油气锅炉低温SCR脱硝方案
低温脱硝方案

低温脱硝方案低温脱硝是一种常用的脱硝技术,它能够有效地降低烟气中的氮氧化物排放。
本文将介绍一种低温脱硝方案,并探讨其原理和应用前景。
1.方案介绍低温脱硝方案采用SCR(Selective Catalytic Reduction,选择性催化还原)技术来降低烟气中的氮氧化物排放。
该方案主要由催化剂、还原剂和催化反应器组成。
催化剂通常采用钒钛催化剂,还原剂一般选择氨水或尿素溶液。
催化反应器是实施催化反应的核心设备。
2.原理解析低温脱硝方案的主要原理是利用催化剂在适宜的温度下催化还原剂与氮氧化物发生反应。
首先,还原剂(如氨水)在催化剂的作用下与氮氧化物发生氢氧化反应,生成氮和水。
其中,催化剂起到了催化作用,提高了反应速率。
催化反应器的设计和运行条件的选择对反应效果具有重要影响。
3.应用前景低温脱硝方案在大气污染治理中具有广阔的应用前景。
它可以有效地降低烟气中的氮氧化物排放,减少对大气环境的污染。
此外,该方案具有技术成熟、投资成本低、操作简便等优点,适用于各类工业燃烧装置。
4.方案改进为了进一步提高低温脱硝方案的效果,可以对方案进行一些改进。
首先,可以优化催化剂的选择和制备方法,提高催化剂的活性和稳定性。
其次,可以改进催化反应器的结构和运行条件,增强催化剂与反应物之间的接触程度,提高反应效率。
此外,还可以研究更加环保的还原剂,减少对环境的影响。
5.总结低温脱硝方案是一种有效的脱硝技术,可以降低烟气中的氮氧化物排放。
其原理是利用催化剂在低温下催化还原剂与氮氧化物反应,生成无害物质。
该方案具有广阔的应用前景,可以在大气污染治理中发挥重要作用。
为了进一步提高方案效果,可以对催化剂和反应器进行改进和优化。
通过不断的技术创新和改进,低温脱硝方案将更加高效地应对烟气中氮氧化物排放问题。
scr脱硝技术节能技术措施

scr脱硝技术节能技术措施SCR脱硝技术是一种用于燃煤电厂和工业锅炉等燃烧设备中降低氮氧化物排放的先进技术。
它通过在烟气中注入氨水和催化剂,将氮氧化物转化为氮气和水蒸气,从而达到脱硝的目的。
SCR脱硝技术不仅能有效降低氮氧化物的排放浓度,还具有节能的特点。
SCR脱硝技术的节能技术措施主要包括以下几个方面:1. 充分利用余热:在SCR脱硝过程中,注入的氨水需要提前加热到一定温度才能发挥催化作用。
而烟气中含有大量的余热,通过合理设计脱硝装置,可以利用余热对氨水进行加热,减少外部能源的消耗,从而达到节能的目的。
2. 优化催化剂设计:SCR催化剂是SCR脱硝技术的核心部分,催化剂的性能和设计对脱硝效率和能耗有直接影响。
通过优化催化剂的成分、结构和形状等参数,可以提高催化剂的活性和稳定性,降低脱硝过程中的能耗。
3. 控制氨气的使用量:在SCR脱硝过程中,氨水中的氨气是催化剂发挥作用的关键。
合理控制氨气的使用量,可以减少氨气的浪费和排放,降低能源消耗。
4. 优化脱硝装置的运行参数:SCR脱硝装置的运行参数的优化也是节能的重要措施。
通过合理调整烟气温度、氨水的注入量和催化剂的分布等参数,可以提高脱硝效率,降低能耗。
5. 维护和清洗催化剂:催化剂在使用一段时间后会受到积灰和硫化物等污染物的影响,降低催化剂的活性。
定期对催化剂进行维护和清洗,可以恢复催化剂的活性,提高脱硝效率,减少能源的消耗。
6. 系统运行优化:SCR脱硝技术需要配合其他设备一起运行,如除尘设备、脱硫设备等。
