上册 2.9 有理数的乘方导学案(新版)北师大版

第九节有理数的乘方【学习目标】1.理解有理数乘方的意义,并掌握幂、底数、指数的概念;2.通过观察、类比、归纳得出正确的结论,正确进行有理数的乘方运算。
【学习重难点】重点:在理解有理数乘方的意义的基础上进行有理数的乘方运算难点:与所学知识进行衔接,处理带各种符号的乘方运算【学习过程】模块一预习反馈一、知识回顾1、平方和立方:42 = 表示:个相乘。
23 = 表示:个相乘。
2、有理数乘法符号法则:几个不为 0 的数相乘,当负因数有奇数个时,积为;当负因数有偶数个时,积为。
二、自主学习(一)看书(P58—60)后,解答下列各题:1、乘方的意义: 2×2×2=23;(—3)×(—3)×(—3)×(—3)=(-3)4(32-)×(32-)×(32-)×(32-)×(32-)×(32-)=________归纳:一般地,n个相同的因数 a 相乘,记作 ____ 。
这种求 n 个相同因数 a 的积的运算叫做______;乘方的结果叫做_____, a 叫做______, ____叫做指数。
(二)实践练习:先判断乘方的符号,再指出底数和指数,说明表示意义,最后直接得到结果。
(1)()35+(2)432⎛⎫-⎪⎝⎭(3)3( 1.2)-解:符号为 +底数为:+5指数为:3表示意义:3个+5相乘原式=125归纳:乘方运算的符号:(1)底数为正时,结果为 _____(2)底数为负数:①当指数为奇数时,结果为 ;②当指数为______时,结果为正【我的疑惑】模块二 合作探究 探究一1、指出底数和指数,说明表示意义,判断运算结果的符号,最后直接得到结果。
(1)()23- (2)-42 (3)332⎪⎭⎫ ⎝⎛- (4)432-注意:乘方运算时,注意观察指数带在谁的头上,凡负数和分数作为底数必须加上括号。
探究二1、计算;)2()3(2)1(322-+--- ;328)25.0(21)2(232⎪⎭⎫ ⎝⎛--⨯-+⎪⎭⎫ ⎝⎛-2、如果 a 2=16 ,b 2=9 ,求: 2a -b 的值。
2023有理数的乘方北师大版数学初一上册教案

你若盛开,蝴蝶自来。
2023有理数的乘方北师大版数学初一上册教案求相同因数的积叫做乘方。
乘方运算的结果叫幂。
正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。
22、73也可以看做是乘方运算的结果。
以下是我整理的有理数的乘方北师大版数学初一上册教案,欢迎大家借鉴与参考!《有理数的乘方》学案学问与技能:理解并把握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算过程与方法:通过小组合作沟通,理解乘方的相关学问情感态度与价值观:通过参加数学学习活动,对数学有奇怪心和求知欲,形成主动学习态度。
学问重点:理解有理数乘方的意义和表示,会进行乘方运算学习难点:理解有理数乘法运算与乘方间的关系,进行正确的乘方运算2.9有理数的乘方:测试一、选择题(共9小题)1.(﹣1)2的值是( )A.﹣1B.1C.﹣2D.2第1页/共3页千里之行,始于足下。
【考点】有理数的乘方.【分析】依据平方的意义即可求解.【解答】解:(﹣1)2=1.故选B.【点评】本题考查了乘方的运算,负数的奇数次幂是负数,负数的偶数次幂是正数.2.下列计算正确的是( )A.﹣1+2=1B.﹣1﹣1=0C.(﹣1)2=﹣1D.﹣12=1【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】依据有理数的加减法运算法则,有理数的乘方对各选项分析推断后利用排解法求解.【解答】解:A、﹣1+2=1,故本选项正确;B、﹣1﹣1=﹣2,故本选项错误;C、(﹣1)2=1,故本选项错误;D、﹣12=﹣1,故本选项错误.故选A.【点评】本题考查了有理数的乘方,有理数的加减运算,要特殊第2页/共3页你若盛开,蝴蝶自来。
留意﹣12和(﹣1)2的区分.《2.9有理数的乘方》同步练习8.(7分)有一种纸的厚度是0.1毫米,若拿两张重叠在一起,将它们对折1次后,厚度为4×0.1毫米.(1)对折2次后,厚度为多少毫米?(2)对折6次后,厚度为多少毫米?【拓展延长】9.(10分)问题:你能很快算出20232吗?为了解决这个问题,我们考虑个位上的数字为5的自然数的平方,任意一个个位数是5的自然数的平方可写成(10n+5)2的值(n为自然数).请你试着分析n=1,n=2,n=3,…,这些简洁状况,从中探究其规律,并归纳、猜想出结论(在下面空格内填上你的探究结果).有理数的乘方北师大版数学初一上册教案文档内容到此结束,欢迎大家下载、修改、丰富并分享给更多有需要的人。
