2017年最新北师大版七年级数学上册第四章基本平面图形单元测试题(含答案)

合集下载

北师大版七年级数学上册第四章基本平面图形单元测试题含答案

北师大版七年级数学上册第四章基本平面图形单元测试题含答案

北师大版七年级数学上册第四章基本平面图形单元测试题含答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是( )2.下列说法正确的是( )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是( )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于( )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为( )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是( )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为()A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=()A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于()A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是()A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=;(2)(雅安中考)1.45°=.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=度.14.如图,点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.若∠AOC=28°,则∠COD =,∠BOE=.15.已知点A,B,C在直线l上,AB=4 cm,BC=6 cm,点E是AB中点,点F是BC的中点,16.则EF=三、解答题(共50分)16.(8分)如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.17.(8分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD 的度数.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.20.(12分)(焦作期末)如图,已知∠AOB=90°,以O为顶点,OB为一边画∠BOC,然后再分别画出∠AOC 与∠BOC的平分线OM,ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°;(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数;(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变(如图3),求∠MON 的度数.参考答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是(D )2.下列说法正确的是(D )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是(D )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于(A )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为(C )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是(B )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为(C)A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=(C)A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于(A)A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是(C)A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=111°20′;(2)(雅安中考)1.45°=87′.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线W.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=120度.14.如图,点O 是直线AD 上一点,射线OC ,OE 分别是∠AOB ,∠BOD 的平分线.若∠AOC =28°,则∠COD =152°,∠BOE =62°.15.已知点A ,B ,C 在直线l 上,AB =4 cm ,BC =6 cm ,点E 是AB 中点,点F 是BC 的中点,则EF =5 cm 或1 cm.三、解答题(共50分)16.(8分)如图所示,直线l 是一条平直的公路,A 、B 是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C ,使A 、B 到C 的距离之和最小,请在图中找出点C 的位置,并说明理由.解:如图所示,理由:两点之间,线段最短.17.(8分)如图,已知OD 平分∠AOB ,射线OC 在∠AOD 内,∠BOC =2∠AOC ,∠AOB =114°,求∠COD 的度数.解:因为OD 平分∠AOB ,所以∠AOD =12∠AOB =12×114°=57°.因为∠BOC =2∠AOC ,∠AOB =114°,所以∠AOC =13∠AOB =13×114°=38°.所以∠COD =∠AOD -∠AOC =57°-38°=19°.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.解:(1)②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)不变.理由:因为AB 中点为E ,C 是线段BD 的中点,所以EB =12AB ,BC =12BD ,所以EC =EB +BC =12(AB +BD )=12AD =12×10=5(cm ).20.(12分)(焦作期末)如图,已知∠AOB =90°,以O 为顶点,OB 为一边画∠BOC ,然后再分别画出∠AOC 与∠BOC 的平分线OM ,ON.(1)在图1中,射线OC 在∠AOB 的内部. ①若锐角∠BOC =30°,则∠MON =45°; ②若锐角∠BOC =n°,则∠MON =45°;(2)在图2中,射线OC 在∠AOB 的外部,且∠BOC 为任意锐角,求∠MON 的度数;(3)在(2)中,“∠BOC 为任意锐角”改为“∠BOC 为任意钝角”,其余条件不变(如图3),求∠MON 的度数.解:(2)因为∠AOB =90°,设∠BOC =α, 所以∠AOC =90°+α.因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM -∠CON =12(∠AOC -∠BOC )=12∠AOB =45°.(3)因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM +∠CON =12(∠AOC +∠BOC )=12(360°-90°)=135°.11。

北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)

北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)
A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)
4.如图,对于直线 AB ,线段 CD ,射线 EF ,其中能相交的图是( )
A.
B.
C.
D.
5.如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
6.如图,点 B , O , D 在同一直线上,若∠1=15°,∠2=105°,则 AOC 的度数是
( )
A.75°
B.90°
C.105°
D.125°
7.已知点 C 是线段 AB 上的一点,不能确定点 C 是 AB 中点的条件是( )
A. AC = CB
B. AC = 1 AB C. AB =2 BC 2
14. 如图,一副三角尺放在桌面上且它们的直角顶点重合在点 O 处,若 AOD =150°,则 BOD 的度数为________.
15.已知 A 、 B 、 C 三点在同一直线上,其中点 A 与点 B 的距离等于 2.4 千米,点 B 与点 C 的距离等于 3.5 千米,那么点 A 与点 C 的距离等于________千米. 16.如图所示,点 C 是线段 AB 上一点, AC < CB , M 、 N 分别是 AB 、 CB 的中点, AC =8, NB =5, 则线段 MN = .
180°的角),其
余条件不变,请借助图 3 探究 EOF 的大小,直接写出 EOF 的度数.
20.(12 分)如图, AOB =90°, AOC =30°,且 OM 平分 BOC , ON 平分 AOC ,
(1)求 MON 的度数; (2)若 AOB = 其他条件不变,求 MON 的度数; (3)若 AOC = ( 为锐角)其他条件不变,求 MON 的度数;

北师大版 七年级数学上册 第四章 基本平面图形 综合测试卷(含答案)

北师大版 七年级数学上册   第四章  基本平面图形   综合测试卷(含答案)

