单管共射放大电路

合集下载

单管共射放大电路的设计方法

单管共射放大电路的设计方法

单管共射放大电路的设计方法1.确定放大倍数要求:首先,需要明确放大电路的目的是为了放大电压、电流还是功率。

根据需要放大的信号幅度和频率范围,确定所需的放大倍数。

2.选择管子:根据所需的放大倍数和频率范围,选择适当的管子。

一般选择高频特性好、电流增益高的普通晶体管。

3.偏置电路设计:为了使晶体管在工作区间内稳定,需要设计一个适当的偏置电路。

偏置电路可以采用电阻分压法或直流反馈法。

-电阻分压法:该方法使用两个电阻串联,通过合适大小的电阻值来获得所需的偏置电流。

具体的计算方法需要根据晶体管的参数和所需的偏置电流来确定。

-直流反馈法:该方法通过从输出回馈一部分电流来实现偏置。

电流源可以是一个恒流源,也可以是一个电压短接的二极管。

4.输入和输出匹配电路设计:为了充分利用晶体管的放大能力,需要设计一个适当的匹配电路来匹配输入和输出阻抗。

-输入匹配:输入匹配电路的目的是使晶体管的输入阻抗等于信号源的输出阻抗,以提高能量传输效率。

常见的输入匹配电路包括电容耦合、电感耦合和直接耦合等方法。

-输出匹配:输出匹配电路的目的是使晶体管的输出阻抗等于负载的输入阻抗,以提高能量传输效率。

常见的输出匹配电路包括电容耦合、电感耦合和变压器耦合等方法。

5.增益计算:根据晶体管的参数和设计电路的特性,可以计算出放大电路的增益。

增益可以通过测量输入和输出信号的电压或电流来得到。

6.稳定性分析:在设计过程中要考虑电路的稳定性。

稳定性分析可以通过查看频率响应和幅频特性来进行。

7.选择合适的偏置点:根据放大电路的特性和实际需求,选择一个合适的偏置点。

偏置点的选择要考虑电源电压、晶体管参数和工作温度等因素。

8.仿真和优化:使用电子设计自动化(EDA)软件进行电路仿真和优化。

通过仿真可以验证设计的性能,并优化电路参数以达到设计要求。

除了以上步骤,还有一些其他因素需要考虑,如电源噪声、温度等。

在设计过程中,需要根据实际情况进行调整和优化,以满足具体要求。

共发射极放大电路三种典型放大电路

共发射极放大电路三种典型放大电路

一、单管共发射极放大电路仅有直流反馈-固定偏置基本的电路如下三、选择器件与多数计算:设置静态工作点并计算元件参数依据指标要求、静态工作点范围、经验值进行计算静态工作点Q 的计算:要求iR{26300i beCQmvR rIβ≈≈+}>1K有若取V BQ = 3V,得1.53BQ BEECQV VR KI-==Ω取标称值1.5KmA2.2mA300100026`CQ=-<βI由于CQBQ I I β=; ()5~10BQ I I =得,=20k Ω ; =60k Ω为使静态工作点调整方便,1B R 由20k固定电阻与100k 电位器相串联而成。

=2033根据V A 的理论计算公式, V A =40 得,1k Ω 由//L C LR R R •=2k Ω计算电容为: )()(13~108.22L S be C uF f R r π≥=+ 综合考虑标称值10Uf10C B C C uF ==取标称值100uF四、画出预设计总体电路图: 预设总体电路图:βCQ BQBQ B I V I V R )10~5(12==21B BQBQ CC B R V VV R -=)(26)1(300)(26)1(mA I mVmA I mV r r EQ EQ bbe ββ++=++=2.静态工作点的测试与调整:测量方法是不加输入信号,将放大器输入端(耦合电容CB负端)接地。

