110kV变电站设计

合集下载

变电站设计规范

变电站设计规范

变电站设计规范35,110KV 变电所设计规范 GB50059-9235,110KV 变电所设计规范GB50059-92主编部门:中华人民共和国能源部批准部门:中华人民共和国建设部施行日期:1993 年 5 月 1 日第一章总则第 1.0.1 条为使变电所的设计认真执行国家的有关技术经济政策符合安全可靠技术先进和经济合理的要求制订本规范.第 1.0.2 条本规范适用于电压为 35,110kV单台变压器容量为 5000kVA 及以上新建变电所的设计.第 1.0.3 条变电所的设计应根据工程的 5,10 年发展规划进行做到远近期结合以近期为主正确处理近期建设与远期发展的关系适当考虑扩建的可能.第 1.0.4 条变电所的设计必须从全局出发统筹兼顾按照负荷性质用电容量工程特点和地区供电条件结合国情合理地确定设计方案.第 1.0.5 条变电所的设计必须坚持节约用地的原则.第 1.0.6 条变电所设计除应执行本规范外尚应符合现行的国家有关标准和规范的规定.第二章所址选择和所区布置第 2.0.1 条变电所所址的选择应根据下列要求综合考虑确定:一靠近负荷中心二节约用地不占或少占耕地及经济效益高的土地三与城乡或工矿企业规划相协调便于架空和电缆线路的引入和引出四交通运输方便五周围环境宜无明显污秽如空气污秽时所址宜设在受污源影响最小处六具有适宜的地质地形和地貌条件例如避开断层滑坡塌陷区溶洞地带山区风口和有危岩或易发生滚石的场所所址宜避免选在有重要文物或开采后对变电所有影响的矿藏地点否则应征得有关部门的同意七所址标高宜在 50 年一遇高水位之上否则所区应有可靠的防洪措施或与地区工业企业的防洪标准相一致但仍应高于内涝水位八应考虑职工生活第 2.0.2 条上的方便及水源条件九应考虑变电所与周围环境邻近设施的相互影响.变电所的总平面布置应紧凑合理.第 2.0.3 条变电所宜设置不低于 2.2m 高的实体围墙.城网变电所工业企业变电所围墙的高度及形式应与周围环境相协调.第2.0.4 条变电所内为满足消防要求的主要道路宽度应为3.5m.主要设备运输道路的宽度可根据运输要求确定并应具备回车条件.135,110KV 变电所设计规范GB50059-92第 2.0.5 条变电所的场地设计坡度应根据设备布置土质条件排水方式和道路纵坡确定宜为 0.5,2最小不应小于 0.3局部最大坡度不宜大于 6平行于母线方向的坡度应满足电气及结构布置的要求.当利用路边明沟排水时道路及明沟的纵向坡度最小不宜小于 0.5局部困难地段不应小于 0.3最大不宜大于 3局部困难地段不应大于6.电缆沟及其他类似沟道的沟底纵坡不宜小于 0.5.第 2.0.6 条变电所内的建筑物标高基础埋深路基和管线埋深应相互配合建筑物内地面标高宜高出屋外地面 0.3m屋外电缆沟壁宜高出地面 0.1m.第 2.0.7 条各种地下管线之间和地下管线与建筑物构筑物道路之间的最小净距应满足安全检修安装及工艺的要求并宜符合附录一和附录二的规定.第 2.0.8 条变电所所区场地宜进行绿化.绿化规划应与周围环境相适应并严防绿化物影响电气的安全运行.绿化宜分期分批进行.第2.0.9 条变电所排出的污水必须符合现行国家标准《工业企业设计卫生标准》的有关规定.第三章电气部分第一节主变压器第 3.1.1 条主变压器的台数和容量应根据地区供电条件负荷性质用电容量和运行方式等条件综合考虑确定.第 3.1.2 条在有一二级负荷的变电所中宜装设两台主变压器当技术经济比较合理时可装设两台以上主变压器.如变电所可由中低压侧电力网取得足够容量的备用电源时可装设一台主变压器.第 3.1.3 条装有两台及以上主变压器的变电所当断开一台时其余主变压器的容量不应小于 60的全部负荷并应保证用户的一二级负荷.第 3.1.4 条具有三种电压的变电所如通过主变压器各侧线圈的功率均达到该变压器容量的15以上主变压器宜采用三线圈变压器.第 3.1.5 条电力潮流变化大和电压偏移大的变电所如经计算普通变压器不能满足电力系统和用户对电压质量的要求时应采用有载调压变压器.第二节电气主接线第 3.2.1 条变电所的主接线应根据变电所在电力网中的地位出线回路数设备特点及负荷性质等条件确定.并应满足供电可靠运行灵活操作检修方便节约投资和便于扩建等要求.第 3.2.2 条当能满足运行要求时变电所高压侧宜采用断路器较少或不用断路器的接线.第 3.2.3 条 35,110kV 线路为两回及以下时宜采用桥形线路变压器组或线路分支接线.超过两回时宜采用扩大桥形单母线或分段单母线的接线.35,63kV 线路为 8 回及以上时亦可采用双母线接线.110kV 线路为 6 回及以上时宜采用双母线接线.第 3.2.4 条在采用单母线分段单母线或双母线的35,110kV 主接线中当不允许停电检修断路器时可设置旁路设施.当有旁路母线时首先宜采用分段断路器或母联断路器兼作2旁路断路器的接线.当 110kV 线路为 6 回及以上35,63kV 线路为 8 回及以上时可装设专用的旁路断路器.主变压器35,110kV 回路中的断路器有条件时亦可接入旁路母线.