上海市嘉定区2016届高考数学一模试卷(理科)(解析版)
2016年高考数学上海卷理数(解析版)

(1)当 a=5 时,解不等式 f(x)>0; (2)若关于 x 的方程 f(x)-log2[(a-4)x+2a-5]=0 的解集中恰好有一个元素,求 a 的取值范围;
(3)设
a>0,若对任意
t∈
1 2
,1
,函数
f(x)在区间[t,t+1]上的最大值与最小值的差不超过
13.(2016 上海,理 13)设 a,b∈R,c∈[0,2π),若对任意实数 x 都有 2sin
3
-
π 3
=asin(bx+c),则满足条件的
有序实数组(a,b,c)的组数为
.
答案 4 a=±2,b=±3,当 a,b 确定时,c 唯一,故有 4 种组合.
14.
(2016 上海,理 14)如图,在平面直角坐标系 xOy 中,O 为正八边形 A1A2…An 的中心,A(1,0),任取不同的
3
(2016 上海,理 16)下列极坐标方程中,对应的曲线为右图的是( ) A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
答案 D 依次取θ=0,π2,π,32π,
结合图形可知 只有ρ=6-5sin θ满足,选 D. 17.(2016 上海,理 17)已知无穷等比数列{an}的公比为 q,前 n 项和为 Sn,且 lim Sn=S,下列条件中,使得
当 a1<0 时,qn<12,从而 q2<12,选 B.
18.(2016 上海,理 18)设 f(x)、g(x)、h(x)是定义域为 R 的三个函数,对于命题:①若 f(x)+g(x)、f(x)+h(x)、 g(x)+h(x)均为增函数,则 f(x)、g(x)、h(x)中至少有一个增函数;②若 f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均 是以 T 为周期的函数,则 f(x)、g(x)、h(x)均是以 T 为周期的函数,下列判断正确的是( ) A.①和②均为真命题 B.①和②均为假命题 C.①为真命题,②为假命题 D.①为假命题,②为真命题 答案 D 因为 f(x)=
[VIP专享]2016年高考试题(上海卷)——数学(理)(含答案)
![[VIP专享]2016年高考试题(上海卷)——数学(理)(含答案)](https://img.taocdn.com/s3/m/296ccebcccbff121dc368367.png)
上海 数学试卷(理工农医类)
一、填空题(本大题共有 14 题,满分 56 分)考生应在答题纸相应编号的空格内直接填写结果,每个空格 填对得 4 分,否则一律得零分.
1、设 x R ,则不等式 x 3 1 的解集为______________________ 2、设 Z 3 2i ,期中 i 为虚数单位,则 Im z =______________________
3
a,b, c的组数为.
14.如图,在平面直角坐标系 xOy 中,O 为正八边形 A1A2 A8 的中心,
A11,0.任取不同的两点 Ai , Aj ,点 P 满足 OP OAi OAj 0 ,则点
1
P 落在第一象限的概率是. 2、选择题(5×4=20)
15.设 a R ,则“ a 1 ”是“ a2 1”的( )
i 3、已知平行直线 l1 : 2x y 1 0, l2 : 2x y 1 0 ,则 l1, l2 的距离_______________
4、某次体检,6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77 则这组数据的中位数是 _________(米)
8、在 3 x 2 n 的二项式中,所有项的二项式系数之和为 256,则常数项等于_________ x
9、已知 ABC 的三边长分别为 3,5,7,则该三角形的外接圆半径等于_________
10、设关于
x,
y
的方程组
ax y
x
by
1 1
无解,则
a
b
的取值范围是____________
3
7、方程 3sin x 1 cos 2x 在区间 0,2 上的解为___________
2016年普通高等学校招生全国统一考试数学(理)上海卷

2016上海理一、填空题(共14小题;共70分) 1. 设 x ∈R ,则不等式 ∣x −3∣<1 的解集为 . 2. 设 z =3+2i i,其中 i 为虚数单位,则 z 的虚部等于 .3. l 1:2x +y −1=0,l 2:2x +y +1=0,则 l 1,l 2 的距离为 .4. 某次体检,6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).5. 已知点 (3,9) 在函数 f (x )=1+a x 的图象上,则 f (x ) 的反函数 f −1(x )= .6. 如图,在正四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 的边长为 3,BD 1 与底面所成角的大小为 arctan 23,则该正四棱柱的高等于 .7. 方程 3sinx =1+cos2x 在区间 [0,2π] 上的解为 .8. 在 (√x 3−2x )n的二项式中,所有项的二项式系数之和为 256,则常数项等于 . 9. 已知 △ABC 的三边长为 3,5,7,则该三角形的外接圆半径等于 .10. 设 a >0,b >0,若关于 x ,y 的方程组 {ax +y =1x +by =1 无解,则 a +b 的取值范围是 .11. 无穷数列 {a n } 由 k 个不同的数组成,S n 为 {a n } 的前 n 项和,若对任意 n ∈N ∗,S n ∈{2,3},则k 的最大值为 .12. 在平面直角坐标系中,已知 A (1,0),B (0,−1),P 是曲线 y =√1−x 2 上一个动点,则 BP⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的取值范围是 .13. 设 a,b ∈R ,c ∈[0,2π],若对任意实数 x 都有 2sin (3x −π3)=asin (bx +c ),则满足条件的有序实数组 (a,b,c ) 的组数为 .14. 如图,在平面直角坐标系 xOy 中,O 为正八边形 A 1A 2⋯A 8 的中心,A 1(1,0),任取不同的两点A i ,A j ,点 P 满足 OP ⃗⃗⃗⃗⃗ +OA i ⃗⃗⃗⃗⃗⃗⃗ +OA j ⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,则点 P 落在第一象限的概率是 .二、选择题(共4小题;共20分)15. 设 a ∈R ,则“a >1”是“a 2>1”的 ( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分也非必要条件16. 下列极坐标方程中,对应的曲线为下图的是 ( )A. ρ=6+5cosθB. ρ=6+5sinθC. ρ=6−5cosθD. ρ=6−5sinθ17. 已知无穷等比数列 {a n } 的公比为 q ,前 n 项和为 S n ,且 lim n→∞S n =S ,下列条件中,使得 2S n <S (n ∈N ∗) 恒成立的是 ( ) A. a 1>0,0.6<q <0.7 B. a 1<0,−0.7<q <−0.6 C. a 1>0,0.7<q <0.8D. a 1<0,−0.8<q <−0.718. 设 f (x ),g (x ),ℎ(x ) 是定义域为 R 的三个函数,对于命题:①若 f (x )+g (x ),f (x )+ℎ(x ),g (x )+ℎ(x ) 均为增函数,则 f (x ),g (x ),ℎ(x ) 中至少有一个为增函数;②若 f (x )+g (x ),f (x )+ℎ(x ),g (x )+ℎ(x ) 均是以 T 为周期的函数,则 f (x ),g (x ),ℎ(x ) 均是以 T 为周期的函数,下列判断正确的是 ( )A. ①和②均为真命题B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题三、解答题(共5小题;共65分)19. 将边长为 1 的正方形 AA 1O 1O (及其内部)绕 OO 1 旋转一周形成圆柱,如图,AC ⏜ 长为 23π,A 1B 1⏜ 长为 π3,其中 B 1 与 C 在平面 AA 1O 1O 的同侧.(1)求三棱锥 C −O 1A 1B 1 的体积. (2)求异面直线 B 1C 与 AA 1 所成角的大小.20. 有一块正方形菜地 EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到 F 点或河边运走.于是,菜地分为两个区域 S 1 和 S 2,其中 S 1 中的蔬菜运到河边较近,S 2 中的蔬菜运到 F 点较近,而菜地内 S 1 和 S 2 的分界线 C 上的点到河边与到 F 点的距离相等,现建立平面直角坐标系,其中原点 O 为 EF 的中点,点 F 的坐标为 (1,0),如图.(1)求菜地内的分界线 C 的方程.(2)菜农从蔬菜运量估计出 S 1 面积是 S 2 面积的两倍,由此得到 S 1 面积的“经验值”为 83.设 M是 C 上纵坐标为 1 的点,请计算以 EH 为一边,另一边过点 M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于 S 1 面积的经验值.21. 双曲线 x 2−y 2b 2=1(b >0) 的左、右焦点分别为 F 1,F 2,直线 l 过 F 2 且与双曲线交于 A ,B 两点.(1)若 l 的倾斜角为 π2,△F 1AB 是等边三角形,求双曲线的渐近线方程. (2)设 b =√3,若 l 的斜率存在,且 (F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0,求 l 的斜率.22. 已知 a ∈R ,函数 f (x )=log 2(1x +a).(1)当 a =5 时,解不等式 f (x )>0.(2)若关于 x 的方程 f (x )−log 2[(a −4)x +2a −5]=0 的解集中恰有一个元素,求 a 的取值范围.(3)设 a >0,若对任意 t ∈[12,1],函数 f (x ) 在区间 [t,t +1] 上的最大值和最小值的差不超过 1,求 a 的取值范围.23. 若无穷数列 {a n } 满足:只要 a p =a q (p,q ∈N ∗),必有 a p+1=a q+1,则称 {a n } 具有性质 P .(1)若 {a n } 具有性质 P .且 a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求 a 3.(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1,b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由.(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N∗),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.答案第一部分1. (2,4)【解析】−1<x−3<1,即2<x<4.2. −3【解析】z=−i(3+2i)=2−3i.3. 2√55【解析】d=√22+12=2√55.4. 1.76【解析】将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.5. log2(x−1)【解析】a3+1=9,故a=2,f(x)=1+2x.所以x=log2(y−1),所以f−1(x)=log2(x−1).6. 2√2【解析】BD=3√2,DD1=BD⋅23=2√2.7. x=π6,5π6【解析】3sinx=2−2sin2x,即2sin2x+3sinx−2=0.所以(2sinx−1)(sinx+2)=0,所以sinx=12,所以x=π6,5π6.8. 112【解析】2n=256,n=8.通项C8r⋅x8−r3⋅(−2x )r=C8r(−2)r⋅x8−4r3.取r=2,常数项为C82(−2)2=112.9. 7√33【解析】a=3,b=5,c=7,cosC=a 2+b2−c22ab=−12,所以sinC=√32,所以R=c2sinC =7√33.10. (2,+∞)【解析】由已知,ab=1,且a≠b,所以a+b>2√ab=2.11. 4【解析】当n=1时,a1=2或a1=3;当n≥2时,若S n=2,则S n−1=2,于是a n=0,若S n=3,则S n−1=3,于是a n=0.从而存在k∈N∗,当n≥k时,a k=0.其中数列{a n}:2,1,−1,0,0,⋯⋯满足条件,所以k max=4.12. [0,1+√2]【解析】设 P (cosα,sinα),α∈[0,π],BA⃗⃗⃗⃗⃗ =(1,1),BP ⃗⃗⃗⃗⃗ =(cosα,sinα+1). BP⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =cosα+sinα+1=√2sin (α+π4)+1∈[0,1+√2]. 13. 4【解析】(i )若 a =2, 若 b =3,则 c =5π3;若 b =−3,则 c =4π3.(ii )若 a =−2,若 b =−3,则 c =π3;若 b =3,则 c =2π3.共 4 组. 14. 528【解析】5C 82=528.