操作系统课程设计报告——读者写者问题
操作系统课程设计报告——读者写者问题

操作系统课程设计课题:读者写者问题姓名:赫前进班级:1020552学号102055211指导教师:叶瑶提交时间:2012/12/30(一)实验目的1.进一步理解“临界资源”的概念;2.把握在多个进程并发执行过程中对临界资源访问时的必要约束条件;3.理解操作系统原理中“互斥”和“同步”的涵义。
(二)实验内容利用程序设计语言编程,模拟并发执行进程的同步与互斥(要求:进程数目不少于3 个)。
(三)、程序分析读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)和一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:(1)任意多个读进程可以同时读这个文件;(2)一次只有一个写进程可以往文件中写;(3)如果一个写进程正在进行操作,禁止任何读进程度文件。
实验要求用信号量来实现读者写者问题的调度算法。
实验提供了signal类,该类通过P( )、V( )两个方法实现了P、V原语的功能。
实验的任务是修改Creat_Writer()添加写者进程,Creat_Reader()创建读者进程。
Reader_goon()读者进程运行函数。
读优先:要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
读者优先的附加限制:如果一个读者申请进行读操作时已有另一读者正在进行读操作,则该读者可直接开始读操作。
写优先:一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。
在Windows 7 环境下,创建一个控制台进程,此进程包含n 个线程。
用这n 个线程来表示n 个读者或写者。
每个线程按相应测试数据文件(格式见下)的要求进行读写操作。
2011211320周俊霞-读者写者问题实验报告(word文档良心出品)

操作系统试验--读者-写者问题周俊霞20112113202011211307班进程同步一.实习要求:本课程实验内容引自《Windows 内核实验教程》(陈向群、林斌等编著,机械工业出版社2002.9)。
在Windows 环境下,创建一个包含n 个线程的控制进程。
用这n 个线程来表示n个读者或写者。
每个线程按相应测试数据文件的要求,进行读写操作。
请用信号量机制分别实现读者优先和写者优先的读者-写者问题。
1.读者-写者问题的读写操作限制:1)写-写互斥;2)读-写互斥;3)读-读允许;2.读者优先的附加限制:如果一个读者申请进行读操作时已有另一读者正在进行读操作,则该读者可直接开始读操作。
写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。
运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确信所有处理都遵守相应的读写操作限制。
二.测试数据文件格式测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写操作的开始时间和持续时间。
每行测试数据包括四个字段,各字段间用空格分隔。
第一字段为一个正整数,表示线程序号。
第一字段表示相应线程角色,R 表示读者是,W 表示写者。
第二字段为一个正数,表示读写操作的开始时间。
线程创建后,延时相应时间(单位为秒)后发出对共享资源的读写申请。
第三字段为一个正数,表示读写操作的持续时间。
当线程读写申请成功后,开始对共享资源的读写操作,该操作持续相应时间后结束,并释放共享资源。
下面是一个测试数据文件的例子:1 R 3 52 W 4 53 R 5 24 R 6 55 W 5.1 3三、与实验相关的API 介绍在本实验中可能涉及的API 有:线程控制:CreateThread 完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函数;它的返回值为所创建线程的句柄。
操作系统——读者-写者问题的解决方法

操作系统——读者-写者问题的解决⽅法问题描述不允许Write进程和Read进程或其他Write进程同时访问⽂件,Read进程可以和其他Read进程同时访问。
分为三种类型。
读者优先要求:1.多个读者可以同时访问⽂件2.同⼀时间只允许⼀个写者访问⽂件3.读者和写者进程互斥解决⽅法:⽤⼀个readcounter记录是第⼏个读者在读,如果是第⼀个读者,则不能让写者写,需要⼀个锁。
因为readcounter是临界资源,也需要⼀个互斥量。
semaphore rc_mutex = 1, wmutex = 1;readcounter = 0;void writer{do{wait(wmutex);//writesignal(wmutex);}while(TRUE);}void reader{do{wait(rc_mutex);if(readcounter == 0) wait(wmutex);readcounter ++;signal(rc_mutex);// readwait(rc_mutex);readcounter --;if(!readcounter) signal(wmutex);signal(rc_mutex);}while(TRUE);}写者优先要求:1.读者写者互斥2.写者读者同时等待时,所有等待的写者优先,等所有写者结束后,读者才能读3.没有写者时,读者能同时读4.