采用 SF6 断路器的主接线不3.2.5 条当变电所装有两台主变压器时6,10kV 侧宜采用分段单宜设旁路设施.第母线.线路为 12 回及以上时亦可采用双母线.当不允许停电检修断路器时可设置旁路设施.当 6,35kV 配电装置采用手车式高压开关柜时不宜设置旁路设施.第3.2.6 条当需限制变电所 6,10kV 线路的短路电流时可采用下列措施之一:一变压器分列运行二采用高阻抗变压器三在变压器回路中装设电抗器.第 3.2.7 条接在母线上对接在变压器引出线上的避雷器不宜的避雷器和电压互感器可合用一组隔离开关.装设隔离开关.第三节所用电源和操作电源第 3.3.1 条在有两台及以上主变压器的变电所中宜装设两台容量相同可互为备用的所用变压器.如能从变电所外引入一个可靠的低压备用所用电源时亦可装设一台所用变压器.当 35kV 变电所只有一回电源进线及一台主变压器时可在电源进线断路器之前装设一台所用变压器.第3.3.2 条变电所的直流母线宜采用单母线或分段单母线的接线.采用分段单母线时蓄电池应能切换至任一母线.第 3.3.3 条重要变电所的操作电源宜采用一组 110V 或 220V 固定铅酸蓄电池组或镉镍蓄电池组.作为充电浮充电用的硅整流装置宜合用一套.其他变电所的操作电源宜采用成套的小容量镉镍电池装置或电容储能装置.第 3.3.4 条蓄电池组的容量应满足下列要求:一全所事故停电 1h 的放电容量:二事故放电末期最大冲击负荷容量.小容量镉镍电池装置中的镉镍电池容量应满足分闸信号和继电保护的要求.第 3.3.5 条变电所宜设置固定的检修电源.第四节控制室第 3.4.1 条控制室应位于运行方便电缆较短朝向良好和便于观察屋外主要设备的地方.第 3.4.2 条控制屏台的排列布置宜与配电装置的间隔排列次序相对应.第 3.4.3 条控制室的建筑应按变电所的规划容量在第一期工程中一次建成.无人值班变电所的控制室应适当简化面积应适当减小.第五节二次接线第 3.5.1 条变电所内的下列元件应在控制室内控制:一主变压器二母线分段旁路及母联断路器三63,110kV 屋内外配电装置的线路35kV 屋外配电装置的线路.6,35kV 屋内配电335,110KV 变电所设计规范 GB50059-92装置馈电线路宜采用就地控制.第 3.5.2 条有人值班的变电所宜装设能重复动作延时自动解除或手动解除音响的中央事故信号和预告信号装置.驻所值班的变电所可装设简单的事故信号和能重复动作的预告信号装置.无人值班的变电所可装设当远动装置停用时转为变电所就地控制的简单的事故信号和预告信号.断路器的控制回路应有监视信号.第 3.5.3 条隔离开关与相应的断路器和接地刀闸之间应装设团锁装置.屋内的配电装置尚应装设防止误入带电间隔的设施.闭锁联锁回路的电源应与继电保护控制信号回路的电源分开.第六节照明第3.6.1 条变电所的照明?杓朴Ψ 舷中泄标准《工业企业照明设计标准》的要求.第 3.6.2 条在控制室屋内配电装置室蓄电池室及屋内主要通道等处应装设事故照明.第 3.6.3 条照明设备的安装位置应便于维修.屋外配电装置的照明可利用配电装置构架装设照明器但应符合现行国家标准《电力装置的过电压保护设计规范》的要求.第 3.6.4 条在控制室主要监屏位置和屏前工作位置观察屏面时不应有明显的反射眩光和直接阳光.第 3.6.5 条铅酸蓄电池室内的照明应采用防爆型照明器不应在蓄电池室内装设开关熔断器和插座等可能产生火花的电器.第 3.6.6 条电缆隧道内的照明电压不应高于 36V如高于 36V 应采取防止触电的安全措施.第七节并联电容器装置第 3.7.1 条自然功率因数未达到规定标准的变电所应装设并联电容器装置.其容量和分组宜根据就地补偿便于调整电压及不发生谐振的原则进行配置.电容器装置宜装设在主变压器的低压侧或主要负荷侧.第 3.7.2 条电容器装置的接线应使电容器组的绝缘水平应与电网电容器组的额定电压与接入电网的运行电压相配合.的绝缘水平相配合.电容器装置宜采用中性点不接地的星形或双星形接线.第3.7.3 条电容器装置的电器和导体的长期允许电流不应小于电容器组额定电流的1.35倍.第 3.7.4 条电容器装置应装设单独的控制保护和放电等设备并应设置单台电容器的熔断器保护.第 3.7.5 条当装设电容器装置处的高次谐波含量超过规定允许值或第 3.7.6 条电容器需要限制合闸涌流时应在并联电容器组回路中设置串联电抗器.装置应根据环境条件设备技术参数及当地的实践经验采用屋外半露天或屋内的布置.电容器组的布置应考虑维护和检修方便.第八节电缆敷设第 3.8.1 条所区内的电缆根据具体情况可敷设在地面槽沟沟道管道或隧道中少数435,110KV 变电所设计规范 GB50059-92电缆亦可直埋.第 3.8.2 条电缆路径的选择应符合下列要求:一避免电缆受到各种损坏及腐蚀二避开规划中建筑工程需要挖掘施工的地方三便于运行维修四电缆较短.第 3.8.3 条在电缆隧道或电缆沟内通道宽度及电缆支架的层间距离应能满足敷设和更换电缆的要求.第 3.8.4 条电缆外护层应根据敷设方式和环境条件选择.直埋电缆应采用铠装并有黄麻聚乙烯或聚氯乙烯外护层的电缆.