通过对整体系统的运行进行优化,可以降低系统的能耗,提高整体的节能效果。
SCR脱硝技术作为一种先进的脱硝技术,具有较高的脱硝效率和较低的能耗。
通过合理的节能技术措施,可以进一步提高脱硝技术的节能效果,减少能源消耗,降低对环境的影响。
在未来的发展中,我们还应该不断探索和研究,进一步提高SCR脱硝技术的节能效果,为建设清洁、低碳的能源体系做出贡献。
SCR锅炉烟气脱硝

附件二、锅炉烟气SCR脱硝一、SCR工艺原理利用选择性催化还原(SCR)技术将烟气中的氮氧化物脱除的方法是当前世界上脱氮工艺的主流。
选择性催化还原法是利用氨(NH3)对NO X的还原功能,使用氨气(NH3)作为还原剂,将一定浓度的氨气通过氨注入装置(AIG)喷入温度为280℃-420℃的烟气中,在催化剂作用下,氨气(NH3)将烟气中的NO和NO2还原成无公害的氮气(N2)和水(H2O),“选择性”的意思是指氨有选择的进行还原反应,在这里只选择NO X还原。
其化学反应式如下:4NO+4NH3+O2→4N2+6H2O2NO2+4NH3+O2→3N2+6H2O6NO2+8NH3→7N2+12H2O副反应主要有:2SO2+O2→2SO3催化剂是整个SCR系统的核心和关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NO X 脱除率、NH3的逃逸率和催化剂体积。
脱硝反应是在反应器内进行的,反应器布置在省煤器和空气预热器之间。
反应器内装有催化剂层,进口烟道内装有氨注入装置和导流板,为防止催化剂被烟尘堵塞,每层催化剂上方布置了吹灰器。
二、脱硝性能要求及工艺参数1、性能要求采用SCR脱硝技术时,脱硝工程应达到下列性能指标:NO X排放浓度控制到200mg/Nm3以下,总体脱硝效率约80%;氨逃逸浓度不大于3uL/L;SO2/SO3转化率小于1.0%;2、工艺参数脱硝工艺的设计参数见表液氨缓冲槽SCR工艺流程图3、高灰型SCR脱硝系统采用高灰型SCR工艺时,250~390℃的烟气自锅炉省煤器出口水平烟道引入,进入SCR脱硝装置入口上升烟道,经氨喷射系统喷入烟道的NH3与烟气混合后,在催化剂作用下,将NO X还原成N2和H2O,脱硝后的干净烟气离开SCR装置,进入空气预热器,回到锅炉尾部烟道。
高灰型SCR脱硝系统包括烟道接口、烟道、挡板、膨胀节、氨气制备与供应、氨喷射器、导流与整流、反应器壳体、催化剂、吹灰器、稀释风机、在线分析仪表及控制系统等部件,归纳起来可分为催化剂系统、反应器系统、氨供应与喷射系统及电气热控系统等几个部分。
SCR脱硝系统低负荷运行技术改造方案探讨

SCR脱硝系统低负荷运行技术改造方案探讨一、方案概述SCR脱硝系统是我国目前主流的燃煤电厂脱硝技术,但在低负荷运行时,该系统存在NOx还原效率低、耗电量高等问题。
为此,本文提出了一种改善SCR脱硝系统低负荷运行问题的技术改造方案,包括优化进气量控制、引入有机废气再生技术和提高氨水雾化效率等措施,旨在提高脱硝效率、降低耗电量和维护系统稳定运行。
二、方案内容1. 优化进气量控制对于低负荷运行的SCR脱硝系统,传统工艺往往会采用氨水浸润率等方式将脱硝效率提高,但这会带来过量的NH3滞留在系统中,从而导致NOx还原效率低。
因此,本方案提出了为了解决这一问题,针对低负荷状态下的脱硝效率,需要通过优化控制进汽量的方式来提高系统性能。
在具体实现中,可以通过增加NH3和NOx的混合程度、加强控制方法、提高分布式控制水平等方式实现。