北师版数学七年级上册第四章基本平面图形综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.关于直线、射线、线段的描述正确的是( )A.直线最长、线段最短B.射线是直线长度的一半C.直线没有端点,射线有一个端点,线段有两个端点D.直线、射线及线段的长度都不确定2.下列图形的几何语言表示正确的有( )A.3个B.4个C.5个D.6个3.下列关系中,与图示不符合的式子是( )A.AD-CD=AB+BCB.AC-BC=AD-DBC.AC-BC=AC+BDD.AD-AC=BD-BC4.已知∠AOB=30°.自∠AOB的顶点O引射线OC,若∠AOC∶∠AOB=4∶3,那么∠BOC等于( ) A.10°B.40°5.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( ) A .38° B .104° C .142° D .144°6. 如图所示,OA ,OB ,OC ,OD 是圆的四条半径,则图中以B 为端点的弧的条数为( ) A .6条 B .8条 C .2条 D .4条7.如图,长度为12 cm 的线段AB 的中点为M ,点C 将线段MB 分成的MC ∶MB =1∶3,则线段AC 的长度为( )A .2 cmB .6 cmC .8 cmD .9 cm8.如图,OA ,OC ,OB 是圆的三条半径,则图中扇形的个数为( ) A .3 B .4 C .5 D .69.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( ) A .4,3 B .3,3 C .3,4 D .4,410.已知线段AB ,延长AB 到点C ,使BC=13AB ,D 为AC 的中点,若AB=9 cm ,则DC 的长为( )A.3 cmB.6 cm第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理?_______________.12.下列命题中,正确的有_________.(填序号)①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.13.如图是一个时钟的钟面,7:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=_________度.14.一个多边形从一个顶点最多能引出三条对角线,这个多边形是__________.15.如图,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是北偏东_________.16.(1)计算:50°-15°30′=__________;(2)两点半时钟面上时针与分针的夹角为__________.17. 将一张正方形的纸片,按图4-4的方式对折两次,相邻两条折痕(虚线)间的夹角为__________.18.如图,B,C两点在线段AD上. (1)BD=BC+______,AD=AC+BD-_______;(2)如果CD=4 cm,BD=7 cm,B是AC的中点,那么AB的长为______.三.解答题(共7小题,66分)19. (6分)如图所示,已知点A,B,请你按照下列要求画图(延长线都画成虚线):(1)过点A,B画直线AB,并在直线AB上方任取两点C,D;(2)画射线AC,线段CD;(3)延长线段CD,与直线AB相交于点M;20. (6分)如图,直线AB和CD相交于点O,∠DOE=90°,OD平分∠BOF,∠BOE=50°,求∠AOC,∠EOF,∠AOF的度数.21. (6分)如图,已知线段AD=16 cm,线段AC=BD=10 cm,点E,F分别是线段AB,CD的中点,求线段EF的长.22. (6分)(1)将31.24°化为用度、分、秒表示的形式;(2)将38°37′12″化成以度为单位的形式.23. (6分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24. (8分)抗日战争时期,一组游击队员奉命将A村的一批文物送往安全地带,他们从A村出发,先沿北偏东80°的方向前进,走了一段路程后突然发现A村南偏东50°的方向距离A村3 km处的B村出现了敌情,于是他们把文物就地隐藏,然后调转方向直奔B村增援,走了一段路程赶到B村消灭了敌人.战斗结束后,据游击队员们回忆,文物在B村北偏东25°的方向.根据上述信息,你能确定文物的大致位置点C吗?请以1 cm的长度表示1 km,画图说明文物的位置.25. (8分)如图,点C是线段AB上的一点,点D是线段AB的中点,点E是线段BC的中点.(1)当AC=8,BC=6时,求线段DE的长度;(2)当AC=m,BC=n(m>n)时,求线段DE的长度;(3)从(1)(2)的结果中,你发现了什么规律?请直接写出来.26. (10分)已知∠AOB=40°,∠AOC=100°,分别作∠AOB和∠AOC的平分线OM,ON,求∠MON的大小.27. (10分)如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.甲乙参考答案:1-5CCCDC 6-10ACDCB 11. 两点确定一条直线 12. ①③ 13. 150 14.六边形 15. 70°16. 34°30′,105° 17. 22.5°18.(1)CD ,BC (2)3 cm 19. 解:答案不唯一,如图所示.20. 解:∠AOC =∠BOD=90°- ∠BOE =40°, ∠EOF =90°+∠DOF= 90°+∠DOB =130°, ∠AOF =180°-∠BOF= 100°21. :因为AB =AD -BD =16-10=6, 同理可求CD =AB =6,所以BC =AD -AB -CD =16-6-6=4, 因为E 是AB 的中点,所以EB =12AB =12×6=3,因为F 是CD 的中点,所以CF =12CD =12×6=3,所以EF =EB +BC +CF =3+4+3=10(cm)22. 解:(1)31.24°=31°+0.24°×60=31°14.4′=31°14′+0.4′×60=31°14′24″ (2)38°37′12″=38°37′+12″÷60=38°37.2′=38°+37.2′÷60=38.62° 23. 解:(1)若以B 为原点,则C 表示1,A 表示-2, 所以p =1+0-2=-1;若以C 为原点,则A 表示-3,B 表示-1, 所以p =-3-1+0=-4(2)若原点O 在图中数轴上点C 的右边,且CO =28,所以p =-31-29-28=-88 24. 解:画法如下:(1)在平面中任取一点作为A 村(2)沿A 村的南偏东50°的方向画射线AM ,在AM 上截取AB =3 cm (3)沿A 村北偏东80°的方向画射线AN(4)沿B 村的北偏东25°的方向画射线BP ,BP 与AN 交于点C ,则C 点即为所求25. 解:(1)因为AC =8,BC =6,所以AB =14, 因为点D 是线段AB 的中点,所以AD =12AB =7,因为BC =6,点E 是线段BC 的中点,所以BE =12BC =3,所以DE =14-7-3=4(2)因为AC =m ,BC =n ,所以AB =m +n. 因为点D 是线段AB 的中点,所以AD =m +n2.因为BC =n ,点E 是线段BC 的中点,所以BE =n2,所以DE =m +n -m +n 2-n 2=m2(3)规律:DE 的长等于12AC 的长26. 解:如图1,因为∠AOB =40°,OM 平分∠AOB ,所以∠AOM =20°, 因为∠AOC =100°,ON 平分∠AOC ,所以∠AON =50°, 所以∠MON =70°;如图2,因为∠AOB =40°,OM 平分∠AOB ,所以∠AOM =20°, 因为∠AOC =100°,ON 平分∠AOC ,所以∠AON =50°, 所以∠MON =30°27. 解:(1)①∠AOD =90°+∠BOD ,所以∠AOD和∠BOC相等.②∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°;(2)①∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等.②成立.由∠AOC=90°+90°-∠BOD可知∠AOC+∠BOD=180°.。

北师大版七年级数学上册 第四章 基本平面图形 单元测试卷(含答案)

北师大版七年级数学上册 第四章  基本平面图形 单元测试卷(含答案)