在电缆隧道电缆沟内以及沿墙壁或楼板下敷设的电缆不应有黄麻外护层.第九节远动和通信第 3.9.1 条远动装置应根据审定的调度自动化规划设计的要求设置或预留位置.第 3.9.2 条遥信遥测遥控装置的信息内容应根据安全监控经济调度和保证电能质量以及节约投资的要求确定.第 3.9.3 条无人值班的变电所宜装设遥信遥测装置.需要时可装设遥控装置.第 3.9.4 条工业企业的变电所宜装设与该企业中央控制室联系的有关信号.第 3.9.5 条远动通道宜采用载波或有线音频通道.第 3.9.6 条变电所应装设调度通信工业企业变电所尚应装设与该企业内部的通信对重要变电所必要时可装设与当地电话局的通信.第 3.9.7 条远动和通信设备应有可靠的事故备用电源其容量应满足电源中断 1h 的使用要求.第十节屋内外配电装置第 3.10.1 条变电所屋内外配电装置的设计应符合现行国家标准《3,110kV 高压配电装置设计规范》的要求.第十一节继电保护和自动装置第3.11.1 条变电所继电保护和自动装置的设计应符合现行国家标准《电力装置的继电保护和自动装置设计规范》的要求.第十二节电测量仪表装置第 3.12.1 条第3.12.1 条变电所电测量仪表装置的设计应符合现行国家标准《电力装置的电测量仪表装置设计规范》的要求.第十三节过电压保护第 3.13.1 条变电所过电压保护的设计应符合现行国家标准《电力装置的过电压保护设计规范》的要求.535,110KV 变电所设计规范 GB50059-92第十四节接地第 3.14.1 条变电所接地的设计应符合现行国家标准《电力装置的接地设计规范》的要求.第四章土建部分第一节一般规定第 4.1.1 条建筑物构筑物及有关设施的设计应统一规划造型协调便于生产及生活所选择的结构类?图安牧掀分钟侠砉椴?蚧岳噶霞庸な?ぜ霸诵?变电所的建筑设计还应与周围环境相协调.第 4.1.2 条建筑物构筑物的设计应考虑下列两种极限状态:一承载能力极限状态:这种极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形.要求在设计荷载作用下所产生的结构效应应小于或等于结构的抗力或设计强度.计算中所采用的结构重要性系数 ro荷载分项系数 r可变荷载组合系数ψc 及其他有关系数均按本规范的有关规定采用结构的设计强度则应遵照有关的现行国家标准采用.二正常使用极限状态:这种极限状态对应于结构或结构构件达到正常使用或耐久性能的某项规定极限值.要求在标准荷载作用下所产生的结构长期及短期效应不宜超计算中所采用的可变荷载组合系数ψc 及准永久值系数ψq 按过附录三的规定值.本规范的有关规定采用.第 4.1.3 条建筑物构筑物的安全等级均应采用二级相应的结构重要性系数应为 1.0.第 4.1.4 条屋外构筑物的基础当验算上拔或倾覆稳定性时设计荷载所引起的基础上拔力或倾覆弯矩应小于或等于基础抗拔力或抗倾覆弯矩除以表 4.1.4 的稳定系数.当基础处于稳定的地下水位以下时应考虑浮力的影响此土容重宜取 10,11kN/.表 4.1.4 时基础容重取混凝土或钢筋混凝土的容重减10kN/基础上拨或倾覆稳定系数荷载类型计算方法在长期荷载作用下在短期荷载作用下按考虑土抗力来验算倾覆或考虑锥形土体来验算上拔 1.8 1.5仅考虑基础自重及阶梯以上的土重来验算倾覆或上拔 1.15 1.0注:短期荷载系指风荷载地震作用和短路电动力三种其余均为长期荷载.第二节荷载第 4.2.1 条荷载分为永久荷载可变荷载及偶然荷载三类.一永久荷载:结构自重含导线及避雷线自重固定的设备重土重土压力水压力等:二可变荷载:风荷载冰荷载雪荷载活荷载安装及检修荷载地震作用温度变化及车辆荷载等三偶然荷载:短路电动力验算稀有风荷载及验算稀有冰荷载.第 4.2.2 条荷载分项系数的采用应符合下列规定:一永久荷载的荷载分项系数 r 宜采用 1.2当其效应对结构抗力有利时宜采用 1.0对导线及避雷线的张力宜采用 1.25二可变荷载的荷载分项系数 rq 宜采用 1.4对温度变化作用宜采用1.0对地震作用宜采用 1.3对安装情况的导线和避雷线的紧线张力宜采用 1.4注:在大风覆冰低湿检635,110KV 变电所设计规范 GB50059-92修地震情况下的导线与避雷线张力均作为准永久性荷载处理其荷载分项系数宜采用 1.25但安装情况的紧线张力宜作可变荷载处理其荷载分项系数宜采用 1.4.三偶然荷载的荷载分项系数rqi 宜采用 1.0.第 4.2.3 条可变荷载的荷载组合系数ψc应按下列规定采用:一房屋建筑的基本组合情况:风荷载组合系数ψcw 取 0.6二构筑物的大风情况:对连续架构温度变化作用组合系数ψcr 取 0.8三构筑物最严重覆冰情况:风荷载组合系数ψcw 取 0.15冰厚?10mm或 0.25冰厚gt10mm四构筑物的安装或检修情况:风荷载组合系数ψcw 取 0.15五地震作用情况:建筑物的活荷载组合系数ψcw 取 0.5构筑物的风荷载组合系数ψcw取 0.2构筑物的冰荷载组合系数ψcj 取 0.5.第 4.2.4 条房屋建筑的活荷载应根据实际的工艺及设备情况确定.