写者到来时,不会终⽌已经进⾏的读者操作解决⽅法:semaphore wc_mutex = 1, prior = 1; //写者计数器,优先信号量readcounter = 0, writercounter = 0;void writer{do{wait(wc_mutex); //申请更改wc的权限if(writercounter == 0) //如果是第⼀个写者,就申请优先权限wait(prior);writercounter ++;signal(wc_mutex);wait(wmutex);//writesignal(wmutex);wait(wc_mutex);writercounter --;if(!writercounter)signal(prior); //当最后⼀个写者操作完成后,释放优先级权限 signal(wc_mutex);}while(TRUE);}void reader{do{wait(prior); //先申请优先级权限,如果前⾯还有写者就等待wait(rc_mutex);if(readcounter == 0) wait(wmutex);readcounter ++;signal(rc_mutex);signal(prior); //释放优先级权限// readwait(rc_mutex);readcounter --;if(!readcounter) signal(wmutex);signal(rc_mutex);}while(TRUE);}读写均等semaphore prior = 1; //读者和写者都等待在⼀个队列上,实现读写均等readcounter = 0, writercounter = 0;void writer{do{wait(prior);wait(wmutex);//writesignal(wmutex);signal(prior);}while(TRUE);}void reader{do{wait(prior);wait(rc_mutex);if(readcounter == 0) wait(wmutex);readcounter ++;signal(rc_mutex);signal(prior);//readwait(rc_mutex);readcounter --;if(!readcounter) signal(wmutex);signal(rc_mutex);}while(TRUE);}有错误请指出!。
OS课程设计__读者写者

兰州交通大学操作系统课程设计课程:计算机操作系统题目:进程同步(读者--写者)班级:姓名:学号:指导教师:日期:2012年12月21日目录1题目 (1)2设计概述 (1)2.1问题描述 (1)2.2采用信号量机制 (1)3课程设计目的及功能 (1)3.1设计目的 (1)3.2设计功能 (1)4总体设计思想概述 (2)4.1功能流程图 (2)4.2开发平台及源程序的主要部分 (3)4.3数据结构 (3)4.4模块说明 (3)4.5源程序 (3)5测试用例,运行结果与运行情况分析 (12)5.1测试用例 (12)5.2运行结果 (12)5.3运行结果分析 (14)6总结与心得 (15)1题目进程同步模拟设计——读者和写者问题2设计概述2.1问题描述模拟用信号量机制实现读者和写者问题,即有两组并发进程:读者和写者,共享一组数据区,进行读写操作,要求任一时刻“写者”最多只允许一个,而“读者”则允许多个。
2.1.1要求允许多个读者同时执行读操作;不允许读者、写者同时操作;不允许多个写者同时操作。
2.1.2读者和写者的相互关系:2.2采用信号量机制1)Wmutex表示读写的互斥信号量,初值: Wmutex =1;2)公共变量Rcount表示“正在读”的进程数,初值:Rcount =0;3)Rmutex:表示对Rcount的互斥操作,初值:Rmutex=1。
3课程设计目的及功能3.1设计目的通过实验模拟读者和写者之间的关系,了解并掌握他们之间的关系及其原理。
由此增加对进程同步的问题的了解。
具体如下:1)掌握基本的同步互斥算法,理解读者和写者模型;2)了解windows中多线程(多进程)的并发执行机制,线程(进程)间的同步和互斥;3)学习使用windows中基本的同步对象,掌握相应的API。
3.2设计功能利用模拟用信号量机制实现读者和写者问题:通过用户控制读进程和写进程,反应读者和写者问题中所涉及的进程的同步与互斥。
读者写者问题

3)读读允许,即可以有2个以上的读者同时读
将所有的读者与所有的写者分别放进两个等待队列中,当读允许时就让读者队列释放一个或多个读者,当写允许时,释放第一个写者操作。读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以就是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)与一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:1)任意多个读进程可以同时读这个文件;2)一次只有一个写进程可以往文件中写;3)如果一个写进程正在进行操作,禁止任何读进程度文件。我们需要分两种情况实现该问题:
一设计概述
所谓读者写者问题,就是指保证一个writer进程必须与其她进程互斥地访问共享对象的同步问题。
读者写者问题可以这样的描述,有一群写者与一群读者,写者在写同一本书,读者也在读这本书,多个读者可以同时读这本书,但就是,只能有一个写者在写书,并且,读者必写者优先,也就就是说,读者与写者同时提出请求时,读者优先。当读者提出请求时需要有一个互斥操作,另外,需要有一个信号量S来当前就是否可操作。