2. 引入有机废气再生技术在系统运行中,由于反应物质之间的相互影响,生成的废气中含有大量的有机污染物,而这些污染物对系统运行产生了很大的负面影响。
为此,本方案提出了在SCR脱硝系统中引入有机废气再生技术,将这些有机废气回收利用,以达到降低能耗、减少操作量、提高设备效率的目的。
在具体实现中,可以通过将有机废气与空气混合进行氧化处理等方式实现。
3. 提高氨水雾化效率在SCR脱硝系统中,氨水雾化效率是脱硝效率的重要指标之一,而在低负荷运行时,氨水雾化效率常常不足。
为解决这一问题,本方案提出了通过调整氨水喷嘴位置、控制氨水质量等方式来提高氨水雾化效率。
其中,调整喷嘴位置,可以以降低氨水雾状粒径,提高反应速度,进而提高反应效率。
而控制氨水质量则可以通过加强对氨水成分的分析、采用先进的控制系统等方式实现。
三、方案优势1. 增强了SCR脱硝系统的脱硝效率:通过优化进气控制、引入有机废气再生技术、提高氨水雾化效率等方式,能够使脱硝效率得到提高,满足国内和国际相关的排放标准。
2. 降低了SCR脱硝系统的耗电量:本方案提出了优化进汽量控制、引入有机废气再生技术等方式,能够降低系统的耗电量,并达到节能的目的。
SCR法烟气脱硝的设备及工艺流程_[全文]
![SCR法烟气脱硝的设备及工艺流程_[全文]](https://img.taocdn.com/s3/m/5e822b1091c69ec3d5bbfd0a79563c1ec5dad704.png)
SCR法烟气脱硝的设备及工艺流程摘要:煤、石油、天然气等化石燃料的燃烧会产生二氧化碳(CO2)、二氧化硫(SO2)、氮氧化物(NOx)和颗粒物等污染物,其中燃煤燃烧产生的污染物最为严重,是我国目前大气污染物的主要来源。
目前,我国的发电机组绝大多数为燃煤机组,而以燃煤为主的电力生产所造成的环境污染是制约电力工业发展的一个重要因素。
其中氮氧化物(NOx)是继粉尘和硫氧化物(SOx)之后燃煤电站环保治理的重点,因此根据相关环境法律法规的要求,需要在燃煤锅炉尾部加装脱硝装置。
烟气脱硝应用较多的是选择性催化还原法(SCR)、选择性非催化还原法(SNCR)及SNCR/SCR联合技术,由于高的还原率及技术的广泛使用,选择性催化还原(SCR)已成为目前国内外电站烟气脱硝的主流技术。
本文分析了选择性催化还原(SCR)技术的脱硝原理、工艺流程、设备布置和系统组成。
关键词:氮氧化物,SCR,工艺流程自从20世纪80年代人们开始对燃煤电厂NOx排放控制方法的研究工作以来,目前已经出现了许多烟气脱硝技术,如:选择性催化还原法(SCR)、选择性非催化还原法(SNCR)、液体吸收法、微生物吸收法、活性炭吸附法、电子束法(EBA)、脉冲电晕等离子体法(PPCP)、液膜法、微波法等等,其中应用较多、已实现商业化的是选择性催化还原法(SCR)。
SCR烟气脱硝系统采用氨气(NH3)作为还原介质,国外较多使用无水液氨。
基本原理是把符合要求的氨气喷入到烟道中,与原烟气充分混合后进入反应塔,在催化剂的作用下,并在有氧气存在的条件下,选择性的与烟气中的NOx(主要是NO、NO2)发生化学反应,生成无害的氮气(N2)和水(H2O)。
SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统和旁路系统(省煤器旁路和SCR旁路)等组成。