其标准值及有关系数不应低于本规范附录四所列的数值.第 4.2.5 条架构及其基础宜根据实际受力条件包括远景可能发生的不利情况分别按终端或中间架构来设计下列四种荷载情况应作为承载能力极限状态的基本组合其中最低气温情况还宜作为正常使用极限状态的条件对变形及裂缝进行校验.一运行情况:取 30 年一遇的最大风无冰相应气温最低气温无冰无风及最严重覆冰相应气温及风荷载等三种情况及其相应的导线及避雷线张力自重等二安装情况:指导线及避雷线的架设此时应考虑梁上作用人和工具重 2kN 以及相应的风荷载导线及避雷线张力自重等.三检修情况:根据实际检修方式的需要可考虑三相同时上人停电检修及单相跨中上人带电检修两种情况的导线张力相应的风荷载及自重等对档距内无引下线的情况可不考虑跨中上人四地震情况:考虑水平地震作用及相应的风荷载或相应的冰荷载导线及避雷线张力自重等地震情况下的结构抗力或设计强度均允许提高 25使用即承载力抗震调整系数采用 0.8.第 4.2.6 条设备支架及其基础应以下列三种荷载情况作为承载能力极限状态的基本组合其中最大风情况及操作情况的标准荷载还宜作为正常使用极限状态的条件对变形及裂缝进行校验.一最大风情况:取 30 年一遇的设计最大风荷载及相应的引线张力自重等二操作情况:取最大操作荷载及相应的风荷载相应的引线张力自重等三地震情况:考虑水平地震作用及相应的风荷载引线张力自重等地震情况下的结构抗力或设计强度均允许提高 25使用即承载力抗震调整系数采用 0.8.第 4.2.7 条架构的导线安装荷载应根据所采用的施工方法及程序确定并将荷载图及紧线时引线的对地夹角在施工图中表示清楚.导线紧线时引线的对地夹角宜取 45?,60?.第 4.2.8 条高型及半高型配电装置的平台1.5kN 集中荷载验算.在走道及天桥的活荷载标准值宜采用 1.5kN/?装配式板应取计算梁柱和基础时活荷载乘折减系数当荷重面积为 10,20 ?时宜取 0.7超过20 ?时宜取 0.6.第三节建筑物第 4.3.1 条主控制楼室根据规模和需要可布置成平房两层或三层建筑.主控制室顶735,110KV 变电所设计规范 GB50059-92棚到楼板面的净高:对控制屏与继电器屏分开成两室布置时宜采用 3.4,4.0m对合在一起布置时宜采用 3.8,4.4m.当采用空调设施时上述高度可适当降低.电缆隔层的板间净高宜采用 2.3,2.6m大梁底对楼板面的净高不应低于 2m.底层辅助生产房屋楼板底到地面的净高宜采用 3.0,3.4m.第 4.3.2 条当控制屏与继电器屏采用分室布置时两部分的建筑装修照明采暖通风等设计均宜采用不同的标准.第 4.3.3 条对主控制楼及屋内配电装置楼等设有重要电气设备的建筑其屋面防水标准宜根据需要适当提高.屋面排水坡度不应小于 1/50并采用有组织排水.第 4.3.4 条主控制室及通信室等对防尘有较高要求的房间地坪应采用不起尘的材料.第 4.3.5 条蓄电池室与调酸室的墙面顶棚门窗排风机的外露部分及其他金属结构或零件均应涂耐酸漆或耐酸涂料.地面墙裙及支墩宜选用耐酸且易于清洗的面层材料面层与基层之间应设防酸隔离层.当采用全封闭防酸隔爆式蓄电池并有可靠措施时地面墙裙及支墩的防酸材料可适当降低标准.地面应有排水坡度将酸水集中后作妥善处理.第 4.3.6 条变电所内的主要建筑物及多层砖承重的建筑物在地震设防烈度为 6 度的地区宜隔层设置圈梁7 度及以上地区宜每层设置圈梁.圈梁应沿外墙纵墙及横墙设置沿横墙设置的圈梁的间距不宜大于 7m否则应利用横梁与圈梁拉通.对于现浇的或有配筋现浇层的装配整体式楼面或屋面允许不设置圈梁但板与墙体必需有可靠的连结.第 4.3.7 条在地震设防烈度为 6 度及以上的变电所其主要建筑物及多层砖承重建筑在下列部位应设置钢筋混凝土构造柱:一外墙四角二房屋错层部位的纵横墙交接处三楼梯间纵横墙交接处四层高等于或大于 3.6m 或墙长大于或等于 7m 的纵横墙交接处五8 度及以上地区的建筑物的所有纵横墙交接处六7 度地区的建筑物纵横墙交接处一隔一设置.第 4.3.8 条变电所内的主要砖承重建筑及多层砖承重建筑其抗震横墙除应满足抗震强度要求外其间距不应超过附录五的规定.第 4.3.9 条多层砖承重建筑的局部尺寸宜符合附录六的规定但对设有钢筋混凝构造柱的部位不受该表限制.第四节构筑物第 4.4.1 条结构的计算刚度对电焊或法兰连结的钢构件可取弹性刚度对螺栓连结的钢构件可近似采用 0.80 倍弹性刚度对钢筋混凝土构件可近似采用 0.60,0.80 倍弹性刚度对预应力钢筋混凝土构件可近似采用 0.65,0.85 倍弹性刚度.长期荷载对钢筋混凝土结构刚度的影响应另外考虑.第 4.4.2 条钢结构构件最大长细比应符合表 4.4.2 的规定.各种架构受压柱的整体长细比不宜超过 150当杆件受力有较大裕度时上述长细比允许放宽 10,15.第 4.4.3 条人字柱的受压杆计算长度可按本规范附录七采用.第 4.4.4 条打拉线条架构的受压杆件计算长度可按本规范附录八采用.835,110KV 变电所设计规范 GB50059-92表 4.4.2 钢结构构件最大长细比构件名称受压弦杆支座处受压腹杆一般受压腹.。