用万用表分别测量晶体管的B、E、C极对地的电压VBQ 、VEQ及VCQ。

一般VBQ =(3~7)V, VCEQ=正几伏。

如果出现VCQ VCC,说明晶体管工作在截止状态;如果出现VCEQ0.5V,说明晶体管已经饱和.调整方法是改变放大器上偏置电阻R B1的大小,即调节电位器的阻值,同时用万用表分别测量晶体管的各极的电位V BQ、V CQ、V EQ,并计算V CEQ及I CQ。

如果V CEQ为正几伏,说明晶体管工作在放大状态,但并不能说明放大器的静态工作点设置在合适的位置,所以还要进行动态波形观测。

单管共射放大电路

单管共射放大电路
2.放大部分参数确定:
实测8050的β为247,分析输出VPP大于10V,只需3.5V即可,取5V的输出电压,由于输出5V,电压设置为15V,Av>=10,取Av=12,Av=-Rc/Re。
电源电压为15V,设置VCE为5V设置ICQ=15MA,且有VCC-IC(RE+RC)=VCE,VCE=10V,RE=15RC,带入进行计算,IC*RE=VEQ=0.625,则Re=100Ω,Rc=12Re,Rc=1.2k,且Ic^2Re=0.135<0.25,用四分之一瓦电阻足够了,确定了Re与Rc后,VEQ=0.625,所以VBQ=1.325,设置偏置电阻RB1与RB2时,ICQ=15MA,IBQ=75UA,所以两个偏置电阻上流过的电流要远大于IBQ,0.75ma就可以了,但是RB1相对于RB2还有(1+β)(rbe+Re)很小,直接将Rb1当做Ri,设置Rb1为4.7K,则VBQ=1.325,所以RB2=47k,这样放大部分的电路就完成了.
1.3M 1.4M
VPP: 11.6 11.2
分析实验数据,达到了Av大于20dB,输出Vpp大于10V,3dB带宽为10Hz到1MHz,使用了15V电压供电,已经达到了实验要求。
五、实验总结(实验中遇到的已解决和未解决的问题)
实验基本上达到了要求。在实验的进行过程中,翻阅了一些有关晶体管电路设计的有关资料,学习了晶体管放大电路的工作原理。并熟练使用仿真软件,但是实际上还是与与仿真结果有所差别,经过不断调试,基本达到实验要求。
一、实验目的(详细指明输入输出)
1、增益≥20dB
2、3dB带宽10Hz~1MHz
3、采用单电Βιβλιοθήκη 供电4、输出幅值≥10Vpp
二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页)

单管共射放大电路

单管共射放大电路

单管共射放大电路一、什么是单管共射放大电路单管共射放大电路(Single-Ended Common Cathode Amplifier)是一种放大电路,它可以把小信号变成大信号,也就是把低电压信号放大成高电压信号。

这种放大电路采用了单管共射放大技术,它可以提高信号电平,提升信号强度,使电路的输出信号更加清晰,噪声更小,并且能够有效提高电路的稳定性。

二、单管共射放大电路的原理单管共射放大电路的原理是把输入信号通过一个电流放大器(current amplifier),把输入信号的电流放大,然后再通过一个电压放大器(voltage amplifier),把输入信号的电压放大。

这样,就能把输入信号放大成较大的输出信号。

三、单管共射放大电路的优点1、低成本:单管共射放大电路的结构简单,只需要一个电流放大器和一个电压放大器,所以成本较低,是一种经济实惠的放大方案。

2、稳定性好:单管共射放大电路采用了单管共射放大技术,它可以有效提高电路的稳定性,使电路的输出信号更加清晰,噪声更小。

3、安装方便:单管共射放大电路的结构简单,只需要一个电流放大器和一个电压放大器,所以安装方便,可以在一个小空间内完成安装。

四、单管共射放大电路的应用单管共射放大电路广泛应用于各种电子设备中,如无线电、电视、录音机、收音机、电话机等,它们都使用了单管共射放大电路来放大信号,从而获得更好的声音效果。