图1-1为SCR法烟气脱硝的工艺流程示意图首先,液氨由槽车运送到液氨储罐贮藏,无水液氨的储存压力取决于储罐的温度(例如20℃时压力为lMPa)。
SCR烟气脱硝技术工艺流程

SCR®气脱硝技术工艺流程
SCF反应器通常布置在燃煤和燃油电厂的固态排渣或液态排渣锅炉的烟气下游,位于锅炉出口和空气预热器之间,此时气体温度为300〜4000C,是脱硝反应的最佳温度区间,一般利用氨作为反应剂,烟气在进入脱硝反应器之前,首先将NH3和空气的混合气体(氨气5%)导入,氨气由许多精密喷嘴均匀分配在烟气通道的横断面上,烟气由上向下流动,催化剂上表面保持一定的温度,NOx在催化剂表面和氨气反应生成N2和H2O,而作为空气组成部分的N2和H2O对大气不会产生污染。
经过脱硝设备处理后的烟气再经过锅炉尾部空气预热器进入布置在烟气下游的电除尘器或脱硫系统。
删至5机
G —© sn
—O 知气温合H
■
猶气出口
<w «
:・•*
~fffSo -
1
0|丿®
空气阿器
ms nn 累
厲。
SCR脱硝原理及工艺
操作控制
01
控制温度:保证催化剂活性,防止催化剂中毒
02
控制氨气浓度:保证氨气与NOx的充分反应,防止氨气泄漏
03
控制烟气流量:保证烟气与催化剂的充分接触,提高脱硝效率
04
控制催化剂寿命:定期更换催化剂,保证脱硝效果
3
SCR脱硝应用
燃煤电厂
SCR脱硝技术在燃煤电厂中的应用 01 广泛
燃煤电厂的烟气中含有大量的NOx, 02 需要采用SCR脱硝技术进行治理
铁路机车排放:SCR技术应用于铁路机车,减少铁 路运输对环境的影响
谢谢
反应条件:反应温度在 300-400℃,反应压力在 1-3bar,空速在10002000h-1。
催化剂作用
01
02
03
04
降低反应活化能, 提高反应速率
选择性催化NOx 还原为N2和H2O
提高脱硝效率, 降低能耗
减少副产物生成, 降低环境污染
反应条件
反应温度: 300-400℃
反应压力: 1-3MPa
反应时间:0
催化剂:钒钛 系催化剂
烟气成分: NOx、O2、 N2、CO2、 H2O等
2
SCR脱硝工艺
工艺流程
01
烟气预处理:去除烟气中的灰 尘、水分等杂质
02
氨气制备:将氨气与空气混合, 制备氨气溶液
03
氨气喷射:将氨气溶液喷射 到烟气中
05
烟气排放:处理后的烟气排放 到大气中
04
催化剂作用:氨气与烟气中的 氮氧化物在催化剂作用下发生 反应,生成无害的氮气和水
SCR脱硝技术可以有效降低燃煤电 03 厂的NOx排放量
燃煤电厂采用SCR脱硝技术可以提 04 高环保性能,降低环境污染
低温脱硝方案1
低温脱硝方案1低温脱硝是一种常用的治理烟气中氮氧化物的方法,广泛应用于电力、化工等行业。
下面我将介绍一种低温脱硝方案,希望能对您的工作有所帮助。
一、方案概述该低温脱硝方案基于SCR技术(Selective Catalytic Reduction,选择性催化还原),通过在氮氧化物排放点设置催化剂,利用还原剂(如氨水、尿素溶液)在催化剂表面催化反应,将氮氧化物转化为无害的氮气和水。
二、设备配置1. 脱硝反应器:选用优质的不锈钢材料制造,内部设置合适的催化剂层,保证反应器的稳定性和脱硝效果。
2. 氨水/尿素溶液喷洒系统:在脱硝反应器进口处设置喷洒系统,喷洒合适浓度的氨水/尿素溶液,与氮氧化物进行反应。
3. 反应器加热系统:由电加热器、换热器等组成,控制脱硝反应器的温度,使脱硝反应在适宜的温度范围内进行。