第二部分 15. A【解析】a >1⇒a 2>1,a 2>1⇒a >1 或 a <−1, 所以是充分非必要条件.16. D 【解析】θ=−π2 时,ρ 达到最大. 17. B 【解析】S n =a 1(1−q n )1−q ,S =a 11−q,−1<q <1.2S n <S ,即 a 1(2q n −1)>0, 若 a 1>0,则 q n >12,不可能成立. 若 a 1<0,则 q n <12,B 成立.18. D 【解析】①不成立,可举反例.f (x )={2x,x ≤1,−x +3,x >1.g (x )={2x +3,x ≤0,−x +3,0<x <1,2x,x ≥1.ℎ(x )={−x,x ≤0,2x,x >0.② f (x )+g (x )=f (x +T )+g (x +T ) f (x )+ℎ(x )=f (x +T )+ℎ(x +T ) g (x )+ℎ(x )=g (x +T )+ℎ(x +T )前两式作差,可得 g (x )−ℎ(x )=g (x +T )−ℎ(x +T ). 结合第三式,可得 g (x )=g (x +T ),ℎ(x )=ℎ(x +T ). 也有 f (x )=f (x +T ). 所以②正确. 第三部分19. (1) 连 O 1B 1,则 A 1B 1⏜=∠A 1O 1B 1=π3, 所以 △A 1O 1B 1 为正三角形,所以 S △A 1O 1B 1=√34, 所以 V C−O 1A 1B 1=13OO 1⋅S △A 1O 1B 1=√312. (2) 设点 B 1 在下底面圆周的射影为 B ,连 BB 1,则 BB 1∥AA 1, 所以 ∠BB 1C 为直线 B 1C 与 AA 1 所成角(或补角). BB 1=AA 1,连 BC ,BO ,OC , AB ⏜=A 1B 1⏜=π3,AC ⏜=2π3,所以 BC ⏜=π3, 所以 ∠BOC =π3, 所以 △BOC 为正三角形, 所以 BC =BO =1, 所以 tan∠BB 1C =BC BB 1=1,所以 ∠BB 1C =45∘,所以直线 B 1C 与 AA 1 所成角大小为 45∘.20. (1) 设分界线上任一点为 (x,y ),依题意 ∣x +1∣=√(x −1)2+y 2, 可得 y =2√x (0≤x ≤1). (2) 设 M (x 0,y 0),则 y 0=1, 所以 x 0=y 024=14.所以设所表述的矩形面积为 S 3,则 S 3=2×(14+1)=52.设五边形 EOMGH 面积为 S 4,则 S 4=S 3−S △OMP +S △MGQ =52−12×14×1+12×34×1=114,S 1−S 3=83−52=16,S 4−S 1=114−83=112<16.所以五边形 EOMGH 的面积更接近 S 1 的面积. 21. (1) 由已知 F 1(−√b 2+1,0),F 2(√b 2+1,0), 取 x =√b 2+1,得 y =b 2,∣F 1F 2∣=√3∣∣F 2A∣∣. 因为 ∣F 1F 2∣=2√b 2+1,∣F 2A∣∣=b 2, 所以 2√b 2+1=√3b 2,即 3b 4−4b 2−4=(3b 2+2)(b 2−2)=0, 所以 b =√2,所以渐近线方程为 y =±√2x . (2) 若 b =√3,则双曲线为 x 2−y 23=1,所以 F 1(−2,0),F 2(2,0),设 A (x 1,y 1),B (x 2,y 2),则 F 1A ⃗⃗⃗⃗⃗⃗⃗ =(x 1+2,y 1),F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 2+2,y 1),AB ⃗⃗⃗⃗⃗ =(x 2−x 1,y 2−y 1) 所以 F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+x 2+4,y 1+y 2), (F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =x 22−x 12+4(x 2−x 1)+y 22−y 12(∗). 因为 x 12−y 123=x 22−y 223=1,所以 y 22−y 12=3(x 22−x 12).所以代入 (∗) 式,可得 4(x 22−x 12)+4(x 2−x 1)=0.直线 l 的斜率存在,故 x 1≠x 2, 所以 x 1+x 2=−1.设直线 l 为 y =k (x −2),代入 3x 2−y 2=3, 得 (3−k 2)x 2+4k 2x −(4k 2+3)=0,所以 3−k 2≠0,且 Δ=16k 4+4(3−k 2)(4k 2+3)=36(k 2+1)>0 x 1+x 2=−4k 23−k 2=−1, 所以 k 2=35, 所以 k =±√155, 所以直线 l 的斜率为 ±√155. 22. (1) log 2(1x +5)>0⇔1x +5>1⇔4x+1x>0⇔x (4x +1)>0,所以不等式的解为 {x ∣ x >0或x <−14}.(2) 依题意,log 2(1x+a)=log 2[(a −4)x +2a −5],所以 1x +a =(a −4)x +2a −5,① 可得 (a −4)x 2+(a −5)x −1=0, 即 (x +1)[(a −4)x −1]=0,②当 a =4 时,方程②的解为 x =−1,代入①式,成立. 当 a =3 时,方程②的解为 x =−1,代入①式,成立. 当 a ≠3 且 a ≠4 时,方程②的解为 x =−1,1a−4.若 x =−1 为方程①的解,则 1x +a =a −1>0,即 a >0. 若 x =1a−4为方程①的解,则 1x+a =2a −4>0,即 a >2.要使得方程①有且仅有一个解,则 1<a ≤2.综上,若原方程的解集有且只有一个元素,则 a 的取值范围为 1<a ≤2 或 a =3 或 a =4. (3) 在 f (x ) 在区间 [t,t +1] 上单调递减. 依题意,f (t )−f (t +1)≤1, 即 log 2(1t +a)−log 2(1t+1+a)≤1,所以 1t+a ≤2(1t+1+a),即 a ≥1t−2t+1=1−tt (t+1). 设 1−t =r ,则 r ∈[0,12], 1−t t (t+1)=r(1−r )(2−r )=rr 2−3r+2. 当 r =0 时,rr 2−3r+2=0. 当 0<r ≤12 时,rr 2−3r+2=1r+2r−3.因为函数 y =x +2x在 (0,√2) 递减, 所以 r +2r ≥12+4=92, 所以1r+2r−3≤192−3=23,所以 a 的取值范围为 a ≥23. 23. (1) a 2=a 5=2, 所以 a 3=a 6, 所以 a 4=a 7=3, 所以 a 5=a 8=2,所以 a 6=21−a 7−a 8=16, 所以 a 3=16.(2) 设 {b n } 的公比为 d ,{c n } 的公差为 q ,则 q >0. b 5−b 1=4d , 所以 d =20, 所以 b n =20n −19, 所以 c5c 1=q 4=181,所以 q =13, 所以 c n =(13)n−5,所以 a n =b n +c n =20n −19+(13)n−5.因为 a 1=82,a 5=82,而 a 2=21+27=48,a 6=101+13=3043,a 1=a 5,但 a 2≠a 6,故 {a n } 不具有性质 P .(3) 充分性:若 {b n } 为常数列,设 b n =C , 则 a n+1=C +sina n 若存在 p ,q 使得 a p =a q ,则 a p+1=C +sina p =C +sina q =a q+1 , 故 {a n } 具有性质 P .必要性:若对任意 a 1,{a n },具有性质 P , 则 a 2=b 1+sina 1.设函数 f (x )=x −b 1,g (x )=sinx ,由 f (x ),g (x ) 图象可得,对任意的 b 1,二者图象必有一个交点,所以一定能找到一个a1,使得a1−b1=sina1,所以a2=b1+sina1=a1,所以a n=a n+1,故b n+1=a n+2−sina n+1=a n+1−sina n=b n,所以{b n}是常数列.。
2016年上海市高考数学试卷(理科)

2016年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)(2016•上海)设z=,其中i为虚数单位,则Imz=.3.(4分)(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)(2016•上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米).5.(4分)(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=.6.(4分)(2016•上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于.7.(4分)(2016•上海)方程3sin x=1+cos2x在区间[0,2π]上的解为.8.(4分)(2016•上海)在(﹣)n 的二项式中,所有的二项式系数之和为256,则常数项等于.9.(4分)(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.10.(4分)(2016•上海)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为.11.(4分)(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.12.(4分)(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y =上一个动点,则•的取值范围是.13.(4分)(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=a sin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.14.(4分)(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A 1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.二、选择题(5×4=20分)15.(5分)(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)(2016•上海)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ17.(5分)(2016•上海)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8D.a1<0,﹣0.8<q<﹣0.718.(5分)(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、解答题(74分)19.(12分)(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.20.(14分)(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l 过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.22.(16分)(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a 的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.23.(18分)(2016•上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sin a n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.2016年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为(2,4).【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)(2016•上海)设z=,其中i为虚数单位,则Imz=﹣3.【分析】利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.【解答】解:∵Z====2﹣3i,∴Imz=﹣3.故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.3.(4分)(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)(2016•上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 1.76(米).【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80,位于中间的两个数值为1.75,1.77,∴这组数据的中位数是:=1.76(米).故答案为:1.76.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.5.