此外,单管共射放大电路还可以用于汽车音响系统,它可以有效提高汽车音响系统的音质,使音乐更加清晰、响亮。

五、总结单管共射放大电路是一种放大电路,它可以把小信号变成大信号,也就是把低电压信号放大成高电压信号,它具有低成本、稳定性好、安装方便等优点,广泛应用于各种电子设备中,如无线电、电视、录音机、收音机、电话机等,也可以用于汽车音响系统,从而获得更好的声音效果。

实验三 晶体管单管共射放大电路

实验三 晶体管单管共射放大电路

实验三晶体管单管共射放大电路实验三 晶体管单管共射放大电路一、 实验目的:1.学习电子线路安装、焊接技术。

2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。

3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。

4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。

二、实验原理:(一)实验电路图3.1中为单管共射基本放大电路。

1.① R B 基极偏流电阻,提供静态工作点所需基极电流。

R B 是由R 1和RW 串联组成,RW 是可变电阻,用来调节三极管的静态工作点,R 1(3K )起保护作用,避免RW 调至0端使基极电流过大,损坏晶体管。

② R S 是输入电流取样电阻,输入电流I i 流过R S ,在R S 上形成压降,测量R S 两端的电压便可计算出I i 。

③ R C —集电极直流负载电阻。

④ R L —交流负载电阻。

⑤ C1、C2 —耦合电容。

(二)理论计算公式: ① 直流参数计算:CCQ CEQ BQ EQ CQ BEQ BBEQBQ R I VCC V I I I V7.0V ;R V VCC I -=β⋅=≈≈-≈式中:..② 交流参数计算:()CO be B i ViS iVS LC L be'L V'bb EQ 'bb be R R r //R R A R R R A R R R ;r R A 300r (mA)I (mV)26β1r r ≈=*+=='*β-=++≈∥Ω的默认值可取式中:(三)放大电路参数测试方法由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。

设计和制作电路前,必须对使用的元器件参数有全面深入的了解。

有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告一、实验目的:1.了解单管共射极放大电路的基本结构和工作原理;2.掌握单管共射极放大电路的直流工作点的确定方法;3.学习基于单管共射极放大电路设计的放大器;4.通过实验测量并分析单管共射极放大电路的电压增益、输入阻抗和输出阻抗。

二、实验仪器与器件:1.数字万用表;2.函数信号发生器;3.直流稳压电源;4.双踪示波器;5.NPN型晶体管;6.电阻、电容等电子元件。

三、实验原理1.在输出信号的封装之前,输入信号先经过耦合电容CE进入晶体管的基极,经过放大形成输出信号;2.输入信号通过耦合电容CE进入基极后,根据电流放大的原理,使得集电极电流的变化与输入信号在幅度上成正比;3.集电极电流变化引起集电极电压变化,通过电容负载使输出电压变化;4.通过对负载进行选择可以实现不同放大效果,如电阻负载可以使电路具有较好的输出信号功率;电容负载可以实现相位整顿放大等。

四、实验步骤及结果分析1.首先按照实验电路连接图连接实验电路,电源电压选择为12V,电阻和电容的数值按照实验要求选择;2.使用数字万用表测量并记录各个器件正常工作电压,包括集电极电压、基极电压、发射极电压等;3.调节函数信号发生器的输出频率和幅度,通过双踪示波器观察输入电压、输出电压的变化规律,并记录相关数据;4.根据所测得的数据,计算并分析电压增益、输入阻抗和输出阻抗的数值,与理论计算的结果进行对比并给出分析结论。