110kv变电站设计

110kv变电站设计

一、绪论1.1 变电站发展的历史与现状1.1.1 概况变电站是电力系统中不可缺少的重要环节,对电网的安全和经济运行起着举足轻重的作用,如果仍然依靠原来的人工抄表、记录、人工操作为主,将无法满足现代电力系统管理模式的需求;同时用于变电站的监视、控制、保护,包括故障录波、紧急控制装置,不能充分利用微机数据处理的大功能和速度,经济上也是一种资源浪费。

而且社会经济的发展,依赖高质量和高可靠性的电能供应,建国以来,我国的电力事业已经获得了长足的发展。

随着电网规模的不断扩大、电力分配的日益复杂和用户对电能的质量的要求进一不提高,电网自动化就显得极为重要;近年来我国计算机和通信技术的发展及自动化技术的成熟,发展配电网调度与管理自动化以具备了条件。

变电站在配电网中的地位十分重要,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。

因此,变电站自动化既是实现自动化的重要基础之一,也是满足现代化供用电的实时,可靠,安全,经济运行管理的需要,更是电力系统自动化EMS和DMS的基础。

变电站综合自动化是将变电站二次设备(包括控制、信号、测量、保护、自动装置及远动装置等)利用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站执行自动监视、测量、控制和调节的一种综合性的自动化系统。

它是变电站的一种现代化技术装备,是自动化和计算机、通信技术在变电站领域的综合应用,它可以收集较齐全的数据和信息。

它具有功能综合化、,设备、操作、监视微机化,结构分布分层化,通信网络光缆化及运输管理智能化等特征。

变电站的综合自动化为变电站小型化、智能化、扩大监视范围及变电站的安全、可靠、优质、经济地运行提供了现代化手段和基础保证。

1.1.2 变电站综合自动化系统的设计原则1.在保证可靠性的前提下,合理和设置网络和功能终端。

采用分布式分层结构,不须人工干预的尽量下放,有合理的冗余但尽量避免硬件不必要的重复。

2.采用开放式系统,保证可用性(Interoperability)和可扩充性(Expandability)。

110kV变电站设计

110kV变电站设计

110KV 变电所电气设计说明所址选择:首先考虑变电所所址的标高,历史上有无被洪水浸淹历史;进出线走廊应便于架空线路的引入和引出,尽量少占地并考虑发展余地;其次列出变电所所在地的气象条件:年均最高、最低气温、最大风速、覆冰厚度、地震强度、年平均雷暴日、污秽等级,把这些作为设计的技术条件。

主变压器的选择:变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。

它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10 年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。