(4分)(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换即可得出f (x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.6.(4分)(2016•上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于2.【分析】根据正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,判断∠D1BD为直线BD1与底面ABCD所成的角,即可求出正四棱柱的高.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,∴∠D1BD为直线BD1与底面ABCD所成的角,∴tan∠D1BD=,∵正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,∴BD=3,∴正四棱柱的高=3×=2,故答案为:2.【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成的角.7.(4分)(2016•上海)方程3sin x=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sin x=1+cos2x,可得3sin x=2﹣2sin2x,即2sin2x+3sin x﹣2=0.可得sin x=﹣2,(舍去)sin x=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.8.(4分)(2016•上海)在(﹣)n 的二项式中,所有的二项式系数之和为256,则常数项等于112.【分析】根据展开式中所有二项式系数的和等于2n=256,求得n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T r+1==,∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.(4分)(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cos C,由同角的平方关系可得sin C,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cos C===﹣,可得sin C===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.10.(4分)(2016•上海)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为(2,+∞).【分析】根据方程组无解,得到两直线平行,建立a,b的方程关系,利用转化法,利用基本不等式的性质进行求解即可.【解答】解:∵关于x,y的方程组无解,∴直线ax+y=1与x+by=1平行,∵a>0,b>0,∴≠,即a≠1,b≠1,且ab=1,则b=,由基本不等式有:a+b=a+≥2=2,当且仅当a=1时取等,而a的范围为a>0且a≠1,不满足取等条件,∴a+b>2,故答案为:(2,+∞).【点评】本题主要考查直线平行的应用以基本不等式的应用,考查学生的计算能力.11.(4分)(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【分析】对任意n∈N*,S n∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.12.(4分)(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y =上一个动点,则•的取值范围是[0,1+].【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].【点评】本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.13.(4分)(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=a sin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有2sin(3x﹣)=a sin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.14.(4分)(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A 1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.【点评】本题考查平面向量的综合运用,考查了古典概型概率计算公式,理解题意是关键,是中档题.二、选择题(5×4=20分)15.(5分)(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)(2016•上海)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ【分析】由图形可知:时,ρ取得最大值,即可判断出结论.【解答】解:由图形可知:时,ρ取得最大值,只有D满足上述条件.故选:D.【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.17.(5分)(2016•上海)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8D.a1<0,﹣0.8<q<﹣0.7【分析】由已知推导出,由此利用排除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,若a1>0,则,故A与C不可能成立;若a1<0,则q n,在B中,a1<0,﹣0.7<q<﹣0.6故B成立;在D中,a1<0,﹣0.8<q<﹣0.7,此时q2>,D不成立.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.18.(5分)(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g (x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.三、解答题(74分)19.(12分)(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【分析】(1)连结O 1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y0),则y0=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l 过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.【分析】(1)利用直线的倾斜角,求出AB,利用三角形是正三角形,求解b,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A、B坐标,利用向量的数量积为0,即可求值直线的斜率.【解答】解:(1)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,a=1,c2=1+b2,直线l过F2且与双曲线交于A,B两点,直线l的倾斜角为,△F1AB是等边三角形,可得:A(c,b2),可得:,3b4=4(a2+b2),即3b4﹣4b2﹣4=0,b>0,解得b2=2.所求双曲线方程为:x2﹣=1,其渐近线方程为y=±x.(2)b=,双曲线x2﹣=1,可得F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),直线的斜率为:k=,直线l的方程为:y=k(x﹣2),由题意可得:,消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,△=36(1+k2)>0且3﹣k2≠0,可得x1+x2=,则y1+y2=k(x1+x2﹣4)=k(﹣4)=.=(x1+2,y1),=(x2+2,y2),(+)•=0可得:(x1+x2+4,y1+y2)•(x1﹣x2,y1﹣y2)=0,可得x1+x2+4+(y1+y2)k=0,得+4+•k=0可得:k2=,解得k=±.l的斜率为:±.【点评】本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用.22.(16分)(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a 的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【分析】(1)当a=5时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.(3)根据条件得到f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.【解答】解:(1)当a=5时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0或x<﹣,即不等式的解集为{x|x>0或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x=,若x=﹣1是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥=,∴==,∴实数a的取值范围是a≥.【点评】本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.23.(18分)(2016•上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sin a n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.【分析】(1)利用已知条件通过a2=a5=2,推出a3=a6,a4=a7,转化求解a3即可.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,利用条件求出,d与q,求出b n,c n得到a n的表达式,推出a2≠a6,说明{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,通过a n+1=C+sin a n,证明a p+1=a q+1,得到{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,得到a2=b1+sin a1,设函数f(x)=x﹣b1,g (x)=sin x,说明b n+1=b n,即可说明{b n}是常数列.【解答】解:(1)∵a2=a5=2,∴a3=a6,a4=a7=3,∴a5=a8=2,a6=21﹣a7﹣a8=16,∴a3=16.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,b5﹣b1=4d=80,∴d=20,∴b n=20n﹣19,=q4=,∴q=,∴c n=∴a n=b n+c n=20n﹣19+.∵a1=a5=82,而a2=21+27=48,a6=101=.a1=a5,但是a2≠a6,{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,则a n+1=C+sin a n,若存在p,q使得a p=a q,则a p+1=C+sin a p=C+sin a q=a q+1,故{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,则a2=b1+sin a1,设函数f(x)=x﹣b1,g(x)=sin x,由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,∴一定能找到一个a1,使得a1﹣b1=sin a1,∴a2=b1+sin a1=a1,∴a n=a n+1,故b n+1=a n+2﹣sin a n+1=a n+1﹣sin a n=b n,∴{b n}是常数列.【点评】本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大.第21页(共21页)。
2016年上海市高考数学试题答卷(理科)(最新整理)