4. 控制系统:包括温度、压力、进气量等参数的实时监测和调控,保证脱硝系统的正常运行。
三、工作原理在燃烧过程中,形成的氮氧化物进入脱硝反应器,与喷洒的氨水/尿素溶液在催化剂层表面发生反应。
该反应由以下几个步骤组成:1. 氧化反应:氮氧化物在催化剂层表面与氧气发生反应,生成氮二氧化物和水。
2. 还原反应:催化剂促进氨水/尿素溶液与氮二氧化物发生还原反应,生成氮气和水。
3. 逆反应:催化剂层表面的逆反应会导致部分氮氧化物再生成,因此需要控制氨水/尿素溶液的投入量来平衡反应。
四、优势与适用性1. 高效降低氮氧化物排放:低温脱硝方案可以有效将烟气中的氮氧化物转化为无害物质,符合环保要求。
2. 适用性广泛:该方案适用于不同类型的燃烧设备和工业领域,包括电力、化工、钢铁等行业。
3. 技术成熟可靠:SCR技术已经被广泛应用并不断优化,具备良好的工程实践经验和技术支持。
4. 能耗较低:相比于其他脱硝技术,低温脱硝方案能耗较低,有利于提高燃烧设备的能效。
五、注意事项1. 催化剂选择:根据具体的烟气成分和温度,选择合适的催化剂,并定期进行更换和清洗,以保持脱硝反应的效果。
SDS干法脱硫+SCR低温脱硝技术方案
4.2.1
钠基干法脱硫是利用脱硫剂超细粉与烟气充分混合、接触,在催化剂和促进剂的作用下,与烟气中SO2快速反应。而且,在反应器、烟道及布袋除尘器内,脱硫剂超细粉一直与烟气中的SO2发生反应。反应快速、充分,在2秒内即可生产副产物Na2SO4。通过布袋回收副产物,作为化工产品利用。
这种反应脱硫效率高,按化学反应当量 1:1 时,脱硫效率大于 98.1%,而且是一次性喷入脱硫剂,不需要循环。
(2)脱硫选用SDS干法脱硫工艺。SDS干法脱硫温度降最低,能很好的保证烟气脱硝所需的温度区间及净烟气的排烟温度,从而保证了脱硝效率及烟囱长期处于良好的热备状态。
(3)在脱硫装置后加装布袋除尘器。为满足系统的粉尘排放要求,同时保证催化剂的寿命和脱硝效果,需要在脱硫系统后加装布袋除尘器,以保证烟囱测点处的烟气含尘浓度在10mg/Nm3以下。
在锅炉的烟气中,NO2一般约占总的NOX浓度的5%,NO2参与的反应如下:
2NO2+4NH3+O2→3N2+6H2O
6NO2+8NH3→7N2+12H2O
上面两个反应表明还原NO2比还原NO需要更多的氨。பைடு நூலகம்
在绝大多数锅炉烟气中,NO2仅占NOX总量的一小部分,因此NO2的影响并不显著。
SCR系统NOX脱除效率通常很高,喷入到烟气中的氨几乎完全和NOX反应。有一小部分氨不反应而是作为氨逃逸离开了反应器。一般来说,对于新的催化剂,氨逃逸量很低。但是,随着催化剂失活或者表面被飞灰覆盖或堵塞,氨逃逸量就会增加,为了维持需要的NOX脱除率,就必须增加反应器中NH3/NOX摩尔比。当不能保证预先设定的脱硝效率和(或)氨逃逸量的性能标准时,就必须在反应器内添加或更换新的催化剂以恢复催化剂的活性和反应器性能。从新催化剂开始使用到被更换这段时间称为催化剂寿命。
SCR烟气脱硝技术在油气混烧锅炉上的应用
SCR烟气脱硝技术在油气混烧锅炉上的应用摘要:以油气混烧锅炉为例,从锅炉运行现状、脱硝技术路线、脱硝改造方案等方面对SCR脱硝技术进行了简要介绍,探讨了SCR烟气脱硝技术在实际应用中应注意的问题及取得的环保效益,为今后类似工程提供参考。
关键词:氮氧化合物;脱硝催化剂1锅炉运行状态炼化企业蒸汽系统特点是汽源多,要求稳定可靠,以自备电站作为最终的供汽保障。