信号量机制就是支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的重要机制,而读者写者问题则就是这一机制的一个经典范例。
与记录型信号量解决读者—写者问题不同,信号量机制它增加了一个限制,即最多允许RN个读者同时读。为此,又引入了一个信号量L,并赋予初值为RN,通过执行wait(L,1,1)操作,来控制读者的数目,每当有一个读者进入时,就要执行wait(L,1,1)操作,使L的值减1。当有RN个读者进入读后,L便减为0,第RN+1个读者要进入读时,必然会因wait(L,1,1)操作失败而堵塞。对利用信号量来解决读者—写者问题的描述如下:
读者-写者问题解答

2.读者—写者问题读者—写者问题(Readers-Writers problem)也是一个经典的并发程序设计问题,是经常出现的一种同步问题。
计算机系统中的数据(文件、记录)常被多个进程共享,但其中某些进程可能只要求读数据(称为读者Reader);另一些进程则要求修改数据(称为写者Writer)。
就共享数据而言,Reader和Writer是两组并发进程共享一组数据区,要求:(1)允许多个读者同时执行读操作;(2)不允许读者、写者同时操作;(3)不允许多个写者同时操作。
Reader和Writer的同步问题分为读者优先、弱写者优先(公平竞争)和强写者优先三种情况,它们的处理方式不同。
(1)读者优先。
对于读者优先,应满足下列条件:如果新读者到:①无读者、写者,新读者可以读;②有写者等待,但有其它读者正在读,则新读者也可以读;③有写者写,新读者等待。
如果新写者到:①无读者,新写者可以写;②有读者,新写者等待;③有其它写者,新写者等待。
单纯使用信号量不能解决读者与写者问题,必须引入计数器rc 对读进程计数;rc_mutex 是用于对计数器rc 操作的互斥信号量;write表示是否允许写的信号量;于是读者优先的程序设计如下:int rc=0; //用于记录当前的读者数量semaphore rc_mutex=1; //用于对共享变量rc 操作的互斥信号量semaphore write=1; //用于保证读者和写者互斥地访问的信号量void reader() /*读者进程*/do{P(rc_mutex); //开始对rc共享变量进行互斥访问rc ++; //来了一个读进程,读进程数加1if (rc==1) P(write);//如是第一个读进程,判断是否有写进程在临界区,//若有,读进程等待,若无,阻塞写进程V(rc_mutex); //结束对rc共享变量的互斥访问读文件;P(rc_mutex); //开始对rc共享变量的互斥访问r c--; //一个读进程读完,读进程数减1if (rc == 0) V(write);//最后一个离开临界区的读进程需要判断是否有写进程//需要进入临界区,若有,唤醒一个写进程进临界区V(rc_mutex); //结束对rc共享变量的互斥访问} while(1)void writer() /*写者进程*/do{P(write); //无读进程,进入写进程;若有读进程,写进程等待写文件;V(write); //写进程完成;判断是否有读进程需要进入临界区,//若有,唤醒一个读进程进临界区} while(1)读者优先的设计思想是读进程只要看到有其它读进程正在读,就可以继续进行读;写进程必须等待所有读进程都不读时才能写,即使写进程可能比一些读进程更早提出申请。
读写者问题

设计一读者写者问题实习环境:系统为Windows XP + VC 6.0一、实验目的:1、加深对进程概念的理解,明确进程和程序的区别,进一步认识并发执行的实质;2、理解和运用信号量、PV原语、进程间的同步互斥关系等基本知识。
二、设计要求在Windows XP下创建一个控制台进程,该进程应包含n个线程。
用这n个线程来表示n个读者或写者。
每个线程按相应测试数据文件(后面介绍)的要求进行读写操作。
用信号量机制分别实现读者优先和写者优先的读者-写者问题。
读者-写者问题的操作限制(包括读者优先和写者优先):1)写-写互斥,即不能有两个写者同时进行写操作。
2)读-写互斥,即不能同时有一个线程在读,而另一个线程在写。
3)读-读互斥,即可以有一个或多个读者在读。
读者优先的附加限制:如果一个读者申请进行读操作时已有另一个读者正在进行读操作,则该读者可直接开始读操作。
写者优先的附加限制:如果一个读者申请进行读操作时已有另一个写者在等待访问共享资源,则该读者必须等到没有写者出于等待状态后才能开始读操作。
测试文件格式说明,下面是一个测试数据文件的例子:1 R 3 52 W 4 53 R 5 24 R 6 55 W 5.1 36 R 15 47 R 15 4三、设计说明1、读者优先指除非有写者在写文件,否则读者不需要等待。
所以可以用一个整形变量readnum记录当前的读者数目,用于确定是否需要唤醒正在等待的写者进程(当readnum==读者人数时,表明所有的读者读完,需要唤醒写者等待队列中的第一个写者)。
每一个读者开始读文件时,必须修改readnum变量。
因此需要一个互斥对象rnum[]来实现对全局变量readnum修改时的互斥。
另外,为了实现写写互斥,需要增加一个临界区对象wstate。
当写者发出写请求时,必须申请临界区对象的所有权。
通过这种方法,也可以实现读写互斥,当readnum=2时(即第一个读者到来时),读者进程也必须申请临界区对象的所有权。
读者写者问题写者优先参考答案完整版