2016 年上海市高考数学试卷(理科)一、填空题(本大题共有 14 题,满分 56 分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,否则一律得零分. 1.(4 分)(2016?上海)设 x ∈R ,则不等式|x ﹣3|<1 的解集为 . 2.(4 分)(2016?上海)设 z=,其中 i 为虚数单位,则 Imz=.3.(4 分)(2016?上海)已知平行直线 l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则 l 1,l 2 的距离 . 4.(4 分)(2016?上海)某次体检,6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69, 1.77,则这组数据的中位数是 (米). 5.(4 分)(2016?上海)已知点(3,9)在函数 f (x )=1+a x 的图象上,则 f (x )的反函数 f ﹣1(x ) = . 6.(4 分)(2016?上海)在正四棱柱 ABCD ﹣A 1B 1C 1D 1 中,底面 ABCD 的边长为 3,BD 1 与底面所成角的大小为 arctan ,则该正四棱柱的高等于.7.(4 分)(2016?上海)方程 3sinx=1+cos2x 在区间[0,2π]上的解为.8.(4 分)(2016?上海)在( ﹣)n 的二项式中,所有的二项式系数之和为 256,则常数项等于 . 9.(4 分)(2016?上海)已知△ABC 的三边长分别为 3,5,7,则该三角形的外接圆半径等 于 . 10.(4 分)(2016?上海)设 a >0,b >0,若关于 x ,y 的方程组无解,则 a+b 的取值范围为 . 11.(4 分)(2016?上海)无穷数列{a n }由 k 个不同的数组成,S n 为{a n }的前 n 项和,若对任意 n ∈N *, S n ∈{2,3},则 k 的最大值为 . 12.(4 分)(2016?上海)在平面直角坐标系中,已知 A (1,0),B (0,﹣1),P 是曲线 y=上一个动点,则?的取值范围是.13.(4 分)(2016?上海)设 a ,b ∈R ,c ∈[0,2π),若对于任意实数 x 都有 2sin (3x ﹣)=asin (bx+c ),则满足条件的有序实数组(a ,b ,c )的组数为 . 14.(4 分)(2016?上海)如图,在平面直角坐标系 xOy 中,O 为正八边形 A 1A 2…A 8 的中心,A 1(1,0) 任取不同的两点 A i ,A j ,点 P 满足++=,则点 P 落在第一象限的概率是.二、选择题(5×4=20 分) 15.(5 分)(2016?上海)设 a ∈R ,则“a>1”是“a 2>1”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件 D .既非充分也非必要条件 16.(5 分)(2016?上海)下列极坐标方程中,对应的曲线为如图所示的是( )A .ρ=6+5cosθB .ρ=6+5sinθC .ρ=6﹣5cosθD .ρ=6﹣5sinθ17.(5 分)(2016?上海)已知无穷等比数列{a n }的公比为 q ,前 n 项和为 S n ,且=S ,下列条件中,使得 2S n <S (n ∈N *)恒成立的是( ) A .a 1>0,0.6<q <0.7 B .a 1<0,﹣0.7<q <﹣0.6 C .a 1>0,0.7<q <0.8 D .a 1<0,﹣0.8<q <﹣0.7 18.(5 分)(2016?上海)设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于命题:①f(x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则 f (x )、g (x )、h (x )中至少有一个增函数;②若 f (x )+g (x ) 、f (x )+h (x )、g (x )+h (x )均是以 T 为周期的函数,则 f (x )、g (x )、h (x )均是以 T 为周期的函数,下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题 三、解答题(74 分) 19.(12 分)(2016?上海)将边长为 1 的正方形 AA 1O 1O (及其内部)绕 OO 1 旋转一周形成圆柱,如图,AC 长为π,A 1B 1 长为,其中 B 1 与 C 在平面 AA 1O 1O 的同侧.(1) 求三棱锥 C ﹣O 1A 1B 1 的体积; (2) 求异面直线 B 1C 与 AA 1 所成的角的大小.20.(14 分)(2016?上海)有一块正方形 EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到 F 点或河边运走.于是,菜地分别为两个区域 S 1 和 S 2,其中 S 1 中的蔬菜运到河边较近,S 2 中的蔬菜运到 F 点较近,而菜地内 S 1 和 S 2 的分界线 C 上的点到河边与到 F 点的距离相等,现建立平面直角坐标系,其中原点 O 为 EF 的中点,点 F 的坐标为(1,0),如图 (1) 求菜地内的分界线 C 的方程;(2) 菜农从蔬菜运量估计出 S 1 面积是 S 2 面积的两倍,由此得到 S 1 面积的经验值为.设 M 是 C上纵坐标为 1 的点,请计算以 EH 为一边,另一边过点 M 的矩形的面积,及五边形 EOMGH 的面积, 并判断哪一个更接近于 S 1 面积的“经验值”. 21.(14 分)(2016?上海)双曲线 x 2﹣=1(b >0)的左、右焦点分别为 F 1,F 2,直线 l 过 F 2 且与双曲线交于 A ,B 两点.(1) 直线 l 的倾斜角为,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2) 设 b=,若 l 的斜率存在,且(+)?=0,求 l 的斜率.22.(16 分)(2016?上海)已知 a ∈R ,函数 f (x )=log 2(+a ).(1) 当 a=5 时,解不等式 f (x )>0; (2) 若关于 x 的方程 f (x )﹣log 2[(a ﹣4)x+2a ﹣5]=0 的解集中恰好有一个元素,求 a 的取值范围.(3) 设 a >0,若对任意 t ∈[,1],函数 f (x )在区间[t ,t+1]上的最大值与最小值的差不超过1,求 a 的取值范围. 23.(18 分)(2016?上海)若无穷数列{a n }满足:只要 a p =a q (p ,q ∈N *),必有 a p+1=a q+1,则称{a n } 具有性质 P .(1)若{a n }具有性质 P ,且 a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求 a 3;(2) 若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1;b 5=c 1=81, a n =b n +c n ,判断{a n }是否具有性质 P ,并说明理由; (3) 设{b n }是无穷数列,已知 a n+1=b n +sina n (n ∈N *),求证:“对任意 a 1,{a n }都具有性质 P”的充要条件为“{b n }是常数列”.2016 年上海市高考数学试卷(理科)一、填空题(本大题共有 14 题,满分 56 分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,否则一律得零分. 1.(4 分)(2016?上海)设 x ∈R ,则不等式|x ﹣3|<1 的解集为 (2,4) .【分析】由含绝对值的性质得﹣1<x ﹣3<1,由此能求出不等式|x ﹣3|<1 的解集. 【解答】解:∵x ∈R ,不等式|x ﹣3|<1, ∴﹣1<x ﹣3<1, 解得 2<x <4.∴不等式|x ﹣3|<1 的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4 分)(2016?上海)设 z=,其中 i 为虚数单位,则 Imz= ﹣3 .【分析】利用复数代数形式的乘除运算法则,先求出复数 z 的最简形式,由此能求出 Imz . 【解答】解:∵Z====2﹣3i ,∴Imz=﹣3. 故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.3.(4 分)(2016?上海)已知平行直线 l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则 l 1,l 2 的距离 .【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线 l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则 l 1,l 2 的距离:=. 故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力. 4.(4 分)(2016?上海)某次体检,6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69, 1.77,则这组数据的中位数是 1.76 (米).【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77, 从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80, 位于中间的两个数值为 1.75,1.77, ∴这组数据的中位数是:=1.76(米).故答案为:1.76.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.5.(4 分)(2016?上海)已知点(3,9)在函数 f (x )=1+a x 的图象上,则 f (x )的反函数 f ﹣1(x )= log 2 (x ﹣1)(x >1) .【分析】由于点(3,9)在函数 f (x )=1+a x 的图象上,可得 9=1+a 3,解得 a=2.可得 f (x )=1+2x , 由 1+2x =y ,解得 x=log 2(y ﹣1),(y >1).把 x 与 y 互换即可得出 f (x )的反函数 f ﹣1(x ). 【解答】解:∵点(3,9)在函数 f (x )=1+a x 的图象上,∴9=1+a 3,解得 a=2.∴f(x )=1+2x ,由 1+2x=y ,解得 x=log 2(y ﹣1),(y >1). 把 x 与 y 互换可得:f (x )的反函数 f ﹣1(x )=log 2(x ﹣1).故答案为:log 2(x ﹣1),(x >1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题. 6.(4 分)(2016?上海)在正四棱柱 ABCD ﹣A 1B 1C 1D 1 中,底面 ABCD 的边长为 3,BD 1 与底面所成角的大小为 arctan ,则该正四棱柱的高等于 2 .【分析】根据正四棱柱 ABCD ﹣A 1B 1C 1D 1 的侧棱 D 1D⊥底面 ABCD ,判断∠D 1BD 为直线 BD 1 与底面 ABCD 所成的角,即可求出正四棱柱的高.【解答】解:∵正四棱柱 ABCD ﹣A 1B 1C 1D 1 的侧棱 D 1D⊥底面 ABCD , ∴∠D 1BD 为直线 BD 1 与底面 ABCD 所成的角, ∴tan∠D 1BD= ,∵正四棱柱 ABCD ﹣A 1B 1C 1D 1 中,底面 ABCD 的边长为 3, ∴BD=3,∴正四棱柱的高=3 ×=2 ,故答案为:2.【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直 线与平面所成的角.7.(4 分)(2016?上海)方程 3sinx=1+cos2x 在区间[0,2π]上的解为 或 .【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可. 【解答】解:方程 3sinx=1+cos2x ,可得 3sinx=2﹣2sin 2x , 即 2sin 2x+3sinx ﹣2=0.可得 sinx=﹣2,(舍去)sinx=,x ∈[0,2π]解得 x=或. 故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.8.(4 分)(2016?上海)在( ﹣)n 的二项式中,所有的二项式系数之和为 256,则常数项等于 112 .【分析】根据展开式中所有二项式系数的和等于 2n =256,求得 n=8.在展开式的通项公式中,令 x 的幂指数等于 0,求得 r 的值,即可求得展开式中的常数项.【解答】解:∵在( ﹣)n 的二项式中,所有的二项式系数之和为 256, ∴2n =256,解得 n=8,∴(﹣)8中,T= = ,r+1=(﹣2)2∴当=0,即r=2 时,常数项为T3=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.(4 分)(2016?上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为 a=3,b=5,c=7,运用余弦定理可得 cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC 的三边分别为 a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC= ==,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.10.(4 分)(2016?上海)设a>0,b>0,若关于x,y 的方程组无解,则a+b 的取值范围为(2,+∞).【分析】根据方程组无解,得到两直线平行,建立 a,b 的方程关系,利用转化法,构造函数,求函数的导数,利用函数的单调性进行求解即可.【解答】解:∵关于x,y 的方程组无解,∴直线 ax+y=1 与 x+by=1 平行,∵a>0,b>0,∴≠,即a≠1,b≠1,且ab=1,则b=,则a+b=a+,则设f(a)=a+,(a>0 且a≠1),则函数的导数f′(a)=1﹣= ,当0<a<1 时,f′(a)= <0,此时函数为减函数,此时f(a)>f(1)=2,当a>1 时,f′(a)=>0,此时函数为增函数,f(a)>f(1)=2,综上 f(a)>2,即a+b 的取值范围是(2,+∞),故答案为:(2,+∞).