北师大版数学七年级上册2.9有理数的乘方(教案)

-有理数乘方的定义及表示方法。
-有理数乘方的计算法则,如正数乘方、负数乘方、零乘方等。
-乘方的性质,如交换律、结合律、分配律等。
-乘方在实际问题中的应用,如计算面积、体积等。
二、核心素养目标
1.培养学生运用数学语言表达和理解乘方的概念,提高数学抽象和逻辑推理能力。
2.培养学生通过具体实例发现乘法规律,发展数据分析与数学建模的核心素养。
3.培养学生运用乘方知识解决实际问题,增强数学应用意识,提高解决实际问题的能力。
4.培养学生在探索乘方性质过程中,形成严谨的科学态度和合作交流的能力。
5.通过乘方运算的学习,提高学生数学运算的准确性和熟练度,培养良好的数学学习习惯。
三、教学难点与重点
1.教学重点
-有理数乘方的定义及其表示方法,使学生理解乘方的概念,掌握乘方的表示方式。
在课堂总结环节,学生们对于有理数乘方的概念和运算方法有了更加清晰的认识。但我也注意到,有些学生对于乘方运算的符号判断还不够熟练。在课后,我需要针对这一点进行针对性的辅导,确保学生们能够熟练掌握乘方运算。
最后,我认识到在教学过程中,要关注每一个学生的个体差异,尽量让每一个学生都能跟上课堂进度。对于学习有困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习效果。
-例如:a^n表示n个a相乘,其中a为有理数,n为正整数。
-Байду номын сангаас理数乘方的计算法则,使学生熟练掌握正数、负数及零的乘方计算方法。
-例如:正数的乘方、负数的乘方、零的乘方及其结果的符号判断。
-乘方的性质,如交换律、结合律、分配律等,使学生能够灵活运用乘方性质进行计算。
-例如:(a^m) * (a^n) = a^(m+n),(ab)^n = a^n * b^n。
北师大版七年级数学上册2.7《有理数的乘方》教学设计

5.部分学生对数学学习存在恐惧心理,教师应关注学生的情感态度,营造轻松愉快的学习氛围,增强学生学习数学的信心。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
6.作业评价:教师在批改作业时,不仅要关注学生的答案正确与否,还要关注学生的思维过程和解答方法。对学生的作业进行及时反馈,鼓励学生改正错误,提高作业质量。
7.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,共同关注学生的学习进步。
3.教学评价:
-采用多元化的评价方式,如课堂提问、课后作业、小组讨论等,全面了解学生的学习情况。
-关注学生的思维过程,鼓励学生表达自己的观点,培养学生的批判性思维。
-重视学生的自我评价,引导学生反思学习过程,提高学生的学习自主性。
4.教学策略:
-关注学生的个体差异,实施个性化教学,满足不同学生的学习需求。
-创设互动、轻松的学习氛围,激发学生的学习兴趣,调动学生的学习积极性。
-注重培养学生的数学思维能力,提高学生解决问题的能力。
-结合生活实际,让学生体会数学与现实生活的紧密联系,增强学生的应用意识。
四、教学内容与过程
(一)导入新课
1.教学活动:教师出示一张正方形的图片,并提出问题:“如何计算这个正方形的面积?”引导学生思考并回答。
(2)新课内容:讲解乘方的定义、性质和运算法则,结合实际例题,让学生在操作中感知和理解乘方知识。
(3)课堂练习:设计梯度性练习题,让学生在练习中巩固乘方知识,提高运算技巧。
(4)巩固拓展:引导学生运用乘方知识解决实际问题,培养学生的应用意识和创新能力。
北师大版七年级上册数学学案:2.9有理数的乘方(1)

§2.9有理数的乘方(1)一、学习目标:1.在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;2.掌握有理数乘方的概念,能进行有理数的乘方运算;3.经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。