读者写者问题写者优先参考答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
让我们先回顾读者写者问题[1]:一个数据对象若被多个并发进程所共享,且其中一些进程只要求读该数据对象的内容,而另一些进程则要求写操作,对此,我们把只想读的进程称为“读者”,而把要求写的进程称为“写者”。
在读者、写者问题中,任何时刻要求“写者”最多只允许有一个执行,而“读者”则允许有多个同时执行。
因为多个“读者”的行为互不干扰,他们只是读数据,而不会改变数据对象的内容,而“写者”则不同,他们要改变数据对象的内容,如果他们同时操作,则数据对象的内容将会变得不可知。
所以对共享资源的读写操作的限制条件是:允许任意多的读进程同时读;一次只允许一个写进程进行写操作;如果有一个写进程正在进行写操作,禁止任何读进程进行读操作。
为了解决该问题,我们只需解决“写者与写者”和“写者与第一个读者”的互斥问题即可,为此我们引入一个互斥信号量Wmutex,为了记录谁是第一个读者,我们用一个共享整型变量Rcount 作一个计数器。
而在解决问题的过程中,由于我们使用了共享变量Rcount,该变量又是一个临界资源,对于它的访问仍需要互斥进行,所以需要一个互斥信号量Rmutex,算法如下:}}现在回到【写者优先】优先问题【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统课程设计课题:读者写者问题******班级:1020552学号*********指导教师:***提交时间:2012/12/30(一)实验目的1.进一步理解“临界资源”的概念;2.把握在多个进程并发执行过程中对临界资源访问时的必要约束条件;3.理解操作系统原理中“互斥”和“同步”的涵义。
(二)实验内容利用程序设计语言编程,模拟并发执行进程的同步与互斥(要求:进程数目不少于3 个)。
(三)、程序分析读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)和一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:(1)任意多个读进程可以同时读这个文件;(2)一次只有一个写进程可以往文件中写;(3)如果一个写进程正在进行操作,禁止任何读进程度文件。
实验要求用信号量来实现读者写者问题的调度算法。
实验提供了signal类,该类通过P( )、V( )两个方法实现了P、V原语的功能。
实验的任务是修改Creat_Writer()添加写者进程,Creat_Reader()创建读者进程。
Reader_goon()读者进程运行函数。
读优先:要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
读者优先的附加限制:如果一个读者申请进行读操作时已有另一读者正在进行读操作,则该读者可直接开始读操作。
写优先:一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。
在Windows 7 环境下,创建一个控制台进程,此进程包含n 个线程。
用这n 个线程来表示n 个读者或写者。
每个线程按相应测试数据文件(格式见下)的要求进行读写操作。
用信号量机制分别实现读者优先和写者优先的读者/写者问题。
运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确定所有处理都遵守相应的读写操作限制。
测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写操作的开始时间和持续时间。
每行测试数据包括4个字段,各个字段间用空格分隔。
Ø 第一个字段为一个正整数,表示线程序号Ø 第二个字段表示相应线程角色,R 表示读者,W 表示写者Ø 第三个字段为一个正数,表示读/写操作的开始时间:线程创建后,延迟相应时间(单位为秒)后发出对共享资源的读/写请求Ø 第四个字段为一正数,表示读/写操作的持续时间:线程读写请求成功后,开始对共享资源的读/写操作,该操作持续相应时间后结束,并释放共享资源例如:1 R 3 52 W 4 53 R 5 24 R 6 55 W 5.1 3读者写者问题是操作系统中经典的互斥问题:一块数据被多个读者和写者的访问,需要考虑读写互斥、写写互斥(可以同时由多个读者读取)。
具体的又可以分为读者优先和写者优先两类。
读者优先算法:当新的读者到来的时候,若当前正有读者在进行读操作,则该读者无需等待前面的写操作完成,直接进行读操作。
设置两个互斥信号量:rwmutex 用于写者与其他读者/写者互斥的访问共享数据rmutex 用于读者互斥的访问读者计数器readcountvar rwmutex, rmutex :semaphore := 1,1 ;int readcount = 0;cobeginreaderi begin // i=1,2,….P(rmutex);Readcount++;If (readcount == 1) P(rwmutex);V(rmutex);读数据;P(rmutex);Readcount--;If (readcount == 0) V(rwmutex);V(rmutex);EndWriterj begin // j = 1,2,….P(rwmutex);写更新;V(rwmutex);EndCoend写者优先:条件:1)多个读者可以同时进行读2)写者必须互斥(只允许一个写者写,也不能读者写者同时进行)3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)设置三个互斥信号量:rwmutex 