北师版数学七年级上册 第四章基本平面图形 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下面四个图形中,是多边形的是( )2.一轮船向北偏东60°方向航行,因有紧急任务,按顺时针调头90°去执行任务,那么这时轮船的航行方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60° 3.8点25分时,钟面上的时针与分针所成的角是( ) A .90° B .102.5° C .112.5° D .以上都不对4.如图,∠AOB 为平角,且∠AOC =12∠BOC ,则∠BOC 的度数是( ) A .100° B .135° C .120° D .60°5.小明早上7:50准备去上学,此时时钟的时针和分针的夹角(小于平角的角)的度数为( ) A .90° B .65° C .60° D .75° 6.下列说法错误的是( )A .若AP =BP ,则点P 是线段AB 的中点 B .若点C 在线段AB 上,则AB =AC +BC C .顶点在圆心的角叫做圆心角D .两点之间线段最短7.如图,∠AOD =∠BOC =60°,∠AOB =100°,下列结论:①∠COD =20°;②∠AOC =∠BOD ;③∠BOD =40°;④∠AOC =40°.其中正确的是( ) A .① B .①② C .①②③ D .①②③④8.已知OC 是∠AOB 内部的一条射线,在下列所给的条件中,不能判定OC 为∠AOB 的平分线的是( )A .∠AOC +∠BOC =∠AOB B .∠AOC =12∠AOB C .∠AOB =2∠AOC D .∠AOC =∠BOC9.如图,在长方形ABCD 纸片中,M 为AD 边的中点,将纸片沿直线BM ,CM 折叠,使A 点落在A 1处,点D 落在D 1处,若∠1=30°,则∠BMC 的度数为( ) A .75° B .150° C .120° D .105°10.如图,某工厂有三个住宅区,A ,B ,C 各区分别住有职工30人、15人、10人,且这三点在一条大道上(即A ,B ,C 三点在同一条直线上),已知AB =300米,BC =600米,为了方便职工上下班,该厂的接送车打算在此路段设一个停靠点,为使所有人上班步行到停靠点的路程之和最小,那么该停靠点应设在( )A .点AB .点BC .AB 之间D .BC 之间第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 图中有_______条线段,分别表示为_____________________.12.(桂林中考)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD =_________,则AB =_________.13.如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠AOD 等于________.14.如图,点O 是直线AD 上一点,射线OC ,OE 分别是∠AOB ,∠BOD 的平分线,若∠AOC =28°,则∠COD = ________ ,∠BOE =_________.15如图所示的圆面图案是用相同半径的圆与圆弧构成的.若圆的半径为3,则阴影部分的面积为__________.16.如果扇形的面积为π,圆的半径为6,那么这个扇形的圆心角是_________.17.一个人从A点出发向南偏东30°方向走到B点,再从B点出发向北偏西45°方向走到C点,那么∠ABC等于_______.18.如图,已知OE是∠BOC的平分线,OD是∠AOC的平分线,且∠AOB=150°,∠DOE的度数是________.三.解答题(共9小题,66分)19. (6分)计算:(1)用度、分、秒表示42.34°;(2)用度表示56°25′12″.20. (6分)如图,OE平分∠AOC,OD平分∠BOC,∠AOB=140°.(1)求∠EOD的度数;(2)当OC在∠AOB内转动时,其他条件不变,∠EOD的度数是否会变,简单说明理由.21. (6分)如图,线段AB=12,点C是AB上一点,AC=7,点M是AB的中点,点N是BC的中点,求线段CM和MN的长.22. (6分)如图,将一个圆分成三个扇形. (1)分别求出这三个扇形的圆心角;(2)若圆的半径为4 cm ,分别求出这三个扇形的面积.23. (6分)如图4-7,已知C 为AB 上一点,AC=12 cm ,CB=23 AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.24. (8分)如图4-9,已知∠AOB=90°,∠COD=90°,OE 为∠BOD 的平分线,∠BOE=17°18′,求∠AOC 的度数.25. (8分)已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.26. (10分)在同一平面上,∠AOB=70°,∠BOC=20°,OD,OE分别是∠AOB和∠BOC的平分线,求∠DOE的度数.27. (10分)已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.①若∠AOC=60°,求∠DOE的度数;②若∠AOC=α,直接写出∠DOE的度数(用含α的式子表示);(2)将图1中的∠DOC绕点O顺时针旋转至图2的位置,试探究∠DOE和∠AOC的度数之间的关系,写出你的结论,并说明理由.参考答案:1-5DABCB 6-10 ADADA11. 6;线段AD ,AC ,AB ,DC ,DB ,CB 12. 1,4 13.55° 14. 152°,62° 15. 3π 16. 10° 17.15° 18. 75°19. 解:(1)42.34°=42°20′24″ (2)56°25′12″=56.42°20. 解:(1)因为OE 平分∠AOC ,所以∠AOE=∠EOC , 又因为OD 平分∠BOC ,所以∠COD=∠DOB , ∠EOD =∠EOC+∠COD=12(∠AOC+∠BOC)=70°(2)不变,理由:因为∠EOD =12∠AOB ,∠EOD 的度数只与∠AOB 的度数有关,与OC 无关21. 解:因为M 是AB 的中点,所以AM =12AB =12×12=6,所以CM =AC -AM =7-6=1.因为AB =12,AC =7,所以BC =AB -AC =12-7=5. 因为N 是BC 的中点,所以CN =12BC =12×5=2.5,所以MN =CM +CN =1+2.5=3.5 22. 解:(1) ∠AOC =360°×20%=72°, ∠BOC =360°×40%=144°, ∠AOB= 360°-72°-144°=144°; (2)S 圆=πr 2=16πcm 2,S 扇形AOC = S 圆×20%=3.2π cm 2, S 扇形BOC = S 圆×40%=6.4π cm 2, S 扇形AOB = S 圆×40%=6.4π cm 2. 23. 解:因为AC=12 cm ,CB=23AC ,所以CB=23×12=8(cm),所以AB=AC+CB=20(cm).又因为D ,E 分别为AC ,AB 的中点,所以DE=AE -AD=12AB -12AC=12 (AB -AC)= 12×(20-12)=4(cm).24. 解:因为OE 为∠BOD 的平分线, 所以2∠BOE=∠BOD. 因为∠BOE=17°18′, 所以∠BOD=34°36′.又因为∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°, 所以∠AOC =360°-∠AOB -∠COD -∠BOD=360°-90°-90°-34°36′=145°24′.25. 解:如图1所示,因为AP =2PB ,AB =6,所以PB =13AB =13×6=2,AP =23AB =23×6=4;因为点Q 为PB 的中点,所以PQ =QB =12PB =12×2=1,所以AQ =AP +PQ =4+1=5.如图2所示,因为AP =2PB ,AB =6,所以AB =BP =6,因为点Q 为PB 的中点,所以BQ =3,所以AQ =AB +BQ =6+3=9. 故AQ 的长度为5或926. 解:因为∠AOB =70°,∠BOC =20°,OD ,OE 分别是∠AOB 和 ∠BOC 的平分线,所以∠BOD =12∠AOB =12×70°=35°,∠BOE =12∠BOC =12×20°=10°,①如图1,OC 在∠AOB 外部时,∠DOE =∠BOD +∠BOE =35°+10°=45°,②如图2,OC 在∠AOB 内部时,∠DOE =∠BOD -∠BOE =35°-10°=25°, 所以∠DOE 的度数是45°或25°27. 解:(1)①因为∠AOC =60°,所以∠BOC =180°-∠AOC =180°-60°=120°. 因为OE 平分∠BOC ,所以∠COE =12∠BOC =12×120°=60°.又因为∠COD =90°,所以∠DOE =∠COD -∠COE =90°-60°=30° ②∠DOE =12∠α(2)∠DOE =12∠AOC.理由如下:因为∠BOC =180°-∠AOC ,OE 平分∠BOC ,所以∠COE =12∠BOC =12(180°-∠AOC)=90°-12∠AOC ,所以∠DOE =90°-∠COE =90°-(90°-12∠AOC)=12∠AOC。