二、学习重点、难点:1.重点:理解有理数乘方的意义,有理数乘方的概念,能进行有理数的乘方运算2.难点:有理数的乘方运算三、学习过程(一)课前预习1、确定下列各式积的符号并计算:(1)2×(-2.5);(2)(-5)×(-7);(3)(-4)×6;(4) (−4)×5×(−0.25) .2、计算:(1)3×3×3×3×3= ;(2)(12-)×(12-)×(12-)×(12-)×(12-)= .(二)自主探究1、思考下列问题,与同伴交流你的结果:将一张报纸对折再对折(报纸不得撕裂),直到无法对折为止。
猜猜看,这时报纸有几层?(1)对报纸对折1次,2次,3次,4次,5次等,数一数,产生多少新的小长方形(也就是多少层)?(2)每对折一次,小长方形的个数是对折前的____倍?(3)把实验的结果填入下表.对折次数一次二次三次四次五次…小长方形个数个数用乘法可表示为2、你还能举出类似的实例吗?3、展示正方体纸盒,如果正方体的棱长为a,你会求正方体纸盒的面积和体积吗?4、通过上面的探索,归纳乘方相关内容:(1) a×a可记为____.(2) a×a×a可记为____(3) 2×2×2×2×2×2可记为__.(4) a×a×a×a…×a可记为___.(5)求n个的运算,叫做乘方,乘方的结果叫做.(6)在a n中,a叫作,n叫作,a n读作(又叫a的n次幂).注意:一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写. 一个数的二次方,也称为这个数的平方,一个数的三次方,也称为这个数的立方.5、根据幂的相关知识填空:(1)在52中,底数是____,指数是____,52读作____或读作____。
新北师大版初中七年级数学上册2.9 有理数的乘方学案

2.9 有理数的乘方一、学习目标1、理解有理数乘方的意义;2、理解乘方运算、幂、底数等概念的意义;3、正确进行有理数乘方运算.二、自主预习1.某种细胞每过30分钟便由l个分裂成2个,经过5小时,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂_____________次;(2)5个小时后,细胞的个数一共有=__________个,为了简便可以记作________.2.求n个相同因数a的积的运算叫________,乘方的结果叫______,a叫________,n叫________.乘方a n有双重含义:(1)表示一种运算,这时读作“______________”;(2)表示乘方运算的结果,这时读作“_______________”.3.正数的任何次幂都是_______数,0的任何正整数次幂都是______;负数的奇次幂是__________数,偶次幂是____________数.注意:在书写乘方时,若底数为负数、分数时一定要加括号............................三、知识互动1、(1)乘方的定义、幂、底数、指数的定义.(2)乘方的读法.(3)(-a)n 与-a n 的区别.2、乘方法则例1 计算①(-4)3 ②(-2)4 ③(-32)3(2)归纳乘方法则3、有理数混合运算的顺序例2 计算:3(1)2(3)4(3)15⨯--⨯-+ 322(2)(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦4、探究规律例3 观察下面三行数:-2,4,16,-8,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.四 课堂训练1、读下列各式,说出它的底数和指数,并说出下列各式的意义(1)(-1)10 (2)83 (3)-54 (4)m n2、解决下列问题,你能从中发现什么?(1) 2×32和(2×3)2 有什么区别?各等于什么?(2)32与23有什么区别?各等于什么?(3)-34和(-3) 4有什么区别?各等于什么?3、教材42页 练习14.计算:6.计算: 103(1)(1)2(2)4-⨯+-÷ 341(2)(5)3()2--⨯-111135(3)()532114⨯-⨯÷ 422(4)(10)[(4)(33)2]-+--+⨯五 能力提高2.式子(-1)2008 +(-1)2009的结果是( ).A .1B .-lC .0D .1或-l2.给出依次排列的一列数:-l ,2,-4,8,-l6,32,…,写出后面的2项是__________,第n 个数是___________. 3.4.当你把纸对折一次时,可以得到2层;对折2次时,可以得到4层;对折3次时,可以得到8层;照这样折下去:(1)你能发现层数与折纸的次数的关系吗?