五、实验结果分析通过实验测量得到的数据,我们可以计算得到单管共射极放大电路的电压增益、输入阻抗和输出阻抗。

其中电压增益可以通过输出电压幅值除以输入电压幅值得到,输入阻抗可以通过理想放大电路的计算公式得到,输出阻抗可以通过输出电压与输出电流的比值得到。

根据实验结果分析,可以得到单管共射极放大电路在一定范围内具有较高的电压增益和较低的输入阻抗,从而可以实现信号的放大和阻抗匹配功能。

同时,在选择合适的负载电阻和负载电容的情况下,还可以实现对输出信号的改变,如形成整流放大等特殊功能。

单管放大器总结 共射、共集、共基放大电路

单管放大器总结 共射、共集、共基放大电路

晶体管共射极单管放大器单管放大电路的三种基本结构单管放大电路有共发射极、共基极和共集电极三种解法(组态),他们的输入和输出变量不同,因而电路的性能也不太一样。

共发射极单管放大电路.共集电极单管放大电路.共基极单管放大电路图一为电阻分压式工作点稳定单管放大器实验电路图。

他的偏置电路采用Rb1组成的分压式电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。

在放大器的输入端加入输入信号Ui后,在放大器的输入端可得到一个与Ui相位相反,幅值被放大的输出信号U0,从而实现放大。

图一共射极单管放大器实验电路图当流过电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时,则他的静态工作点Ub可以以以下式估算Ub=Rb1*U/Rb1+Rb2 Ie=Ub-Ube/Re≈Ic Uce=Ucc-Ic(Rc+Re)放大倍数Av=-β(Rc∥Rc)/rbe+(1+β)Re输出电阻:R=Rb1∥Rb2∥[rbe+(1+β)Re]输入电阻;R0≈Rc放大器的测量与调试一般包括:放大器静态工作点的测量与调试。

消除干扰与自激振荡机放大器各项动态参数的测量与调试。

1.放大器静态工作点的测量与调试(1)放大器静态工作点的测量测量放大器静态工作点的条件:输入信号Vi=0即将输入端与地短接,选用量程合适的直流毫安表和直流电压表分别测出所需参数:Ic,Ub,Uc,Ue.(2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流Ic(或Uce)的调试与测量。

静态工作点对放大器的性能和输出波形都有很大影响。

工作点偏高会导致饱和失真如图(2)所示;反之则导致截止失真如图(3).图二图三改变电路参数Ucc,Rc,Rb(Rb1,Rb2)都会引起静态工作点的改变如图四所示:图四2.放大器的动态指标测试放大器的动态指标包括:电压放大倍数,输入电阻,输出电阻,最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数Av的测量调整放大器到合适的静态工作点,再加入输入电压Ui ,在输出电压不是真的情况下,用交流豪伏表测出Ui和Uo的有效值,则Av=Uo/Ui。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告一、实验目的。