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

七年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.如图,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段(第1题)(第4题)2.已知三点A,B,C.画直线AB,画射线AC,连接BC.按照上述语句画图正确的是()3.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN4.如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD 的长为()A.6 B.4 C.2 D.55.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON等于()A.66°B.114°C.170°D.147°(第5题)(第6题)(第8题)6.如图是某住宅小区的平面图,点B是小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A-C-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B7.当时钟指向下午4:30时,时针和分针的夹角是()A.30°B.45°C.60°D.75°8.如图,OC是∠AOB的平分线,OD是∠COB的平分线,则下列各式正确的是()A.∠COD=12∠AOC B.∠AOD=23∠AOBC.∠BOD=13∠AOB D.∠BOC=23∠AOB9.如图,将一张长方形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD于点F,再将三角形DEF沿DF折叠,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是()(第9题)A.18°B.20°C.36°D.45°10.已知点C在线段AB上,则共有三条线段:AB,AC和BC.若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. 若AB =15,点C是线段AB的“巧点”,则AC的长为()A.5 B.7.5C.5或10 D.5或7.5或10二、填空题(每题3分,共15分)11.74°19′30″=________°.12.如图,甲从点A出发向北偏东62°方向走到点B,乙从点A出发向南偏西18°方向走到点C,则∠BAC的度数是__________.(第12题)(第13题)13.如图,小李同学在参加“几何小能手”社团活动时,制作了一副与众不同的三角尺,用它们可以画出一些特殊的角度.在①9°;②18°;③55°;④117°中,能用这副三角尺画出的角度是________(填序号).14.已知线段MN=12,点P在直线MN上,PM=3,点Q为MN的中点,则线段PQ的长为______________.15.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数为________.三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.在如图所示的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试着写出来.(第16题)17. 如图,已知线段a、b(a>b),用尺规作图法作一条线段,使其等于2a-b (不写作法,保留作图痕迹).(第17题)18.如图,已知∠AOB=130°,过∠AOB的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,求∠DOE的大小.(第18题)19.如图,把一个圆分成四个扇形,请分别求出这四个扇形的圆心角的度数.若该圆的半径为2 cm,请分别求出它们的面积.(第19题)20.已知一条直线上有A,B,C,共3个点,那么这条直线上总共有多少条线段?小亮的思路是这样的:以A为端点的线段有AB,AC,共2条,同样以B为端点,以C为端点的线段也各有2条,这样共有3×2=6(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有3×22=3(条)线段.那么,如果一条直线上有6个点,则这条直线上共有________条线段.如果在一条直线上有n个点,那么这条直线上共有________条线段.(1)请你帮小亮计算,并填空;(2)你能用上面的思路来解决“10名同学参加班上组织的乒乓球比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?21.阅读材料并回答问题:数学课上,老师给出了如下问题:如图①,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺).解:如图②.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=________.因为∠COD=65°,所以∠BOD=∠BOC+________=________.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图②中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图①中画出另一种情况对应的图形,并求∠BOD的度数.(第21题)22.如图,P是线段AB上一点,AB=12 cm,M,N两点分别从P,B出发以1 cm/s、3 cm/s的速度同时沿直线AB向左运动(M在线段AP上,N在线段BP上),运动时间为t s.(1)当M,N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.(第22题)23.阅读材料:如图①,将一副三角尺的直角顶点C叠放在一起,若∠DCE=35°,则∠ACB =________;若∠ACB=150°,则∠DCE=________.由此你能得到什么结论?解:因为∠ACD=90°,∠DCE=35°,所以∠ACE=90°-35°=55°,因为∠BCE=90°,所以∠ACB=∠ACE+∠BCE=55°+90°=145°;因为∠BCE=90°,∠ACB=150°,所以∠ACE=150°-90°=60°,因为∠ACD=90°,所以∠DCE=∠ACD-∠ACE=90°-60°=30°,所以能得到结论∠ACB+∠DCE =180°.故答案为:145°;30°∠ACB+∠DCE=180°.解决问题:(1)当图①变为图②时,∠ACB与∠DCE之间的数量关系还存在吗?为什么?(2)如图③,若将两个同样的三角尺的60°角的顶点A重合在一起,请你猜想∠BAD与∠CAE有何关系,请说明理由;(3)如图④,如果把任意两个锐角∠AOB,∠COD的顶点O重合在一起,设∠AOB=α,∠COD=β(α,β都是锐角),请你直接写出∠AOD与∠BOC的关系.(第23题)答案一、1.B 2.A 3.C 4.C5.D6.D7.B8.A9.C10.D二、11.74.32512. 136°13. ①②④14.3或915.6三、16.解:线段:线段AB、线段AC、线段BD、线段BE、线段CD、线段CF、线段DE、线段DF、线段EF.射线:射线AB、射线AC、射线BA、射线CA.直线:直线AB、直线AC.17.解:如图所示,线段OC即为所求.(第17题)18.解:因为OD,OE分别平分∠AOC和∠BOC,所以∠DOC=12∠AOC, ∠COE=12∠BOC,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.又因为∠AOB=130°,所以∠DOE=12×130°=65°.19.解:扇形AOB的圆心角为360°×35%=126°.扇形BOC的圆心角为360°×10%=36°.扇形COD的圆心角为360°×25%=90°.扇形AOD的圆心角为360°×30%=108°.圆的面积为π×22=4π(cm2).所以扇形AOB的面积为4π×35%=1.4π(cm2).扇形BOC的面积为4π×10%=0.4π(cm2).扇形COD的面积为4π×25%=π(cm2).扇形AOD的面积为4π×30%=1.2π(cm2).20.解:(1)15;n(n-1)2.(2)把10名同学看成直线上的10个点,每两名同学之间的一场比赛看成一条线段,直线上10个点所构成的线段条数就等于比赛的场数,因此一共要进行10×(10-1)2=45(场)比赛.21.解:(1)45°;∠COD;110°.(第21题)(2)正确.如图.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=45°.因为∠COD=65°,所以∠BOD=∠COD-∠BOC=20°.22.解:(1)当M,N运动1 s时,PM=1 cm,BN=3 cm.因为AB=12 cm,所以AM+PN=12-1-3=8(cm).因为PN=3AM,所以4AM=8 cm,所以AM=2 cm.所以AP=AM+PM=3 cm.(2)AP的长度不会变化.根据题意可知PM=t cm,BN=3t cm.因为AB=12 cm,所以AM+PN=(12-4t)cm.因为PN=3AM,所以4AM=(12-4t)cm,所以AM=(3-t)cm.所以AP=AM+PM=3-t+t= 3 cm.(3)由已知条件可知,点Q在线段BA的延长线上或在线段AP上时不符合题意,所以当点Q在线段PB上时,由(2)可知AP=3 cm,则BP=9 cm.所以AQ=PQ+BQ=BP=9 cm.因为AQ=AP+PQ,所以PQ=AQ-AP=6 cm.当点Q在线段AB的延长线上时,AQ=AB+BQ.因为AQ=PQ+BQ,所以PQ=AB=12 cm.综上所述,PQ=6 cm或12 cm.23.解:(1)存在.理由:因为∠ACD=90°,∠BCE=90°,所以∠ACD+∠BCE=180°.所以∠ACB+∠DCE=360°-(∠ACD+∠BCE)=360°-180°=180°. (2)∠BAD-∠CAE=120°.理由:因为∠CAD=60°,∠BAE=60°,所以∠BAD-∠CAE=∠CAD+∠CAE+∠BAE-∠CAE=∠CAD+∠BAE =60°+60°=120°.(3)∠AOD+∠BOC=α+β.11。