(2)计算对折5次时层数是多少?(3)如果每张纸的厚度是0.05毫米,求对折l0次后纸的总厚度.六 达标训练1.平方等于本身的数是________,立方等于本身的数是_________.2.下列算式的结果是正数的是( )A .-[-(-3)]2B .-(-3)2C .-23 D .-32×(-3)33.在有理数-2,-(-2),|-2| ,-22,(-2)2,(-2)3,-23中,负数有( ).A .3个B .4个C .5个D .6个4.-43的意义是( ).A .3个-4相乘B .3个-4相加C .-4乘以3D .43的相反数5.下列各式中成立的是( ).6.计算(1)3+22×(-51) ; (2)-72十2×(-3)2+(-6)÷(-31)2 ;(3)(-3)2×[)95(32-+- ] ; (4)8十(-3)2×(-2);(5)100÷(-2)2-(-2)÷(-32);(6)-34÷241×(-32)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数的乘方》学案
学习目标:
知识与技能:理解并掌握有理数的乘方、幂、底数、指数的概念及意 义;能够正确进行有理数的乘方运算 过程与方法:通过小组合作交流,理解乘方的相关知识 情感态度与价值观:通过参与数学学习活动,对数学有好奇心和求知 欲,形成主动学习态度。
知识重点:理解有理数乘方的意义和表示,会进行乘方运算 学习难点:理解有理 数乘法运 算与乘方间的关系, 进行正确的 乘方运算
学习过程:
【活动 1】激情引趣:猜一猜,能有多高 1.你知道世界最高峰珠穆朗玛峰的高度吗?你知道一张白纸的厚度 吗? 2.取一张厚约为 0.1 毫米的足够大的长方形白纸,将它对折 1 次后, 厚度应为多少?对折 2 次,3 次,„10 次,30 次厚度应为多少毫米? (列出算式并计算) ⑴若对折 1 次: ⑵若对折 2 次: ⑶若对折 3 次:
…
⑷若对折 10 次:
…
⑸若对折 30 次: 3. “欲于山峰试比高” 把一张足够大的厚度为 0.1 毫米的纸,连续对折 30 次的厚度能 超过珠穆朗玛峰吗?
【活动 2】温故知新 1.边长为 a 的正方形(图 1)的面积如何表示? 2.棱长为 a 的正方体(图 2)的体积如何表示?
= =
图2
a
a
图1
a a a
3.按照上面的规律,那么 a a a a
aa a a a
a a a a a a a a
【活动 3】探究新知
n 个 a 相乘呢?
1.结合书 61-62 页内容学习,完成下面的问题
1)
叫做幂,在式子 a 中, a 叫做 2)式子 a 表示的意义是 3)从运算上看式子 a ,可以读作 从结果上看式子 a ,可以读作
n n n
叫乘方, , n 叫做 .
n
, .
an
由此可知:乘方也是一种 果叫做幂。
特殊地:a 可以看做 a 的 ,形式是特殊的 ,乘方的结
次幂, 也就是说 a 的指数是
观察各底数有 什么特点?需要 注意什么? ‘么?。
如5
1
【活动 4】应用新知,加深理解 1.指出底数、指数和幂的结果 1 )在 2 中,底数是 或 ,或
3
,指数是
,2
3
读作 × × = = =
,。
幂的结果是 ,指数是 ,指数是
2) (2) 2 的底数是 3) 1
4
,幂的结果是 ,幂的结果是 ,可看作
2
3
的底数是
4)5 看成幂的话,底数是 5) a 的底数是
,指数是
,指数是
,幂的结果是
2.把下列式子写成乘方运算的形式 (1)1×1×1×1×1×1×1= ; ; ;
①需要注意什 么?②比较“=”左 边和右边的写法有 何感受?
(2)2.3×2.3×2.3×2.3 ×2.3= (3) (-3)×(-3)×(-3)= 5 5 5 5 (4) = 6 6 6 6
5 5 5 5 (5) 6 6 6 6
5 5 5 5 6 (7)x·x·x·„„·x(2011 个) =
(6) 3. 将乘方写成乘法。
1) 0.7 =
3
9 2) = 7
4) 0.5 =
2
4
3)= 5)
【活动 5】小试牛刀 1 比一比,看谁算的又对又快
1) 2 =2×2×2= 2) 2
5
3
3
4
1 4
1
2
4
2
3
4
3
1 2
3) 0 2
2.
1
03
04
通过上面练习,你 能发现负数的幂的正 负有什么规律?正数 的幂呢?0 的幂呢?
3.连续对折 30 次的厚度能超过珠穆朗玛峰吗?
【活动 6】小结 与 作业
【活动 7】自我检测
。