【点评】本题主要考查直线平行的应用以及构造函数,求函数的导数,利用导数和函数单调性之间的关系进行求解是解决本题的关键.11.(4 分)(2016?上海)无穷数列{an }由 k 个不同的数组成,Sn为{an}的前 n 项和,若对任意 n∈N*,Sn∈{2,3},则k 的最大值为 4 .【分析】对任意 n∈N*,Sn∈{2,3},列举出 n=1,2,3,4 的情况,归纳可得 n>4 后都为 0 或1 或﹣1,则k 的最大个数为 4.【解答】解:对任意 n∈N*,Sn∈{2,3},可得当 n=1 时,a1=S1=2 或 3;若 n=2,由S2∈{2,3},可得数列的前两项为 2,0;或2,1;或 3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为 2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为 2,0,0,0;或2,0,0,1;或2,0,1,0;或 2,0,1,﹣1;或 2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有 n>4 后一项都为 0 或1 或﹣1,则k 的最大个数为 4,不同的四个数均为 2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.12.(4 分)(2016?上海)在平面直角坐标系中,已知 A(1,0),B(0,﹣1),P 是曲线 y=上一个动点,则?的取值范围是 [0,1+] .【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,s inα+1),由此能求出?的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P 是曲线y=上一个动点,∴设 P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴?的取值范围是[0,1+].故答案为:[0,1+].【点评】本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.13.(4 分)(2016?上海)设 a ,b ∈R ,c ∈[0,2π),若对于任意实数 x 都有 2sin (3x ﹣)=asin (bx+c ),则满足条件的有序实数组(a ,b ,c )的组数为 4 . 【分析】根据三角函数恒成立,则对应的图象完全相同. 【解答】解:∵对于任意实数 x 都有 2sin (3x ﹣)=asin (bx+c ),∴必有|a|=2,若 a=2,则方程等价为 sin (3x ﹣)=sin (bx+c ),则函数的周期相同,若 b=3,此时 C=,若 b=﹣3,则 C=,若 a=﹣2,则方程等价为 sin (3x ﹣)=﹣sin (bx+c )=sin (﹣bx ﹣c ),若 b=﹣3,则 C=,若 b=3,则 C=,综上满足条件的有序实数组(a ,b ,c )为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有 4 组, 故答案为:4.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键. 14.(4 分)(2016?上海)如图,在平面直角坐标系 xOy 中,O 为正八边形 A 1A 2…A 8 的中心,A 1(1,0)任取不同的两点 A i ,A j ,点 P 满足++=,则点 P 落在第一象限的概率是 .【分析】利用组合数公式求出从正八边形 A 1A 2…A 8 的八个顶点中任取两个的事件总数,满足++=,且点 P 落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形 A 1A 2…A 8 的八个顶点中任取两个,基本事件总数为. 满足++=,且点 P 落在第一象限,对应的 A i ,A j ,为:(A 4,A 7),(A 5,A 8),(A 5,A 6),(A 6,A 7),(A 5,A 7)共 5 种取法. ∴点 P 落在第一象限的概率是,故答案为:.【点评】本题考查平面向量的综合运用,考查了古典概型概率计算公式,理解题意是关键,是中档题.二、选择题(5×4=20 分) 15.(5 分)(2016?上海)设 a ∈R ,则“a>1”是“a 2>1”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件 D .既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可. 【解答】解:由 a 2>1 得 a >1 或 a <﹣1, 即“a>1”是“a 2>1”的充分不必要条件, 故选:A .【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础. 16.(5 分)(2016?上海)下列极坐标方程中,对应的曲线为如图所示的是( ) A .ρ=6+5cosθ B .ρ=6+5sinθ C .ρ=6﹣5cosθ D .ρ=6﹣5sinθ 【分析】由图形可知: 时,ρ 取得最大值,即可判断出结论.【解答】解:由图形可知:时,ρ 取得最大值,只有 D 满足上述条件.故选:D .【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力, 属于中档题.17.(5 分)(2016?上海)已知无穷等比数列{a n }的公比为 q ,前 n 项和为 S n ,且=S ,下列条件中,使得 2S n <S (n ∈N *)恒成立的是( ) A .a 1>0,0.6<q <0.7 B .a 1<0,﹣0.7<q <﹣0.6 C .a 1>0,0.7<q <0.8 D .a 1<0,﹣0.8<q <﹣0.7 【分析】由已知推导出,由此利用排除法能求出结果.【解答】解:∵ ,S= =,﹣1<q <1,2S n <S , ∴,若 a 1>0,则,故 A 与 C 不可能成立; 若 a 1<0,则 q n,故 B 成立,D 不成立. 故选:B .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运 用. 18.(5 分)(2016?上海)设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于命题:①f(x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则 f (x )、g (x )、h (x )中至少有一个增函数;②若 f (x )+g(x ) 、f (x )+h (x )、g (x )+h (x )均是以 T 为周期的函数,则 f (x )、g (x )、h (x )均是以 T 为周期的函数,下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题【分析】①不成立.可举反例:f (x )=.g (x )=,h (x )=.②由题意可得:f (x )+g (x )=f (x+T )+g (x+T ),f (x )+h (x )=f (x+T )+h (x+T ),h (x )+g (x )=h (x+T )+g (x+T ),可得:g (x )=g (x+T ),h (x )=h (x+T ),f (x )=f (x+T ),即可判断出真假.【解答】解:①不成立.可举反例:f (x )=.g (x )=,h (x )=.②∵f(x )+g (x )=f (x+T )+g (x+T ),f (x )+h (x )=f (x+T )+h (x+T ),h (x )+g (x )=h (x+T )+g (x+T ),前两式作差可得:g (x )﹣h (x )=g (x+T )﹣h (x+T ),结合第三式可得:g (x )=g (x+T ),h (x )=h (x+T ),同理可得:f (x )=f (x+T ),因此②正确.故选:D .【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力, 属于中档题.三、解答题(74 分) 19.(12 分)(2016?上海)将边长为 1 的正方形 AA 1O 1O (及其内部)绕 OO 1 旋转一周形成圆柱,如图,AC 长为π,A 1B 1 长为,其中 B 1 与 C 在平面 AA 1O 1O 的同侧.(1) 求三棱锥 C ﹣O 1A 1B 1 的体积; (2) 求异面直线 B 1C 与 AA 1 所成的角的大小.【分析】(1)连结 O 1B 1,推导出△O 1A 1B 1 为正三角形,从而 =,由此能求出三棱锥 C ﹣O 1A 1B 1的体积.(2)设点 B 1 在下底面圆周的射影为 B ,连结 BB 1,则 BB 1∥AA 1,∠BB 1C 为直线 B 1C 与 AA 1 所成角(或 补角),由此能求出直线 B 1C 与 AA 1 所成角大小. 【解答】解:(1)连结 O 1B 1,则∠O 1A 1B 1=∠A 1O 1B 1=,∴△O 1A 1B 1 为正三角形, ∴=,= =.(2)设点 B 1 在下底面圆周的射影为 B ,连结 BB 1,则 BB 1∥AA 1, ∴∠BB 1C 为直线 B 1C 与 AA 1 所成角(或补角), BB 1=AA 1=1,连结 BC 、BO 、OC ,∠AOB=∠A 1O 1B 1= ,,∴∠BOC=,∴△BOC 为正三角形,∴BC=BO=1,∴tan∠BB 1C=45°,∴直线 B 1C 与 AA 1 所成角大小为 45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养. 20.(14 分)(2016?上海)有一块正方形 EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到 F 点或河边运走.于是,菜地分别为两个区域 S 1 和 S 2,其中 S 1 中的蔬菜运到河边较近,S 2 中的蔬菜运到 F 点较近,而菜地内 S 1 和 S 2 的分界线 C 上的点到河边与到 F 点的距离相等,现建立平面直角坐标系,其中原点 O 为 EF 的中点,点 F 的坐标为(1,0),如图 (1) 求菜地内的分界线 C 的方程;(2) 菜农从蔬菜运量估计出 S 1 面积是 S 2 面积的两倍,由此得到 S 1 面积的经验值为.设 M 是 C上纵坐标为 1 的点,请计算以 EH 为一边,另一边过点 M 的矩形的面积,及五边形 EOMGH 的面积, 并判断哪一个更接近于 S 1 面积的“经验值”. 【分析】(1)设分界线上任意一点为(x ,y ),根据条件建立方程关系进行求解即可. (2)设 M (x 0,y 0),则 y 0=1,分别求出对应矩形面积,五边形 FOMGH 的面积,进行比较即可. 【解答】解:(1)设分界线上任意一点为(x ,y ),由题意得|x+1|=,得 y=2 ,(0≤x≤1),(2)设 M (x 0,y 0),则 y 0=1, ∴x 0==,∴设所表述的矩形面积为 S 3,则 S 3=2×(+1)=2×=, 设五边形 EMOGH 的面积为 S 4,则 S 4=S 3﹣S △OMP +S △MGN =﹣××1+=,S 1﹣S 3==,S 4﹣S 1= ﹣=<,∴五边形 EMOGH 的面积更接近 S 1 的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大. 21.(14 分)(2016?上海)双曲线 x 2﹣=1(b >0)的左、右焦点分别为 F 1,F 2,直线 l 过 F 2 且与双曲线交于 A ,B 两点.(1) 直线 l 的倾斜角为,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2) 设 b=,若 l 的斜率存在,且(+)?=0,求 l 的斜率.【分析】(1)利用直线的倾斜角,求出 AB ,利用三角形是正三角形,求解 b ,即可得到双曲线方程. (2)求出左焦点的坐标,设出直线方程,推出 A 、B 坐标,利用向量的数量积为 0,即可求值直线的斜率.【解答】解:(1)双曲线 x 2﹣ =1(b >0)的左、右焦点分别为 F 1,F 2,a=1,c 2=1+b 2,直线 l 过 F 2 且与双曲线交于 A ,B 两点, 直线 l 的倾斜角为,△F 1AB 是等边三角形,可 得 :A (c ,b 2), 可 得 : ,3b 4=4(a 2+b 2), 即 3b 4﹣4b 2﹣4=0, b >0,解得 b 2=2.所求双曲线方程为:x 2﹣ =1, 其渐近线方程为 y=±x .(2)b= ,双曲线 x 2﹣=1,可得 F 1(﹣2,0),F 2(2,0).设 A (x 1,y 1),B (x 2,y 2),直线的斜率为:k=,直线 l 的方程为:y=k (x ﹣2),由题意可得: ,消去 y 可得:(3﹣k 2)x 2+4k 2x ﹣4k 2﹣3=0,△=36(1+k 2)>0, 可得 x 1+x 2=,则 y 1+y 2=k (x 1+x 2﹣4)=k (﹣4)=.=(x 1+2,y 1),=(x 2+2,y 2),(+)?=0 可得:(x 1+x 2+4,y 1+y 2)?(x 1﹣x 2,y 1﹣y 2)=0,可得 x 1+x 2+4+(y 1+y 2)k=0, 得+4+?k=0可得:k 2= ,解得k=±.l 的斜率为:±.