北师大版七年级上册数学第四章 基本平面图形含答案(参考答案)

北师大版七年级上册数学第四章 基本平面图形含答案(参考答案)

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm2、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度3、下列说法正确的有()①一个有理数不是整数就是分数;②从六边形的一个顶点能引出4条对角线;③连接两点之间的线段,就是两点之间的距离;④若AB=BC,则B是AC的中点;⑤符号相反的数是相反数.A.1个B.2个C.3个D.4个4、半径为5的圆的一条弦长不可能是()A.3B.5C.10D.125、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边6、如图,在□ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC =2S△EFB;④∠CFE=3∠DEF,其中符合题意结论的个数共有().A.1个B.2个C.3个D.4个7、下列说法正确的个数为()⑴过两点有且只有一条直线⑵连接两点的线段叫做两点间的距离⑶两点之间的所有连线中,线段最短⑷直线AB和直线BA表示同一条直线.A.1B.2C.3D.48、如图所示,OC,OD分别是∠AOB、∠BOC的平分线,且∠COD=26°,则∠AOB 的度数为()A.96°B.104°C.112°D.114°9、已知:∠ ,∠ ,∠ ,则下列说法正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1、∠2、∠3互不相等10、下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()A.①②B.②③C.①④D.③④11、下列说法中,①两条射线组成的图形叫角;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点;正确的有()A.1个B.2个C.3个D.4个12、下列说法错误的是()A.两点之间,线段最短B.两点确定一条直线C.射线和射线是同一条射线 D.直线和直线是同条直线13、下列结论中,正确的是()A.把一个角分成两个角的射线叫角平分线B.两点确定一条直线C.若AB=BC,则点B是线段AC的中点D.两点之间,直线最短14、如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()A.3cmB.4cmC.5cmD.6cm15、如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2 -2B. -1C. -1D.2-二、填空题(共10题,共计30分)16、________°.17、已知∠1与∠2互余,∠2与∠3互补,∠1=67°12′,则∠3=________.18、数轴上的点A,B分别表示数-2和1,点C是AB的中点,则点C所表示的数是________.19、如图,相交于点,是的角平分线,若,,则________.20、如图,C,D是线段AB上两点,若CB= ,DB= ,且D是AC的中点,则AB的长等于________.21、如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD 上的一个动点,当PC与PE的和最小时,∠CPE的度数是________.22、(1)131°28′﹣51°32′15″=________.(2)58°38′27″+47°42′40″=________.23、计算:78°18′﹣56°46′=________.24、如图,点O是直线AB上一点,图中共有________个小于平角的角.25、我们知道:平面上有一个点,过这一点可以画无数条直线.若平面上有两个点,则过这两点可以画的直线的条数是________若平面上有三个点,过每两点画直线,则可以画的直线的条数是________若平面上有四个点,过每两点画直线,则可以画的直线的条数是________三、解答题(共5题,共计25分)26、计算:①96°﹣18°26′59″②83°46′+52°39′16″③20°30′×8④105°24′15″÷327、如图,直线AB、CD、EF相交于点O,∠DOB是它的余角的2倍,∠AOE=2∠DOF,且有OG⊥AB,求∠EOG的度数.28、如图,点 P、M、N 在线段 AB 上,线段 MN=4,若点 M、N 分别是线段PN、AB 的中点,且线段 AB=26,求线段 AP 的长.29、读句画图填空:(1)画∠AOB;(2)作射线OC,使∠AOC=∠AOB;(3)由图可知,∠BOC 与∠AOB的关系.30、已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,求此多边形的内角和.参考答案一、单选题(共15题,共计45分)1、C3、A4、D5、C6、D7、C8、B9、C10、B11、A12、C13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