选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN ,d11 常规接线)、调压方式、冷却方式。

由于本变电所具有三种电压等级110KV、35KV 、10KV ,各侧的功率均达到变压器额定容量的15%以上,低压侧需装设无功补偿,所以主变压器采用三绕组变压器。

为保证供电质量、降低线路的损耗此变压器采用的是有载调压方式,在运行中可改变分接头开关的位置,而且调节范围大。

由于本地区的自然地理环境的特点,故冷却方式采用自然风冷却。

为保证供电的可靠性,该变电所装设两台主变压器。

当系统处于最大运行方式时两台变压器同时投入使用,最小运行方式或检修时只投入一台变压器且能满足供电要求。

所以选择的变压器为2X SFSZL7-31500/110型变压器。

变电站电气主接线:变电站主接线的设计要求,根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。

通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,随出线数目的不同,可采用桥形、单母线、双母线及角形接线等。

如果变电站电压为超高压等级,又是重要的枢纽变电站,宜采用双母线带旁母接线或采用一台半断路器接线。

变电站的低压侧常采用单母分段接线或双母线接线,以便于扩建。

6~10KV馈线应选轻型断路器,如SN10型少油断路器或ZN13型真空断路器;若不能满足开断电流及动稳定和热稳定要求时,应采用限流措施。

110kv变电站设计

110kv变电站设计

目录1设计任务书 (1)1.1建设规模和依据 (1)1.2负荷统计 (1)2电气主线路 (2)2.1电气主线路的设计原则及要求 (2)2.2拟定确认主线路方案 (2)3变压器的选择 (6)3.1负荷的计算 (6)3.2变压器的选型 (6)4短路电流计算 (8)4.1短路电流计算概述 (8)4.2短路电流计算 (8)4.3短路计算的目的和条件 (10)5电气设备的选择 (11)5.1高压电气设备的保护、选择及校验 (11)5.2110K V母线进线侧断路器及隔离开关选择及校验 (12)5.335K V母线进线侧断路器及隔离开关选择及校验 (13)5.410K V母线进线侧断路器及隔离开关选择及校验 (14)5.5高压熔断器选择 (18)5.6电压、电流互感器的选择 (18)5.7室内配电开关柜选择 (20)总结 (21)致谢 (22)参考文献 (23)1 设计任务书1.1 建设规模和依据(1)变电所电压等级为:110/35/10KV,110KV是本变电所的电源电压,由330KV变出双回110KV线路送到本变电所;35KV和10KV是负荷侧电压。

(2)10KV电压等级:出线12回,本期上10回,备用2回。

负荷统计见表1.1。

(3)35KV电压等级:出线8回,本期上6回,备用2回。

负荷资料见表1.2。

最大负荷利用小时数Tmax=5500h,同时率取0.9,线路损耗取5%。

(4)系统归算到本变电所110KV母线阻抗值:正序X1=0.06;零序 Xo=0。

(5)气象条件:年最高温度40度,平均温度25度,年平均雷暴日为38日,气象条件一般。

1.2负荷统计序号用户名称最大负荷(KW)cosΦ回路数1 钢厂8000 0.85 22 硅铁厂7500 0.85 23 水泥厂3000 0.85 24 养蜂场2500 0.85 15 煤矿6500 0.85 26 面粉厂3000 0.85 1表1.1 10KV用户负荷统计资料序号用户名称最大负荷(KW)cosΦ回路数1 四坝变电站8500 0.85 12 红光变电站6000 0.85 13 位奇变电站5500 0.85 14 花草滩变电站6500 0.85 15 崖头变电站6000 0.85 16 东乐变电站7500 0.85 1表1.2 35KV用户负荷统计资料1.3 设计任务1、熟悉题目要求,查阅相关科技文献2、主接线方案设计3、选择主变压器4、短路电流计算5、电气设备的选择6、配电及继电保护设计2 电气主线路变电所电气主接线是电力系统接线组成的一个重要部分。