某炼化一体化企业自备电站设计规模为4台锅炉、4台机器(4×420t/h+4×50MW)。
其工作原理是以蒸汽为动力测定和蒸汽供应,辅以发电,运行方式为3用1备。
由于全厂蒸汽负荷不高,外部负荷多变,三台锅炉整体负荷不高,平均负荷在80%左右,炉温在800℃-1100℃之间波动。
自备电站1、2号锅炉均为油气混烧锅炉,燃料为乙烯装置生产的焦油和全厂燃气(气态烃和天然气的混合物)。
锅炉运行时烟气最大NOx排放浓度达到295.50mg/m3,超过排放限值100mg/m3。
2脱硝工艺选择燃烧产生的氮氧化物主要来自两个方面:一是燃烧时从空气中带入的氮称为“热NOx”;第二,它来自燃料中固有的氮化合物,称为“燃料NOx”。
根据氮氧化物的形成特点,可分为燃烧前、燃烧过程中和燃烧后三种类型。
燃烧后脱硝主要是指烟气脱硝技术,一是还原技术,二是氧化技术。
在满足企业清洁生产的条件下,结合锅炉实际运行工况,经过比选,采用选择性催化还原(SCR)脱硝技术。
该技术具有技术成熟、运行可靠、适应性强、应用广泛的特点,其中催化剂生产和关键设备制造已实现国产化。
2.3脱硝影响因素分析(1)温度对催化反应过程的影响。
SCR脱硝工艺有一个催化反应的最佳温度,直接影响反应的程度。
随着温度的升高,氮氧化物还原反应速度加快,NOx脱除效率上升;但随着温度的升高,NH3开始发生氧化反应生成NOx,这降低了氮氧化物的去除效率。
如果反应温度过低,催化剂的活性会降低,脱硝效率也会降低,也会增加催化剂永久失效的风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石化烯烃装置锅炉 烟气处理低温SCR脱硝项目
技术方案 中石化宁波设计院 2015年6月10日 1、项目概况 3台油气锅炉烟气脱硝装置,根据目前脱硝技术的发展现状及我公司成熟的技术、设计和实际工程经验,针对本项目的具体情况,采用低温SCR脱硝工艺,SCR反应器布置在空气预热器之前。考虑到厂内具体情况、还原剂的储运方便、安全,拟采用20%左右的氨水为还原剂。本方案为初步技术方案,供业主参考。
2、烟气基本参数 脱硝进口烟气参数 单台(共2台) 烟气量 Nm³/h 200000
240000
入口温度 ℃ 180
180
二氧化硫 mg/Nm³ 50
50
氧含量 %
氮氧化物 mg/Nm³ 50
50
烟尘浓度 mg/Nm³ 小于30 小于30
3、烟气排放标准及设计要求 排放标准执行最新超低排放; 二氧化硫 50mg/Nm3; 氮氧化物 50mg/Nm3; 粉尘 30mg/Nm3; (1) 本项目采用低温SCR工艺,脱硝工艺要适用于工程己确定的烟气条件,并考虑烟气变化的可能性; (2) 使用20%氨水作为脱硝还原剂; (3) 烟气脱硝装置的控制系统可进入主机控制系统,也使用PLC系统单独控制; (4) 烟气脱硝效率≥88%; (5) NH3逃逸量控制在5ppm以下; (6) 脱硝装置可用率不小于98%,服务寿命为20年; (7) 采用成熟的SCR工艺技术,设备运行可靠; 2 / 16
(8) 根据工程的实际情况尽量减少脱硝装置的建设投资; (9) 脱硝工艺脱硝还原剂、水和能源等消耗少,尽量减少运行费用; (10) 烟气脱硝不能影响原系统出力及正常运行,同时,脱硝系统应具备单独运行、单独检修的要求。