【点评】本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用.22.(16 分)(2016?上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5 时,解不等式 f(x)>0;(2)若关于 x 的方程 f(x)﹣log2[(a﹣4)x+2a﹣5]=0 的解集中恰好有一个元素,求 a 的取值范围.(3)设a>0,若对任意t∈[,1],函数 f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a 的取值范围.【分析】(1)当 a=5 时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论 a 的取值范围进行求解即可.(3)根据条件得到 f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.【解答】解:(1)当a=5 时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0 或x<﹣,即不等式的解集为{x|x>0 或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0 得log2(+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4 时,方程②的解为 x=﹣1,代入①,成立当a=3 时,方程②的解为 x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1 或x=,若x=﹣1 是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则 1<a≤2.综上,若方程 f(x)﹣log2[(a﹣4)x+2a﹣5]=0 的解集中恰好有一个元素,则 a 的取值范围是 1<a≤2,或a=3 或a=4.(3)函数 f(x)在区间[t,t+1]上单调递减,由题意得 f (t )﹣f (t+1)≤1, 即 log 2(+a )﹣log 2( +a )≤1,即+a≤2(+a ),即 a≥﹣=设 1﹣t=r ,则 0≤r≤,==,当 r=0 时,=0,当 0<r≤时,= ,∵y=r+在(0, )上递减, ∴r+≥=, ∴==,∴实数 a 的取值范围是 a≥.【点评】本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大. 23.(18 分)(2016?上海)若无穷数列{a n }满足:只要 a p =a q (p ,q ∈N *),必有 a p+1=a q+1,则称{a n } 具有性质 P .(1)若{a n }具有性质 P ,且 a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求 a 3; (2) 若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1;b 5=c 1=81, a n =b n +c n ,判断{a n }是否具有性质 P ,并说明理由; (3) 设{b n }是无穷数列,已知 a n+1=b n +sina n (n ∈N *),求证:“对任意 a 1,{a n }都具有性质 P”的充要条件为“{b n }是常数列”.【分析】(1)利用已知条件通过 a 2=a 5=2,推出 a 3=a 6,a 4=a 7,转化求解 a 3 即可. (2) 设无穷数列{b n }的公差为:d ,无穷数列{c n }的公比为 q ,则 q >0,利用条件求出,d 与 q , 求出 b n ,c n 得到 a n 的表达式,推出 a 2≠a 6,说明{a n }不具有性质 P . (3) 充分性:若{b n }是常数列,设 b n =C ,通过 a n+1=C+sina n ,证明 a p+1=a q+1,得到{a n }具有性质 P . 必要性:若对于任意 a 1,{a n }具有性质 P ,得到 a 2=b 1+sina 1,设函数 f (x )=x ﹣b 1,g (x )=sinx , 说明 b n+1=b n ,即可说明{b n }是常数列. 【解答】解:(1)∵a 2=a 5=2,∴a 3=a 6,a 4=a 7=3,∴a 5=a 8=2,a 6=21﹣a 7﹣a 8=16,∴a 3=16. (2) 设无穷数列{b n }的公差为:d ,无穷数列{c n }的公比为 q ,则 q >0, b 5﹣b 1=4d=80,∴d=20,∴b n =20n ﹣19, =q 4= ,∴q= ,∴c n =∴a n =b n +c n =20n ﹣19+ .∵a 1=a 5=82,而 a 2=21+27=48,a 6=101 =.a 1=a 5,但是 a 2≠a 6,{a n }不具有性质 P .(3) 充分性:若{b n }是常数列,设 b n =C ,则 a n+1=C+sina n ,若存在 p ,q 使得 a p =a q ,则 a p+1=C+sina p =C+sina q =a q+1, 故{a n }具有性质 P .必要性:若对于任意 a 1,{a n }具有性质 P , 则 a 2=b 1+sina 1,设函数 f (x )=x ﹣b 1,g (x )=sinx , 由 f (x ),g (x )图象可得,对于任意的 b 1,二者图象必有一个交点, ∴一定能找到一个 a 1,使得 a 1﹣b 1=sina 1, ∴a 2=b 1+sina 1=a 1,∴a n =a n+1,故 b n+1=a n+2﹣sina n+1=a n+1﹣sina n =b n , ∴{b n }是常数列.【点评】本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大. 菁优网2016 年 6 月 12 日“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2016年高考上海卷理工类数学试题(含答案和解析)

2016年普通高等学校招生全国统一考试XX 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________ 【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法. 2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 【答案】-3 【解析】 试题分析:32i23,Imz=-3.iz i +==- 考点:1.复数的运算;2.复数的概念.3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________【答案】5【解析】试题分析:利用两平行线间距离公式得d 5===考点:主要考查两平行线间距离公式.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米) 【答案】1.76 【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76. 考点:主要考查了中位数的概念.5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数【答案】2log (x 1)- 【解析】试题分析:将点(3,9)带入函数()xf x 1a =+的解析式得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以与指对数式的转化.6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________【答案】【解析】试题分析:由题意得11122tan 33DD DBD DD BD ∠===⇒=。
2016上海市高考数学试卷及答案(理数)

2016年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( ) (A )25. (B )50. (C )75.(D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)ABCDABCPE21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2016年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . 3.函数1sin cos 2)(-=xx x f 的值域是],[2325-- .4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 -160 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf )sin(16θπ- . 11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是32(结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 [2, 5] . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c . 二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( B ) (A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( C ) (A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.ABCD17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( A )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( D ) (A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求: (1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分) [解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与的夹角为θ,则222224||||cos ===⨯⋅BC AE BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形, 所以∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π ……12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分AB CD PE yAB CDP EF由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线 24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程y =中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分) (2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分) (3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n . 先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以kk q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n . ……18分。
2016上海市高考数学试卷及答案(理数)

.
10.如图,在极坐标系中,过点 M ( 2, 0) 的直线 l 与极轴的夹角
l
6 . 若将 l 的极坐标方程写成
f ( ) 的形式,则
O
M
x
f( )
.
11.三位同学参加跳高、跳远、铅球项目的比赛
. 若每人都选择其中两个项目,则有且仅有
两人选择的项目完全相同的概率是
(结果用最简分数表示) .
12.在平行四边形 ABCD 中, ∠ A= 3 , 边 AB、 AD 的长分别为 2、 1. 若 M 、 N 分别
y g (x) (x [1, 2]) 的反函数 . ( 8 分)
21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为
y轴
正方向建立平面直角坐标系(以 1 海里为单位长度) ,则救援船恰在失事船的正南方向 12 海
里 A 处,如图 . 现假设:①失事船的移动路径可视为抛物线
y
2016 年上海高考数学(理科)试卷
一、填空题(本大题共有
1 .计算: 3 i = 1i
14 题,满分 56 分) ( i 为虚数单位) .
2 .若集合 A { x | 2x 1 0} , B { x | x 1 2} ,则 A B = .
2 cosx
3 .函数 f ( x)
的值域是
.
sin x 1
V2
Vn )
.
7 .已知函数 f ( x) e|x a| ( a 为常数) . 若 f ( x) 在区间 [1,+ )上是增函数,则 a 的取值范
围是
.