北师大版七年级数学上册第四章 基本平面图形 单元测试题(含答案)

北师大版七年级数学上册第四章 基本平面图形 单元测试题(含答案)

北师大版七年级数学上册第四章 基本平面图形 单元测试题(含答案)一、选择题(本大题共8小题,每小题3分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.如图1所示,若AC=BD,则AB与CD的大小关系为( )图1A.AB>CD B.AB<CDC.AB=CD D.不能确定2.有下列说法:①平角是一条直线;②射线是直线的一半;③射线AB与射线BA表示同一条射线;④用一个放大镜去看一个角,这个角的度数也被放大了;⑤两点之间线段最短;⑥120.5°=7250′.其中正确的有( )A.0个B.1个C.2个D.3个3.如图2,CB=4 cm,DB=7 cm,D为AC的中点,则AB的长为( )图2A.7 cm B.8 cmC.9 cm D.10 cm4.下列说法正确的有( )(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)直线AB的长为2 cm.A.0个B.1个C.2个D.3个5.如图3,∠AOB=∠COD=90°,∠BOC=42°,则∠AOD的度数为( )图3A.48° B.148°C.138° D.128°6. 已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=70°,∠BOC=30°,则∠AOC等于( )A.40° B.100°C.40°或100° D.30°或120°7.如图4,扇形折扇完全打开后,如果张开的角度(∠BAC)为120°,骨柄AB的长为30 cm,扇面的宽度BD的长为20 cm,那么这把折扇的扇面面积为( )图4A. cm 2B. cm 2400π3500π3C. cm 2 D .300π cm 2800π38.如图5所示,学校、聚贤酒家、利万家商场在平面图上的标记分别是点O ,A ,B ,聚贤酒家在学校的正东方向,利万家商场在学校的南偏西60°的方向上,则下列说法不正确的是( )图5A .学校在聚贤酒家的正西方向上B .学校在利万家商场的北偏东60°方向上C .∠AOB <150°D .∠AOB =150°二、填空题(本大题共6小题,每小题3分,共18分)9.图6中线段AB 上有两点C 和D ,则图中共有________条线段.图610.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个n边形分割成6个三角形,则n的值是________,这个n边形共有________条对角线.11.将一个圆分割成六个扇形,它们圆心角度数的比为2∶3∶4∶6∶7∶8,则这六个扇形中,圆心角最大的度数是________.12.把一副三角尺ABC与BDE按如图7所示那样拼在一起,其中A,B,D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数为________.图713.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若B,C两点之间的距离为2,则A,C两点之间的距离为________.14.如图8,线段AB=1,C1是AB的中点,C2是C1B的中点,C3是C2B的中点,C4是C3B的中点,依此类推……线段AC2019的长为________.图8三、解答题(共58分)15.(8分)尺规作图(不写画法,保留作图痕迹):已知线段a和∠AOB(如图9所示).(1)在OA边上作点P,使OP=2a;(2)在OB边上作OQ=4a.图916.(10分)如图10所示,B,C两点在线段AD上,且AB∶BC∶CD=2∶4∶3,M是AD的中点,CD=6,求线段MC的长.图1017.(12分)如图11,∠AOB=∠COD=90°,OC是∠AOB的平分线,OE是∠BOD的三等分线,且∠DOE<∠BOE,试求∠COE的度数.图1118.(13分)如图12,点C在线段AB上,AC=8厘米,BC=6厘米,M,N分别是AC,BC的中点.(1)求线段MN的长;(2)若C为线段AB上任意一点,且满足AC+BC=a厘米,其他条件不变,你能猜想出MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC-BC=b厘米,M,N分别为AC,BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.图1219.(15分)如图13,以∠AOB的顶点O为端点画一条射线OC,OM,ON分别是∠AOC和∠BOC的平分线.(1)如图①,若∠AOC=50°,∠BOC=30°,则∠MON的度数是________.(2)如图②,若∠AOB=100°,∠BOC=30°,则∠MON的度数是________.(3)根据以上解答过程,完成下列探究:探究一:如图③,当射线OC位于∠AOB内部时,请写出∠AOB与∠MON之间的数量关系,并说明理由;探究二:如图④,当射线OC位于∠AOB外部时,请写出∠AOB与∠MON之间的数量关系,并说明理由.图131.[解析] C 利用线段的和差关系进行判断.2.[解析] B 只有⑤正确.3.[解析] D 由题意知,CB =4 cm ,DB =7 cm ,所以DC =3 cm.又因为D 为AC 的中点,所以AD =DC =3 cm ,故AB =AD +DB =10 cm.4.[答案] A5.[答案] C6.[解析] C 分为两种情况:(1)如图①,∠AOC =∠AOB -∠BOC =70°-30°=40°;(2)如图②,∠AOC =∠AOB +∠BOC =70°+30°=100°.7.[解析] C ∵AB =30 cm ,BD =20 cm ,∴AD =30-20=10(cm),∴S 扇面=S 扇形BAC -S 扇形DAE === cm 2.120π×302-120π×102360120π(302-102)360800π38.[答案] C 9.[答案] 610.[答案] 8 20[解析] n 边形从一个顶点出发可把n 边形分成(n -2)个三角形,n 边形对角线的总条数为n(n -3),依此即可求解.n =6+2=8,×8×(8-3)=20.故n 的值是8,这个n 边形共有121220条对角线.11.[答案] 96°12.[答案] 67.5°[解析] 由题可得∠ABC =45°,∠DBE =60°,∠ABD =180°,所以∠CBE =75°.又因为BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,所以∠MBE =37.5°,∠EBN =30°,所以∠MBN =67.5°.13.[答案] 2或6[解析] 此题画图时会出现两种情况,即点C 在线段AB 上,点C 在线段AB 外,所以要分两种情况计算.点A ,B 表示的数分别为-3,1,AB =4.第一种情况:在线段AB 外,AC =4+2=6;第二种情况:在线段AB 上,AC =4-2=2.14.[答案] 1-122019[解析] 因为线段AB =1,C 1是AB 的中点,所以BC 1=AB =×1=.121212因为C 2是C 1B 的中点,所以BC 2=BC 1=×=.121212122因为C 3是C 2B 的中点,所以BC 3=BC 2=××=,12121212123……所以BC 2019=()2019=,12122019所以AC 2019=AB -BC 2019=1-.12201915.略16.解:设AB =2k ,则BC =4k ,CD =3k ,AD =2k +4k +3k =9k.因为CD =6,即3k =6,所以k =2,所以AB =4,BC =8,AD =18.因为M 是AD 的中点,所以MD =AD =×18=9,1212所以MC =MD -CD =9-6=3.17.解:因为∠AOB =90°,OC 是∠AOB 的平分线,所以∠BOC =∠AOB =×90°=45°.1212因为∠BOD =∠COD -∠BOC =90°-45°=45°,OE 是∠BOD 的三等分线,且∠DOE <∠BOE ,所以∠DOE =∠BOD =×45°=15°.1313从而∠BOE =∠BOD -∠DOE =45°-15°=30°,所以∠COE =∠BOC +∠BOE =45°+30°=75°.18.解:(1)MN =7厘米.(2)MN =a 厘米.理由如下:12因为MC =AC ,NC =BC ,1212所以MN =MC +NC =(AC +BC),12即MN =a 厘米.12(3)图略.MN =b 厘米.12理由:因为MC =AC ,NC =BC ,1212所以MN =MC -NC =(AC -BC),12即MN =b 厘米.1219.解:(1)因为OM ,ON 分别是∠AOC 和∠BOC 的平分线,所以∠COM =∠AOC =25°,∠CON =∠BOC =15°,1212所以∠MON =∠COM +∠CON =40°.故答案为40°.(2)因为∠AOB =100°,∠BOC =30°,所以∠AOC =∠AOB -∠BOC =70°.因为OM ,ON 分别是∠AOC 和∠BOC 的平分线,所以∠COM =∠AOC =35°,∠CON =∠BOC =15°,1212所以∠MON =∠COM +∠CON =50°.故答案为50°.(3)探究一:∠MON =∠AOB.12理由:因为OM ,ON 分别是∠AOC 和∠BOC 的平分线,所以∠COM =∠AOC ,∠CON =∠BOC ,所以1212∠MON =∠COM +∠CON =(∠AOC +∠BOC)=∠AOB.1212探究二:∠MON =∠AOB.12理由:因为OM ,ON 分别是∠AOC 和∠BOC 的平分线,所以∠COM =∠AOC ,∠CON =∠BOC ,1212所以∠MON =∠COM -∠CON =(∠AOC -∠BOC)=∠AOB.1212。