用于写者与其他读者/写者互斥的访问共享数据rmutex 用于读者互斥的访问读者计数器readcountnrmutex 用于写者等待已进入读者退出,所有读者退出前互斥写操作var rwmutex, rmutex,nrmutex :semaphore := 1,1,1 ;int readcount = 0;cobeginreaderi begin // i=1,2,….P(rwmutex);P(rmutex);Readcount++;If (readcount == 1) P(nrmutex); //有读者进入,互斥写操作V(rmutex);V(rwmutex); // 及时释放读写互斥信号量,允许其它读、写进程申请资源读数据;P(rmutex);Readcount--;If (readcount == 0) V(nrmutex); //所有读者退出,允许写更新V(rmutex);EndWriterj begin // j = 1,2,….P(rwmutex); // 互斥后续其它读者、写者P(nrmutex); //如有读者正在读,等待所有读者读完写更新;V(nrmutex); //允许后续新的第一个读者进入后互斥写操作V(rwmutex); //允许后续新读者及其它写者EndCoend/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*---------函数声明---------*/void Creat_Writer(); //添加一个写者void Del_Writer(); //删除一个写者void Creat_Reader(); //添加一个读者void Reader_goon(); //读者进程运行函数void R_Wakeup(); //唤醒等待读者void Del_Reader(); //删除一个读者void Show(); //显示运行状态/*=============== class signal ===============*/class signal //信号量对象.{private:int value;int queue; //用int型数据模拟等待队列.public:signal();signal(int n);int P(); //检查临界资源int V(); //释放临界资源int Get_Value();int Get_Queue();};////////////////////////////////////////////////////////////////////#include<windows.h>#include<fstream>#include<cstdlib>#include<iostream>using namespace std;const int MaxThread=20;struct ThreadInfo{int num;char type;double start;double time;}thread_info[MaxThread];HANDLE hX;HANDLE hWsem;HANDLE thread[MaxThread];int readcount;double totaltime;void WRITEUNIT(int iProcess){printf("Thread %d begins to write.\n",iProcess);Sleep((DWORD)(thread_info[iProcess-1].time*1000));printf("End of thread %d for writing.\n",iProcess);}void READUNIT(int iProcess){printf("Thread %d begins to read.\n",iProcess);Sleep((DWORD)(thread_info[iProcess-1].time*1000));printf("End of thread %d for reading.\n",iProcess);}DWORD WINAPI reader(LPVOID lpVoid){int iProcess = *(int*)lpV oid;Sleep((DWORD)(thread_info[iProcess-1].start*1000));DWORD wait_for=WaitForSingleObject(hX,INFINITE);printf("Thread %d requres reading.\n",iProcess);readcount++;if(readcount==1)WaitForSingleObject(hWsem,INFINITE);ReleaseMutex(hX);READUNIT(iProcess);wait_for=WaitForSingleObject(hX,INFINITE);readcount--;if(readcount==0)ReleaseSemaphore(hWsem,1,0);ReleaseMutex(hX);return iProcess;}DWORD WINAPI writer(LPVOID lpV oid){int iProcess = *(int*)lpV oid;Sleep((DWORD)(thread_info[iProcess-1].start*1000));printf("Thread %d requres writing.