4、烟气处理流程 5、SCR脱硝工艺 SCR工艺系统主要包括烟道系统、SCR反应器、氨喷射系统、氨储存制备供应系统、声波吹灰系统等,下面将分别进行描述。 5.1 SCR脱硝系统 5.1.1 SCR脱硝原理 SCR的全称为选择性催化还原法(Selective Catalytic Reducation)。催化还原法是用氨或尿素之类的还原剂,在一定的温度下通过催化剂的作用,还原废气中的NOx(NO、NO2),将NOx转化非污染元素分子氮(N2),NOx与氨气的反应如下: 4NO + 4NH3 + O2 → 4N2 + 6H2O 6NO2+8NH3→7N2+12H2O SCR系统包括催化剂反应器、还原剂制备系统、氨喷射系统及相关的测试控制系统。SCR工艺的核心装置是催化剂和反应器,有卧式和立式两种布置方式,一般采用立式较多。 5.1.2反应器本体 SCR反应器本体依烟气流向可分为喷氨段、混合段、均流段、反应段。SCR脱硝效率与以下因素有关: 催化剂质量; 反应温度; 停留时间; 氨氮比; 氨气与烟气混合均匀程序; 烟气在SCR反应器内分布均匀程度。 为达到较高的脱硝效率,设计每个功能段时必须考虑以上因素,每个环节均优化设 3 / 16
计。在本项目中,设计进入SCR系统的烟气温度为180℃。 5.1.3喷氨格栅或氨水专用喷枪 喷氨段内安装有喷氨格栅,喷氨格栅上安装有喷氨专用喷嘴,喷氨格栅不仅能将氨气均匀喷入烟气中,而且还有良好的初步混合效果。只有喷氨格栅喷出的氨气均匀,后面的混合器的混合效果才能好。 5.1.4氨气/空气混合器 为使氨气与烟气混合均匀,在喷氨格栅后安装有混合器,混合器采用多层纵向折流板形式,通过折流板的扰流,使烟气与氨气充分混合均匀。混合器依据CFD数值模拟计算结果进行设计,保证氨气混合效果。 5.1.5整流器 混合好氨气的烟气在反应器内的分布均匀程序不仅影响脱硝效率,也影响到氨的逃逸浓度。烟气流速高区域烟气停留时间短,脱硝效率低、部分氨气无法反应而逃逸,虽然烟气流速低区域脱硝效率高,但在烟气分布不均匀时,则总体脱硝效率则低、氨易逃逸。 立式SCR反应器上方烟气流向需要转90°角度,均流器前烟道不仅短,而且也有多个影响气流的局部构件。安装均流器空间小,为使进入催化剂层的烟气分布均匀,均流器采用导流板加均流格栅板形式,导流板和格栅板依据CFD数值模拟计算结果进行设计。保证进入催化剂层的烟气流速均匀程度σ<0.2。 5.1.6催化剂 目前常用的催化剂形式主要为蜂窝式和板式。 (1)蜂窝式是目前市场占有份额最高的催化剂形式,其特点是单位体积的催化剂活性高,达到相同脱硝效率所用的催化剂体积较小,适合灰分低于30 g/m3,灰粘性较小的烟气环境。 (2)板式催化剂的市场占有份额仅次于蜂窝式催化剂。板式催化剂以金属板网为骨架,比表面积较小。此种催化剂的特点是:具有较强的抗腐蚀和防堵塞特性,适合于含灰量高及灰粘性较强的烟气环境。缺点是单位体积的催化剂活性低、相对荷载高、体积大,使用的钢结构多。 考虑到本项目的废气气量小而且其中少量颗粒物,气体堵塞催化剂孔道和冲刷磨损催化剂作用较小,所以本工艺采用的催化剂形式是蜂窝状整体催化剂。催化剂尺寸:150×150×800 mm。 4 / 16