北师大版数学七年级上册第四章《基本平面图形》综合检测卷(含答案)

北师大版数学七年级上册第四章《基本平面图形》综合检测卷(含答案)

北师大版数学七年级上册第四章《基本平面图形》 综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.探照灯发射出的光线,可近似地看作( )A .线段B .射线C .直线D .折线2.如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠AOD =( )A .50°B .55°C .60°D .65°3.下列说法,正确的是( ) A .过两点有且只有一条直线 B .连接两点的线段叫作两点的距离C .两点之间直线最短D .若AB =BC ,则B 是AC 的中点4.一个多边形从一个顶点最多能引出三条对角线,这个多边形是( )A .三角形B .四边形C .五边形D .六边形5.一个人从A 点出发向南偏东30°方向走到B 点,再从B 点出发向北偏西45°方向走到C 点,那么∠ABC 等于( )A .75°B .45°C .30°D .15°6.如图,AB =CD ,则下列结论不一定成立的是( )A .AC >BCB .AC =BDC .AB +CD =BC D .AB +BC =BD 7.已知OA ⊥OC ,∠AOB ︰∠AOC =2︰3,则∠BOC 的度数为( )A .30B .150C .30或150D .以上都不对8.如图,扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是( )A .π-2B .π-4C .4π-2D .4π-4 第2题图第6题图 第8题图二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上.9.时钟表面3点30分,时针与分针所成夹角的度数是 .10.如图,B 、C 两点在线段AD 上,BD =BC + ,AD =AC +BD - ; 如果CD =4cm ,BD =7cm ,B 是AC 的中点,则AB 的长为 cm .11.计算:176°52′÷3=_______° _______′ _______″.12.一个圆被分成A ,B ,C 三部分,其中A 部分占25%,C 部分占45%,则B 部分的圆心角的度数为__________度.13.如图,OE 是∠BOC 的平分线,OD 是∠AOC 的平分线,且∠AOB =150°,∠DOE 的度数是 .14.已知线段AB ,延长AB 到点C ,使BC =13AB ,D 为AC 的中点,若AB =9 cm ,则DC 的长为 cm .15.长方形纸条按如图所示折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=70°,则∠B ′OG 的度数为 . 三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.如图,已知∠AOB =90°,∠COD =90°,OE 为∠BOD 的平分线,∠BOE =17°18′,求∠AOC 的度数.17.某摄制组从A 市到B 市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原第13题图第10题图 第15题图计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?18.如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.∠∠AOD和∠BOC相等吗?说明理由;∠∠AOC和∠BOD的以上关系还成立吗?说明理由.19.如图∠,线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC、BC的中点.(1)若点C恰好是AB中点,则DE= cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图∠,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.参考答案一、选择题:1.B 2.B 3.A 4.D 5.D 6.C 7.C 8.A二、填空题:9.75° 10.CD ,CB ,3 11.58 ,57 ,20 12.108 13.75° 14.6 15.55°三、解答题:16.∵OE 为∠BOD 的平分线, ∴∠BOD =2∠BOE =2×17°18′=34°36′, 又∵∠AOB =∠COD =90°,∴∠AOC =360°-∠AOB -∠COD -∠BOD =360°-90°-90°-34°36′=145°24′17.如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =DC ,EB =CE , AD +EB =(DC +CE )=DE =×400=200千米, ∴AB =AD +EB +DE =600千米, 答:A ,B 两市相距600千米.18.(1) 相等.∵①∠AOD =90°+∠BOD ,∠BOC =90°+∠BOD , ∴∠AOD =∠BOC ; ②∵∠AOC +90°+∠BOD +90°=360°, ∴∠AOC +∠BOD =180°;(2)①∵∠AOD =90°-∠BOD ,∠BOC =90°-∠BOD , ∴∠AOD =∠BOC ; ②成立.由∠AOC =90°+90°-∠BOD , ∴∠AOC +∠BOD =180°19.(1)6;(2)∠AB =12,AC =4, ∠BC =8,∠点D 、E 分别是AC 、BC 的中点, ∠CD =2,CE =4, ∠DE =6cm ;(3)设AC =a ,∠点D 、E 分别是AC 、BC 的中点,∠DE =CD +CE =12(AC +BC )=12AB =6cm , ∠不论AC 取何值(不超过12cm ),DE 的长不变;(4)∠OD 、OE 分别平分∠AOC 和∠BOC ,∠∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12∠AOB , ∠∠AOB =120°, ∠∠DOE =60°, ∠∠DOE 的度数与射线OC 的位置无关.1212121212。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(四) 基本平面图形