110KV变电站的设计与规划

110KV变电站的设计与规划

110KV变电站的设计与规划随着现代电力系统的不断发展,110KV变电站已成为城市供电和工业用电的重要组成部分。

作为电压转换和电能分配的关键设施,110KV 变电站的设计与规划显得尤为重要。

本文将详细介绍110KV变电站的设计原则、步骤、关键技术及运营管理,以供参考。

安全可靠性:变电站的设计应首要考虑安全性,确保变电设备运行稳定,降低故障风险,满足N-1安全准则。

同时,应具备应对突发事件的能力,如自然灾害、设备故障等。

经济实用性:在满足安全可靠性的前提下,变电站的设计应注重经济实用性,合理控制建设成本,提高资源利用率,同时考虑扩建和改造的可行性。

先进性:变电站的设计应采用先进的设备和技术,以提高自动化水平、减少人工干预,实现高效运营。

环境适应性:变电站的设计应充分考虑周边环境的影响,尽量减少对周边环境的破坏,采用环保材料和设备,提高能源利用效率。

110KV变电站的设计步骤一般包括以下几个环节:需求分析:明确用电需求,分析负荷特性,同时对地理、气象、环境等条件进行全面调查,为设计提供基础数据。

设计构思:根据需求分析结果,制定设计方案,包括电气主接线、设备选择、布置方式等。

方案论证:对设计构思进行全面评估,确保设计方案满足安全可靠性、经济实用性、先进性和环境适应性的要求。

设计审批:经过专家评审和相关部门批准,最终确定设计方案。

110KV变电站建设的关键技术包括以下几个方面:电气设备选择:根据设计要求选择合适的电气设备,如变压器、断路器、隔离开关、互感器等,确保其性能稳定、安全可靠。

布线设计:合理规划电气设备的连接线路,采用成熟的接线方式,提高电气系统的可靠性。

同时,注重电缆或架空线的选材和布置,以便于维护和检修。

防雷措施:为防止雷击对电气设备的损害,需设计完善的防雷系统,包括避雷针、避雷线等设备的选择和安装,确保电气设备在雷雨天气的正常运行。

对于110KV变电站的运营管理,以下措施值得:人员管理:加强变电运行人员的培训和资质认证,确保操作规范、安全意识强。

(完整版)110KV变电站设计

(完整版)110KV变电站设计

110KV变电站设计学院:专业:年级: 指导老师:学生姓名:日期:摘要:本文主要进行110KV变电站设计。

首先根据任务书上所给系统及线路和所有负荷的参数,通过对所建变电站及出线的考虑和对负荷资料分析,满足安全性、经济性及可靠性的要求确定了110KV、35KV、10KV侧主接线的形式,然后又通过负荷计算及供电范围确定了主变压器台数、容量、及型号,从而得出各元件的参数,进行等值网络化简,然后选择短路点进行短路计算,根据短路电流计算结果及最大持续工作电流,选择并校验电气设备,包括母线、断路器、隔离开关、电压互感器、电流互感器等,并确定配电装置。

根据负荷及短路计算为线路、变压器、母线配置继电保护并进行整定计算。

本文同时对防雷接地及补偿装置进行了简单的分析,最后进行了电气主接线图及110KV配电装置间隔断面图的绘制。

关键词:变电站设计,变压器,电气主接线,设备选择Abstract:This paper mainly carries on the design of 110KV substation. According to the mandate given by the system and the load line and all parameters of the substation and line consideration and the data of load analysis, meet the safety, economy and reliability requirements of 110KV, 35KV, 10KV side of the main connection form is determined, and then through the load calculation and determine the scope of supply the number, size, and type of the main transformer, thus obtains the parameters of each element, the equivalent network simplification, and then select the short circuit short circuit calculation, the calculation results and the maximum continuous working current according to short-circuit current, selection and calibration of electrical equipment, including bus, circuit breaker, isolating switch, voltage transformer, current transformer etc., and determine the distribution device. According to the load and short circuit calculation for the line, transformer, bus configuration of relay protection and setting calculation. At the same time, this paper makes a simple analysis of lightning protection and grounding and compensation device, and finally carries out the electrical main wiring diagram and the 110KV distribution unit interval section drawing.Key words: substation design, transformer, electrical main wiring, equipment selection目录1 引言 (1)1.1 变电站的作用 (1)1.2 我国变电站及其设计的发展趋势 (2)1.3 变电站设计的主要原则和分类 (5)1.4 选题目的及意义 (6)1.5 设计思路及工作方法 (6)1.6 设计任务完成的阶段内容及时间安排 (7)2 任务书 (7)2.1 原始资料 (7)2.2 设计内容及要求 (10)3 电气主接线设计 (11)3.1 电气主接线设计概述 (11)3.2 电气主接线的基本形式 (14)3.3 电气主接线选择 (14)4 变电站主变压器选择 (18)4.1 主变压器的选择 (19)4.2 主变压器选择结果 (21)5 短路电流计算 (22)5.1 短路的危害 (22)5.2 短路电流计算的目的 (22)5.3 短路电流计算方法 (22)5.4 短路电流计算 (23)5.4.1 110kv侧母线短路计算 (25)5.4.2 35kv侧母线短路计算 (27)5.4.3 10kv侧母线短路计算 (28)6 电气设备的选择 (31)6.1 导体的选择和校验 (31)6.1.1 110kv母线选择及校验 (32)6.1.2 35kv母线选择及校验 (33)6.1.3 10kv母线选择及校验 (34)6.2 断路器和隔离开关的选择及校验 (35)6.2.1 110kv侧断路器及隔离开关的选择及校验 (36)6.2.2 35kv侧断路器及隔离开关的选择及校验 (38)6.2.3 10kv侧断路器及隔离开关的选择及校验 (40)6.3 电压互感器和电流互感器的选择 (42)6.3.1 电流互感器的选择 (42)6.3.2 电压互感器的选择 (44)7 继电保护的配置 (46)7.1 继电保护的基本知识 (46)7.2 110kv线路的继电保护配置及整定计算 (53)7.2.1 110kV线路继电保护配置 (53)7.2.2 110kV线路继电保护整定计算 (53)7.3 变压器的继电保护及整定计算 (58)7.3.1 变压器的继电保护 (58)7.3.2变压器的继电保护整定计算 (59)7.4 母线保护 (61)7.5 备自投和自动重合闸的设置 (63)7.5.1 备用电源自动投入装置的含义和作用 (63)7.5.2 自动重合闸装置 (63)8 防雷与接地方案的设计 (64)防雷概述 (64)1.1雷电的成因及危害 (64)1.2直击雷的成因及危害 (64)1.3感应雷的成因及危害 (64)防雷设计原则 (65)8.1 防雷保护 (65)8.2 接地装置的设计 (66)9 配电装置 (67)9.1 配电装置概述 (67)9.2 配电装置类型 (68)9.3 对配电装置的基本要求和设计步骤 (68)9.4 屋内配电装置 (69)9.5 屋外配电装置 (69)10 结束语 (70)参考文献 (72)致谢 (73)附录 (74)附录一电气主接线图 (74)附录二110KV屋外普通中型单母线分段接线的进出线间隔断面图 (75)1 引言1.1 变电站的作用一、变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。