\n",iProcess);DWORD wait_for=WaitForSingleObject(hWsem,INFINITE);WRITEUNIT(iProcess);ReleaseSemaphore(hWsem,1,0);return iProcess;}int main(){int threadNum;int threadcount;ifstream file;hX=CreateMutex(NULL, FALSE, NULL);hWsem=CreateSemaphore(NULL,1,1,NULL);//readcount=0;threadcount=0;totaltime=0;file.open("thread.dat",ios::in);if(file==0){printf("File Open Error.\n");return 0;}while(file>>threadNum){thread_info[threadNum-1].num=threadNum;file>>thread_info[threadNum-1].type;file>>thread_info[threadNum-1].start;file>>thread_info[threadNum-1].time;totaltime+=thread_info[threadNum-1].time;switch(thread_info[threadNum-1].type){case 'W':printf("Creating Thread %d for writing.\n",thread_info[threadNum-1].num);thread[threadNum-1] = CreateThread(NULL, 0,writer, &thread_info[threadNum-1].num,0,0);break;case 'R':printf("Creating Thread %d for reading.\n",thread_info[threadNum-1].num);thread[threadNum-1] = CreateThread(NULL, 0,reader, &thread_info[threadNum-1].num,0,0);break;}threadcount++;}file.close();Sleep((DWORD)(totaltime*1000));return 1;}//////////////////////////////////////////////////////////////////////////////////semaphore fmutex = 1 , rdcntmutex = 1 ;// fmutex --> access to file; rdcntmutex --> access to readcountint readcount = 0 ;void reader(){while ( 1 ){P(rdcntmutex);if ( readcount==0)P(fmutex);readcount = readcount + 1 ;V(rdcntmutex);// Do read operationP(rdcntmutex);readcount = readcount - 1 ;if ( readcount==0)V(fmutex);V(rdcntmutex);}}void writer(){while ( 1 ){P(fmutex);// Do write operationV(fmutex);}}/////////////////////////////////////////////////////////////////////////////////////// semaphore fmutex = 1 , rdcntmutex = 1 , wtcntmutex = 1 , queue = 1 ; // fmutex --> access to file; rdcntmutex --> access to readcount// wtcntmutex --> access to writecountint readcount = 0 ,writecount = 0 ;void reader(){while ( 1 ){P(queue);//申请队列信号P(rdcntmutex);//修改readcount,互斥if ( readcount==0)P(fmutex);//access to file 互斥readcount = readcount + 1 ;V(rdcntmutex);//释放V(queue);//释放// Do read operationP(rdcntmutex);readcount = readcount - 1 ;if ( readcount==0)V(fmutex);V(rdcntmutex);}}void writer(){while ( 1 ){P(wtcntmutex);if ( writecount==0)P(queue);writecount = writecount + 1 ;V(wtcntmutex);P(fmutex);// Do write operationV(fmutex);P(wtcntmutex);writecount = writecount - 1 ;if ( writecount==0)V(queue);V(wtcntmutex);}}。