本工程共配置一台SCR反应器,每台SCR反应器设计三层催化剂层(2+1层),其中上层为预留层。烟气竖直向下流经反应器,反应器入口设置气流均布装置,反应器入口及出口处均设置导流板,对于反应器内部易于磨损的部位设计必要的防磨措施。反应器内部各种加强板及支架均设计成不易积灰的型式,同时将考虑热膨胀的补偿措施。反应器设置有足够大小和数量的人孔门。反应器配置了可拆卸的催化剂测试元件。SCR 反应器能承受运行温度低于300℃长期运行的考验。 SCR脱硝催化剂主要性能参数见下表:
项目 单位 单台20wNm3/h(2台) 20wNm3/h 数据 数据 性能保证 脱硝效率 % >88 >88
化学寿命期内SO2氧化率 % <1 <1 化学寿命期内NH3逃逸率 ppm ≤5 ≤5
允许运行温度内化学寿命 h ≥24000 ≥24000
设计运行温度 ℃ ≥180 ≥180
偏差范围 催化剂允许最大温升速度 ℃/min 5 5
催化剂允许最大温降速度 ℃/min 5 5
SCR入口要求烟气速度偏差 % 10 10
SCR入口要求烟气温度偏差 ℃ 5 5
SCR入口要求烟气氨氮混合偏差 % 10 10
反应器及模块设计参数 反应器数量 个 1 1
每反应器初装催化剂层数 层 2 2
每反应器备用催化剂层数 层 1 1
催化剂用量 m3 46.66 58.32
反应器尺寸 mm×mm×mm 5900×6100×9000 7500×6200×9000
还原剂用量 5 / 16
每小时20%氨水用量 kg/h 180
210
5天20%氨水体积 m3 23.6
28
5.1.7催化剂再生系统 由于烟气中含有一定量的SO2。由于采用低温催化剂的脱硝温度较低,仅为180℃左右,因此脱硝过程中会有生成硫酸氢铵的风险,硫酸氢铵覆盖在催化剂表面,会导致催化剂的失活。目前催化剂的设计中已考虑到抑制SO2转化为SO3的催化活性,能防止生成硫酸氢铵的生成。且尾气中的SO2含量较低为50mg/Nm3,但是硫酸氢氨是一个富集的过程,因此需要考虑生成硫酸氢铵的问题。因此根据低温脱硝的特点,增加设计催化剂活性恢复系统。 催化剂活性恢复采用加热分解硫酸氢铵的方式。采用一台热风炉,加热空气至350-400℃,送入到脱硝反应器中。从脱硝反应器出来后,热空气的余热用来加热进入热风炉的新风,达到节能的作用,最后,加热气体通过烟囱排入大气。 在催化剂活性恢复过程中,首先关闭脱硝反应器入口挡板门和出口挡板门,锅炉烟气从旁路进入到烟囱排放。此时,开启脱硝反应器入口处的活性恢复热空气阀门和出口处的热空气排放阀门。 正式启动加热风机,风机风量设计为20000Nm3/h,从风机出来的风首先经过气气换热器,升温至约200℃,然后进入热风炉,热风炉燃料采用天然气,经天然气燃烧加热,使热风温度上升至350℃,进入到脱硝反应器中。脱硝反应器中的催化剂经热空气加热,逐渐温度也上升至350℃,附着在催化剂表面的硫酸氢铵逐渐分解,分解后的H2SO4、NH3跟随热空气排出脱硝反应器,进入气气换热器,加热新的空气,温度降至约100℃,然后再接入脱硝反应器后的烟道,从烟囱排入大气。 根据目前实验室数据,催化剂活性恢复工艺时间先设置为12小时,即每次启动运行12小时,停止恢复活性操作。此后重新开始正常的脱硝流程。暂定1年用一次,恢复时间可根据现场实际运行情况经检测后进行调整。 5.1.8还原剂溶液储存和输送系统 氨水储存区采用室外布置。氨水的供应由槽车运送,利用卸氨泵将氨水由槽车输入氨水储罐内,然后由氨水输送泵将其输送至氨水蒸发器内蒸发为氨气,经氨气缓冲罐送达脱硝系统。氨气系统安全阀等处排放的废氨气则排入氨气稀释罐中,经水的吸收排入废水池,再经由废水泵送至厂区废水处理中心。