本实验旨在通过搭建共射极单管放大电路,了解其基本工作原理,掌握其特性参数的测试方法,并通过实验验证理论知识。

二、实验原理。

共射极单管放大电路是一种常见的电子放大电路,由一个晶体管和几个无源元件组成。

在该电路中,晶体管的发射极接地,基极通过输入电容与输入信号相连,集电极与负载电阻相连,输出信号由负载电阻取出。

当输入信号加到基极时,晶体管的输出信号将由集电极取出,实现信号的放大。

三、实验器材。

1. 电源。

2. 信号发生器。

3. 示波器。

4. 电阻、电容等无源元件。

5. 直流电压表。

6. 直流电流表。

四、实验步骤。

1. 按照电路图连接好电路,并接通电源。

2. 调节电源电压,使得晶体管工作在正常工作区域。

3. 使用信号发生器输入不同频率的正弦信号,观察输出信号的波形变化。

4. 测量输入输出信号的幅度,并计算电压增益。

5. 测量输入输出信号的相位差。

6. 测量电路的输入、输出阻抗。

五、实验结果与分析。

通过实验,我们得到了不同频率下的输入输出信号波形,并测量了其幅度和相位差。

根据测量数据,我们计算得到了电压增益和输入输出阻抗。

通过对比实验数据和理论值,我们发现实验结果与理论值基本吻合,验证了共射极单管放大电路的基本工作原理。

六、实验总结。

通过本次实验,我们深入了解了共射极单管放大电路的工作原理和特性参数的测试方法,掌握了实际搭建和测试的技能。

通过实验验证了理论知识,加深了对电子放大电路的理解,为今后的学习和研究打下了基础。

七、实验注意事项。

1. 在搭建电路时,注意连接的准确性,避免短路或接反。

2. 调节电源电压时,小心操作,避免电压过高损坏元件。

3. 在测量输入输出信号时,注意示波器的设置和测量方法,确保测量准确。

八、参考文献。

1. 《电子技术基础》。

2. 《电子电路》。

3. 《电子电路设计手册》。

以上就是本次共射极单管放大电路实验的报告内容,希望能对大家的学习和实践有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管放大电路实验报告
作者: ET6V
一、实验原理图
二、实验过程以及理论值推算
(1)测量静态工作点
调节Rp,得到V CE=5.5V
则I E≈I C==2.54mA V E=I E R E=1.42V
V B=V E+V BE=2.12V V c=V E+V CE=1.42V
理论值
V B(V)V C(V)V E(V)V CE(v)
2.12 6.92 1.42 5.50 (2)测电压放大倍数
β=35
=678.74Ω
R=∞时,=2KΩ Av==-104
R=2KΩ时,=1KΩ Av==-52
Vo(V)
1.04-104
0.52-52
(3)观察静态工作点变化对输出波形的影响
当V CE过大或过小时会出现截止失真和饱和失真。

三.仿真
(1)静态工作点的仿真值
仿真值
V B(v)V C(v)V E(v)V CE(v) 2.162 6.986 1.448 5.537
(2)测电压放大倍数的仿真值
Vo(V)
1.641-164
0.838-83
V O的波形
带有负载时,V i与
其中ChannedA 是V o, ChannedB 是V i
空载时,
V i与V O的波形
其中ChannedA 是
V
o, ChannedB 是
V i
(3)观察静态工作点变化对输出波形的影响
饱和失真
减小 3.048V 4.104V 2.286V 1.785V
截止失真
增大 1.10V10.513V0.429V10.084V
四.实验时的实验数据
(1)实际使用的电路图
(2)测量静态工作点
实际测量值
V B(V)V C(V)V E(V)V CE(v)
2.12 6.99 1.51 5.50
(3)测电压放大倍数的值
Vo(V)
1.1-110
0.5-50
(4)观察静态工作点变化对输出波形的影响
减小 3.24V 4.00V 2.19V 1.72V R P增大 1.19V10.08V0.59V9.53V
当R P减小是,观察到饱和失真图形
当R P增大时,观察到截止失真图形
(5)观察V i与V o
当有负载时:
横轴扫描:0.5ms/格,2格/T
V i:10mv/格,峰峰值共3格
V o:0.2v/格,峰峰值共6.5格
Vi与VO之间有π个相位差
当空载时:
横轴扫描:0.5ms/格,2格/T
V i:10mv/格,峰峰值共3格
V o:0.5v/格,峰峰值共5.8格
Vi与VO之间有π个相位差
五.对比分析
(1)测量静态工作点
测量值仿真值理论值
2.19 2.162 2.12
6.99 6.986 6.92
1.51 1.448 1.42
5.50 5.537 5.50
实验值与仿真值.理论值很接近。

(2)测算电压放大倍数
测量值仿真值理论值
-110-164-104
-50-83-52
实验值和理论值很接近但和仿真值相差很远,可能是在Mutilism中三极管β值修改错误或放大倍数与三极管其他参数有关,而在Mutilism中未能修改导致。

(3)观察静态工作点变化对输出波形的影响。

实际操作中和仿真中当V CE等静态工作点设置不当时,都会产生失真现象,V CE较小时出现饱和失真,VCE较大时出现截止失真。

六.收获与体会
1 Multisim仿真结果在一定程度上能够预测实际的实验结果,运用软件仿真可以验证我们实验的正确性
2 三极管只有在静态工作点设置合适时,才能处于放大条件,静态工作点设置不合适会导致输出波形失真。

相关文档
最新文档