一、选择题(本大题共15
1.A .线段 B .射线 C .直线 D .弧线 2.下列图形中表示直线AB 的是( )
A B C D 3.下面四个图形中,是多边形的是( )
4.下列说法正确的是( )
A .平角是一条直线
B .角的边越长,角越大
C .大于直角的角叫做钝角
D .把线段AB 向两端无限延伸可得到直线AB 5.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( ) A .两点确定一条直线 B .两点确定一条线段 C .过一点有一条直线 D .过一点有无数条直线 6.如图,若∠AOC =∠BOD ,则∠AOD 与∠BOC 的关系是( ) A .∠AOD >∠BOC B .∠AOD <∠BOC C .∠AOD =∠BOC D .无法确定
7.如图,点C 在线段AB 上,则下列说法正确的是( ) A .AC =BC B .AC >BC
C .图中共有两条线段
D .AB =AC +BC
8.如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( ) A .60° B .80° C .120° D .150°
9.下列计算错误的是( )
A .0.25°=900″
B .1.5°=90′
C .1 000″=(5
18
)° D .125.45°=1 254.5′
10.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方位角是( )
A.西偏北60°B.北偏西60°
C.北偏东60°D.东偏北60°
11.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为( )
A.100°B.80°
C.70°D.60°
12.已知线段AB=5 cm,在直线AB上画线段BC=2 cm,则AC的长是( )
A.3 cm B.7 cm
C.3 cm或7 cm D.无法确定
13.过多边形的一个顶点可以引出6条对角线,则多边形的边数是( )
A.7 B.8 C.9 D.10
14.将一个圆分成四个扇形,它们的圆心角的度数比为4∶4∶5∶7,则这四个扇形中,圆心角最大的是( ) A.54°B.72°C.90°D.126°
15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( ) A.21个交点B.18个交点C.15个交点D.10个交点
二、填空题(本大题共5小题,每小题5分,共25分)
16.要在A、B两个村庄之间建一个车站,则当车站建在A、B村庄之间的线段上时,它到两个村庄的路程和最短,理由是________________.
17.如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.
18.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=________.
19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB=155°,则∠COD=________,∠BOC =________ .
20.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.
三、解答题(本大题共7小题,共80分)
21.(8分)如图,直线AB表示一条公路,公路两旁各有一点M、N表示工厂,要在公路旁建一个货场,使它到两个工厂的距离之和最小,问这个货场应建在什么地方.
22.(8分)已知四点A、B、C、D.根据下列语句,画出图形.
①画直线AB ;
②连接AC 、BD ,相交于点O ; ③画射线AD 、BC ,交于点P.
23.(10分)如图,已知A 、B 、C 三点在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且AM =5 cm ,CN =3 cm.求线段AB 的长.
24.(12分)如图,已知∠AOE =∠COD ,且射线OC 平分∠BOE ,∠EOD =30°,求∠AOD 的度数.
25.(12分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指标盘上的指针转了180°,第二天王老师就给同学们出了两个问题:
(1)如果把0.6千克的菜放在秤上,指针转过多少角度? (2)如果指针转了7°12′,这些菜有多少千克?
26.(14分)画图并计算:已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =1
2AB ,再反向延长AC 至点D ,使
得AD =AC.
(1)准确地画出图形,并标出相应的字母;
(2)线段DC 的中点是哪个?线段AB 的长是线段DC 长的几分之几?
(3)求出线段BD的长度.
27.(16分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互不重叠).
(1)填写下表:
(2)
参考答案
1.B 2.D 3.D 4.D 5.A 6.C7.D8.C9.D10.B 11.A12.C13.C14.D15.C
16.两点之间,线段最短17.3618.119.25°65°20.5,6,7
21.连接MN于AB相交,交点即为所求.
22.图略.
23.因为AM=5 cm,CN=3 cm,且M是线段AC的中点,N是线段BC的中点,所以AC=10 cm,CB=6 cm.所以AB=AC+CB=16 cm.
24.因为∠AOB=180°,∠EOD=30°,所以∠AOD+∠EOC+∠COB=150°.因为∠AOE=∠COD,所以∠AOD =∠EOC.因为OC平分∠EOB,所以∠EOC=∠COB.所以∠EOC=∠COB=∠AOD=50°.
25.(1)由题意,得(180°÷10)×0.6=10.8°.(2)由题意,得(10÷180°)×7°12′=(10÷180°)×7.2°=0.4(千克).
26.(1)如图所示.
(2)线段DC的中点是点A,AB=1
3CD.
(3)由BC=1
2AB=
1
2×2=1(cm),因而AC=AB+BC=2+1=3(cm),而AD=AC=3 cm,故BD=DA+AB=3+2
=5(cm).
27.(1)8102n+2(2)不可以,因为2n+2是偶数,不可能等于2 015,所以不可以.。

相关文档
最新文档