8 .若一个圆锥的侧面展开图是面积为 2 的半圆面,则该圆锥2 是奇函数,且 f (1) 1 . 若 g (x) f ( x) 2 ,则 g ( 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市嘉定区高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.=.2.设集合A={x|x2﹣2x>0,x∈R},,则A∩B=.3.若函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),则a=.4.已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是.5.在正方体ABCD﹣A1B1C1D1中,M为棱A1B1的中点,则异面直线AM与B1C所成的角的大小为(结果用反三角函数值表示).6.若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为.7.已知,则cos(30°+2α)=.8.某程序框图如图所示,则该程序运行后输出的S值是.9.过点P(1,2)的直线与圆x2+y2=4相切,且与直线ax﹣y+1=0垂直,则实数a的值为.10.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是.11.已知直角梯形ABCD,AD∥BC,∠BAD=90°.AD=2,BC=1,P是腰AB上的动点,则的最小值为.12.已知n∈N*,若,则n=.13.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若,n∈N*,S n为数列{a n}的前n项和,则=.14.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“函数y=sin(x+φ)为偶函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是()A.1 B.2 C.3 D.417.已知圆M过定点(2,0),圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦为AB,则|AB|等于()A.4 B.3 C.2 D.118.已知数列{a n}的通项公式为,则数列{a n}()A.有最大项,没有最小项 B.有最小项,没有最大项C.既有最大项又有最小项 D.既没有最大项也没有最小项三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.20.已知x∈R,设,,记函数.(1)求函数f(x)取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,求△ABC的面积S 的最大值.21.设函数f(x)=k•a x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.22.在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.23.设复数z n=x n+i•y n,其中x n y n∈R,n∈N*,i为虚数单位,z n+1=(1+i)•z n,z1=3+4i,复数z n在复平面上对应的点为Z n.(1)求复数z2,z3,z4的值;(2)是否存在正整数n使得∥?若存在,求出所有满足条件的n;若不存在,请说明理由;(3)求数列{x n•y n}的前102项之和.2016年上海市嘉定区高考数学一模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.=.【考点】极限及其运算.【专题】计算题;转化思想;综合法;导数的概念及应用.【分析】分式的分子分母同时除以n2,利用极限的性质能求出结果.【解答】解:==.故答案为:.【点评】本题考查极限的求法,是基础题,解题时要认真审题,注意极限性质的合理运用.2.设集合A={x|x2﹣2x>0,x∈R},,则A∩B={x|﹣1≤x<0,x∈R}(或[﹣1,0)).【考点】交集及其运算.【专题】对应思想;转化法;不等式的解法及应用;集合.【分析】化简集合A、B,再计算A∩B.【解答】解:集合A={x|x2﹣2x>0,x∈R}={x|x<0或x>2,x∈R},={x|﹣1≤x<1,x∈R},∴A∩B={x|﹣1≤x<0,x∈R}(或[﹣1,0)).故答案为:{x|﹣1≤x<0,x∈R}(或[﹣1,0)).【点评】本题考查了不等式的解法与应用问题,也考查了集合的化简与运算问题,是基础题目.3.若函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),则a=.【考点】反函数.【专题】方程思想;转化思想;函数的性质及应用.【分析】利用互为反函数的性质即可得出.【解答】解:∵函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),∴3=a﹣1,解得a=.故答案为:.【点评】本题考查了互为反函数的性质,考查了推理能力与计算能力,属于基础题.4.已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是2.【考点】极差、方差与标准差.【专题】计算题;转化思想;综合法;概率与统计.【分析】由一组数据6,7,8,9,m的平均数是8,先求出m=10,由此能求出这组数据的方差.【解答】解:∵一组数据6,7,8,9,m的平均数是8,∴,解得m=10,∴这组数据的方差S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.故答案为:2.【点评】本题考查一组数据的方差的求法,是基础题,解题时要认真审题,注意平均数、方差计算公式的合理运用.5.在正方体ABCD﹣A1B1C1D1中,M为棱A1B1的中点,则异面直线AM与B1C所成的角的大小为arccos(结果用反三角函数值表示).【考点】异面直线及其所成的角.【专题】计算题;转化思想;向量法;空间角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AM与B1C所成的角.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),M(2,1,2),B1(2,2,2),C(0,2,0),=(0,1,2),=(﹣2,0,2),设异面直线AM与B1C所成的角为θ,cosθ===.∴θ=.∴异面直线AM与B1C所成的角为arccos.故答案为:.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;综合法;立体几何.【分析】根据底面周长计算底面半径,根据侧面积计算母线长,再根据勾股定理求出圆锥的高,代入体积公式计算体积.【解答】解:∵圆锥的底面周长为2π,∴圆锥的底面半径r=1,设圆锥母线为l,则πrl=2π,∴l=2,∴圆锥的高h==.∴圆锥的体积V=πr2h=.故答案为:.【点评】本题考查了圆锥的结构特征,侧面积与体积计算,属于基础题.7.已知,则cos(30°+2α)=.【考点】二阶矩阵;三角函数的化简求值.【专题】计算题;转化思想;综合法;矩阵和变换.【分析】由二阶行列式展开式得到cos(75°﹣α)=,再由诱导公式得cos(30°+2α)=cos[180°﹣2(75°﹣α)],由此利用二倍角公式能求出结果.【解答】解:∵,∴cos75°cosα+sin75°sinα=cos(75°﹣α)=,cos(30°+2α)=cos[180°﹣2(75°﹣α)]=﹣cos[2(75°﹣α)]=﹣[2cos2(75°﹣α)﹣1]=﹣[2×﹣1]=.故答案为:.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式、诱导公式、倍角公式的性质的合理运用.8.某程序框图如图所示,则该程序运行后输出的S值是.【考点】程序框图.【专题】计算题;图表型;数学模型法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,k的值,当k=2016时,不满足条件k≤2015,退出循环,输出S的值,从而得解.【解答】解:模拟执行程序,可得k=1,S=0满足条件k≤2015,S=,k=2满足条件k≤2015,S=+,k=3…满足条件k≤2015,S=++…+,k=2015满足条件k≤2015,S=++…++,k=2016不满足条件k≤2015,退出循环,输出S的值.由于S=++…++=1﹣﹣…+=1﹣=.故答案为:.【点评】本题主要考查了程序框图和算法,考查了循环结构和条件语句,用裂项法求S的值是解题的关键,属于基本知识的考查.9.过点P(1,2)的直线与圆x2+y2=4相切,且与直线ax﹣y+1=0垂直,则实数a的值为﹣.【考点】圆的切线方程.【专题】分类讨论;转化思想;综合法;直线与圆.【分析】先判断a≠0,可得要求的直线的方程为y﹣2=(x﹣1),即x﹣ay+2a﹣1=0,再根据圆心O到x﹣ay+2a﹣1=0的距离等于半径2,求得a的值.【解答】解:当a=0时,直线ax﹣y+1=0,即直线y=1,根据所求直线与该直线垂直,且过点P(1,2),故有所求的直线为x=1,此时,不满足所求直线与圆x2+y2=4相切,故a≠0.故要求的直线的斜率为,要求的直线的方程为y﹣2=(x﹣1),即x﹣ay+2a﹣1=0.再根据圆心O到x﹣ay+2a﹣1=0的距离等于半径2,可得=2,求得a=﹣,故答案为:﹣.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式,体现了分类讨论的数学思想,属于中档题.10.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用列举法求出所有的传球方法共有多少种,找出第3次球恰好传回给甲的情况,由此能求出经过3次传球后,球仍在甲手中的概率.【解答】解:用甲→乙→丙→甲表示一种传球方法所有传球方法共有:甲→乙→甲→乙;甲→乙→甲→丙;甲→乙→丙→甲;甲→乙→丙→乙;甲→丙→甲→乙;甲→丙→甲→丙;甲→丙→乙→甲;甲→丙→乙→丙;则共有8种传球方法.第3次球恰好传回给甲的有两种情况,∴经过3次传球后,球仍在甲手中的概率是p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.11.已知直角梯形ABCD,AD∥BC,∠BAD=90°.AD=2,BC=1,P是腰AB上的动点,则的最小值为3.【考点】平面向量数量积的运算.【专题】应用题;数形结合;向量法;平面向量及应用.【分析】先建立坐标系,以直线AD,AB分别为x,y轴建立平面直角坐标系,设P(0,b)(0≤b≤1),根据向量的坐标运算和模的计算得到,=≥3,问题得以解决.【解答】解:如图,以直线AD,AB分别为x,y轴建立平面直角坐标系,则A(0,0),B(0,1),C(1,1),D(2,0)设P(0,b)(0≤b≤1)则=(1,1﹣b),=(2,﹣b),∴+=(3,1﹣2b),∴=≥3,当且仅当b=时取等号,∴的最小值为3,故答案为:3.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.12.已知n∈N*,若,则n=4.【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】由题意可得•2+•22+•23+…+•2n﹣1+•2n=40•2,即(1+2)n﹣1=80,由此求得n的值.【解答】解:∵n∈N*,若,则•2+•22+•23+…+•2n﹣1+•2n=40•2,即(1+2)n﹣1=80,∴n=4,故答案为:4.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若,n∈N*,S n为数列{a n}的前n项和,则=100.【考点】数列的求和.【专题】转化思想;分类法;等差数列与等比数列.【分析】=,n∈N*,当n=1,2,…,9时,a n=0;当n=10,11,12,…,19时,a n=1;…,即可得出S2009.【解答】解:=,n∈N*,当n=1,2,…,9时,a n=0;当n=10,11,12,…,19时,a n=1;…,∴S2009=0+1×10+2×10+…+199×10+200×10=10×=201000,则=100.故答案为:100.【点评】本题考查了取整函数、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.14.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是(1,+∞).【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由题意便知方程组至少有两个解,从而可得到至少有两个解,从而有k=1+|x|>1,这样即求出k的取值范围.【解答】解:根据题意知方程至少有两个不同实数根;即至少有两个实数根;∴;∴k=1+|x|>1;∴实数k的取值范围为(1,+∞).故答案为:(1,+∞).【点评】考查对一个函数在定义域上封闭的理解,清楚函数y=x的定义域和值域相同.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“函数y=sin(x+φ)为偶函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据三角函数的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若φ=时,y=sin(x+φ)=cosx 为偶函数;若y=sin(x+φ)为偶函数,则φ=+kπ,k∈Z;∴“函数y=sin(x+φ)为偶函数”是“φ=”的必要不充分条件,故选B.【点评】本题主要考查充分条件和必要条件的判断,利用三角函数的性质是解决本题的关键,难度不大.16.下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是()A.1 B.2 C.3 D.4【考点】空间中直线与平面之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】两条异面直线不能确定一个平面;若两个平面有3个共线的公共点,则这两个平面相交;若a与b共面,b与c共面,则a与c不一定共面;若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外.【解答】解:在①中,两条异面直线不能确定一个平面,故①错误;在②中,若两个平面有3个不共线的公共点,则这两个平面重合,若两个平面有3个共线的公共点,则这两个平面相交,故②错误;在③中,直线a,b,c,若a与b共面,b与c共面,则a与c不一定共面,如四面体S﹣ABC中,SA与AB共面,AB与BC共面,但SA与BC异面,故③错误;在④中,若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外,故④正确.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.17.已知圆M过定点(2,0),圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦为AB,则|AB|等于()A.4 B.3 C.2 D.1【考点】抛物线的简单性质.【专题】计算题;数形结合;综合法;圆锥曲线的定义、性质与方程.【分析】画出图形,可根据条件设,并可得出圆M的半径,从而得出圆M的方程为,这样令x=0便可求出y,即求出A,B点的坐标,根据A,B点的坐标便可得出|AB|.【解答】解:如图,圆心M在抛物线y2=4x上;∴设,r=;∴圆M的方程为:;令x=0,;∴;∴y=y0±2;∴|AB|=y0+2﹣(y0﹣2)=4.故选:A.【点评】考查抛物线上的点和抛物线方程的关系,圆的半径和圆心,以及圆的标准方程,直线和圆的交点的求法,坐标轴上的两点的距离.18.已知数列{a n}的通项公式为,则数列{a n}()A.有最大项,没有最小项 B.有最小项,没有最大项C.既有最大项又有最小项 D.既没有最大项也没有最小项【考点】数列的函数特性.【专题】探究型.【分析】把数列的通项公式看作函数解析式,令,换元后是二次函数解析式,内层是指数函数,由指数函数的性质可以求出t的大致范围,在求出的范围内分析二次函数的最值情况.【解答】解:令,则t是区间(0,1]内的值,而=,所以当n=1,即t=1时,a n取最大值,使最接近的n的值为数列{a n}中的最小项,所以该数列既有最大项又有最小项.故选C.【点评】本题考查了数列的函数特性,考查了换元法,解答此题的关键是由外层二次函数的最值情况断定n的取值,从而说明使数列取得最大项和最小项的n都存在,属易错题.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.【考点】棱柱、棱锥、棱台的体积.【专题】转化思想;数形结合法;立体几何.【分析】(1)根据题意画出图形,结合图形,过C作CF∥BP,交AD所在直线于F,且点F在线段AD上,用tanα表示出DF、AF,求出容器内溶液的体积,列出不等式求出溶液不会溢出时α的最大值;(2)当α=60°时,过C作CF∥BP,交AB所在直线于F,则点F在线段AB上,溶液纵截面为Rt△CBF,由此能求出倒出的溶液量,即可得出结论.【解答】解:(1)根据题意,画出图形,如图a所示,过C作CF∥BP,交AD所在直线于F,在Rt△CDF中,∠FCD=α,CD=20cm,DF=20tanα,且点F在线段AD上,AF=30﹣20tanα,此时容器内能容纳的溶液量为:S•20=•20梯形ABCF=(30﹣20tanα+30)•20•10=2000(6﹣2tanα)(cm3);而容器中原有溶液量为20×20×20=8000(cm3),令2000(6﹣2tanα)≥8000,解得tanα≤1,所以α≤45°,即α的最大角为45°时,溶液不会溢出;(2)如图b所示,当α=60°时,过C作CF∥BP,交AB所在直线于F,在Rt△CBF中,BC=30cm,∠BCF=30°,BF=10cm,∴点F在线段AB上,故溶液纵截面为Rt△CBF,∵S△ABF=BC•BF=150cm2,容器内溶液量为150×20=300cm3,倒出的溶液量为(8000﹣3000)cm3<3000cm3,∴不能实现要求.【点评】本题考查了棱柱的体积在生产生活中的实际应用问题,解题时要认真审题,注意空间思维能力的培养,是综合性题目.20.已知x∈R,设,,记函数.(1)求函数f(x)取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,求△ABC的面积S 的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;转化思想;向量法;综合法;解三角形.【分析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出ab≤3,根据三角形的面积公式即可求出答案.【解答】解:(1)=.当f(x)取最小值时,,,k∈Z,所以,所求x的取值集合是.(2)由f(C)=2,得,因为0<C<π,所以,所以,.在△ABC中,由余弦定理c2=a2+b2﹣2abcosC,得3=a2+b2﹣ab≥ab,即ab≤3,所以△ABC的面积,因此△ABC的面积S的最大值为.【点评】本题考查了向量的数量积的运算和二倍角公式和两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.21.设函数f(x)=k•a x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.【考点】函数的最值及其几何意义;函数奇偶性的性质.【专题】分类讨论;分析法;函数的性质及应用.【分析】(1)方法一、由奇函数的性质:f(0)=0,解方程可得k=1,检验成立;方法二、运用奇函数的定义,由恒等式的性质即可得到k=1;(2)求得a=3,即有g(x)=32x﹣3﹣2x﹣2m(3x﹣3﹣x),令t=3x﹣3﹣x,则t是关于x的增函数,可得,h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2,讨论对称轴和区间的关系,运用单调性,可得最小值,解方程可得m的值.【解答】(1)解法一:函数f(x)=k•a x﹣a﹣x的定义域为R,f(x)是奇函数,所以f(0)=k﹣1=0,即有k=1.当k=1时,f(x)=a x﹣a﹣x,f(﹣x)=a﹣x﹣a x=﹣f(x),则f(x)是奇函数,故所求k的值为1;解法二:函数f(x)=k•a x﹣a﹣x的定义域为R,由题意,对任意x∈R,f(﹣x)=﹣f(x),即k•a﹣x﹣a x=a﹣x﹣k•a x,(k﹣1)(a x+a﹣x)=0,因为a x+a﹣x>0,所以,k=1.(2)由,得,解得a=3或(舍).所以g(x)=32x﹣3﹣2x﹣2m(3x﹣3﹣x),令t=3x﹣3﹣x,则t是关于x的增函数,,g(x)=h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2,当时,则当时,,解得;当时,则当t=m时,,m=±2(舍去).综上,.【点评】本题考查奇函数的定义和性质的运用,考查可化为二次函数的最值的求法,注意运用换元法和二次韩寒说的对称轴和区间的关系,考查运算能力,属于中档题.22.在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设P(x,y),由两点间距离公式和点到直线距离公式能求出动点P的轨迹C的方程.(2)设N(x,y),利用两点间距离公式能求出m.(3)法一:设A(x1,y1),B(x2,y2),由,得,由点A、B在椭圆C上,得,由此利用点到直线的距离公式、椭圆的对称性,结合已知条件能求出四边形ABA1B1的面积为定值.法二:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,点A、B在椭圆C上,得.由此利用点到直线的距离公式、椭圆的对称性,结合已知条件能求出四边形ABA1B1的面积为定值.法三:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,点A、B在椭圆C上,得.由此利用行列式性质及椭圆的对称性,能求出四边形ABA1B1的面积为定值.【解答】解:(1)设P(x,y),∵动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为,∴由题意,,…化简得3x2+4y2=12,…∴动点P的轨迹C的方程为.…(2)设N(x,y),则=,﹣2≤x≤2.…①当0<4m≤2,即时,当x=4m时,|MN|2取最小值3(1﹣m2)=1,解得,,此时,故舍去.…②当4m>2,即时,当x=2时,|MN|2取最小值m2﹣4m+4=1,解得m=1,或m=3(舍).…综上,m=1.(3)解法一:设A(x1,y1),B(x2,y2),则由,得,,,∵点A、B在椭圆C上,∴,,∴=,化简得.…①当x1=x2时,则四边形ABA1B1为矩形,y2=﹣y1,则,由,得,解得,,S=|AB|•|A1B|=4|x1||y1|=.…②当x1≠x2时,直线AB的方向向量为,直线AB的方程为(y2﹣y1)x﹣(x2﹣x1)y+x2y1﹣x1y2=0,原点O到直线AB的距离为∴△AOB的面积,根据椭圆的对称性,四边形ABA1B1的面积S=4S△AOB=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…解法二:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,…∵点A、B在椭圆C上,所以,,∴=,化简得.…直线OA的方程为y1x﹣x1y=0,点B到直线OA的距离,△ABA1的面积,…根据椭圆的对称性,四边形ABA1B1的面积=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…解法三:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2)由,得,…∵点A、B在椭圆C上,所以,,∴=,化简得.…△ABA1的面积=|x1y2﹣x2y1|,…根据椭圆的对称性,四边形ABA1B1的面积=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…【点评】本题考查椭圆方程的求法,考查满足条件的实数值的求法,考查四边形面积是否为定值的求法与证明,是中档题,解题时要认真审题,注意点到直线的距离公式、椭圆的对称性的合理运用.23.设复数z n=x n+i•y n,其中x n y n∈R,n∈N*,i为虚数单位,z n+1=(1+i)•z n,z1=3+4i,复数z n在复平面上对应的点为Z n.(1)求复数z2,z3,z4的值;(2)是否存在正整数n使得∥?若存在,求出所有满足条件的n;若不存在,请说明理由;(3)求数列{x n•y n}的前102项之和.【考点】数列的求和;复数代数形式的乘除运算.【专题】计算题;规律型;转化思想;等差数列与等比数列.【分析】(1)利用已知条件之间求解z2,z3,z4.(2)求出,利用复数的幂运算,求解即可.(3)通过,推出x n+4=﹣4x n,y n+4=﹣4y n,得到x n+4y n+4=16x n y n,然后求解数列的和即可.【解答】本题,第1小题,第2小题,第3小题.解:(1)z2=(1+i)(3+4i)=﹣1+7i,z3=﹣8+6i,z4=﹣14﹣2i.…(算错一个扣,即算对一个得,算对两个得3分)(2)若∥,则存在实数λ,使得,故z n=λ•z1,即(x n,y n)=λ(x1,y1),…又z n+1=(1+i)z n,故,即(1+i)n﹣1=λ为实数,…故n﹣1为4的倍数,即n﹣1=4k,n=4k+1,k∈N.…(3)因为,故x n+4=﹣4x n,y n+4=﹣4y n,…所以x n+4y n+4=16x n y n,…又x1y1=12,x2y2=﹣7,x3y3=﹣48,x4y4=28,x1y1+x2y2+x3y3+…+x100y100=(x1y1+x2y2+x3y3+x4y4)+(x5y5+x6y6+x7y7+x8y8)+…+(x97y97+x98y98+x99y99+x100y100)=,…而,,…所以数列{x n y n}的前102项之和为1﹣2100+12×2100﹣7×2100=1+2102.…【点评】本题考查复数的基本运算,复数的代数形式混合运算,考查数列求和,考查计算能力.。