110kV变电站土建设计全文-综合-

110kV变电站土建设计全文-综合-
应说明各建筑名称、建筑面积、层数、层高、高度、 主要结构型式、抗震设防等级。
■ 3.2 全站生产及辅助建筑物
1 建筑物与周围环境空间的协调关系、方案的特点。
2根据使用功能及工艺要求、确定建筑平面布置、层数、层 高、垂直及水平交通的组织、安全出入口的布置及采光、通 风、隔热保温、节能、防眩光、防噪音及为适应其他环 境 条件所采取的技术措施。
■ 3. 计算项目及其深度要求 1 总平面布置技术经济指标计算 应包括站区占地面积,各建筑物的建筑占地面积,围墙以外用地估算, 站外引接道路,路径规划,站外水源管线规划。
2 坐标系统计算 应包括围墙坐标,站区建构筑物坐标计算。
3)土(石)方工程量计算 应包括挖、填方量及土方平衡(应考虑基础,基坑的余土量)。
■ 8 土石方情况
说明土质结构比,预估土石方工程量和 费用,说明取土土源,弃土地点等情况。
■ 9 进站道路和交通运输
■ 9.1 说明进站道路的引接方案需新建道路的 长度和改造道路等的工程量。
■ 9.2 说明大件运输的条件并根据水路、陆路、 铁路情况综合比较运输方案。
■ 10 站用电源 ■ 11 站址环境 ■ 12 通信干扰 ■ 13 施工条件
二、可研说明书内容
■ 1. 站址区域概况 ■ 1.1 站址所在位置的省、市、县、乡镇、村
落名称。 ■ 1.2 站址地理状况描述:站址的自然地形、地
貌、海拔高度、自然高差、植被、农作物 种类及分布情况。 ■ 1.3 站址土地使用状况:说明目前土地使用权, 土地用途(建设用地、农用地、未利用地), 地区人均耕地情况。
4)建筑 应有全站的生产和辅助建筑面积计算。
5)结构
对有代表性的框架、梁柱构件及基础进行估算(当有类似工程或 标准设计时,可套用计算书)。新技术新结构的选型,应有选型的计 算论证。

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计【摘要】110kV变电站电气设计在现代电力系统中起着至关重要的作用。

本文从引言、正文和结论三个部分对其进行了全面探讨。

在引言中,阐述了110kV变电站电气设计的重要性和发展现状,为后续内容打下基础。

接着在详细介绍了110kV变电站电气设计的基本原则、关键技术、安全考虑、节能环保措施以及智能化应用,为读者深入理解该领域提供了丰富的知识和信息。

最后在结论中,展望了110kV变电站电气设计的未来发展方向,并总结了其重要性。

通过本文的阐述,读者可以更全面地了解110kV变电站电气设计在电力领域中的重要性和发展趋势,为相关领域的研究和实践提供了有益的参考。

【关键词】110kV变电站、电气设计、基本原则、关键技术、安全考虑、节能环保、智能化应用、未来发展方向、重要性、现状、总结1. 引言1.1 110kV变电站电气设计的重要性110kV变电站电气设计是电力系统中至关重要的一环,其重要性体现在多个方面。

110kV变电站是连接输电网和配电网的重要纽带,承担着电能传输和转换的关键任务。

而电气设计则是变电站建设和运行的基础,直接影响着电力系统的安全、稳定和可靠运行。

110kV变电站的电气设计涉及到大量设备和系统的选择、配置和布置,需要充分考虑功率传输、设备保护、系统协调等多方面因素,以确保电力系统的正常运行。

随着电力系统的不断发展和变革,110kV变电站电气设计也日益受到重视,不断涌现出新的技术和理念,为电力系统的安全、经济和可持续发展提供了重要支撑。

深入理解110kV变电站电气设计的重要性,对于提高电力系统的运行效率、保障电力供应质量具有重要意义。

1.2 110kV变电站电气设计的发展现状110kV变电站电气设计是电力系统中至关重要的一个环节,随着电力行业的发展和技术的进步,110kV变电站电气设计也在不断发展和完善。

目前,随着电力系统的规模不断扩大和质量要求的提高,110kV变电站电气设计也在不断创新和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

110KV变电所电气设计说明所址选择:首先考虑变电所所址的标高,历史上有无被洪水浸淹历史;进出线走廊应便于架空线路的引入和引出,尽量少占地并考虑发展余地;其次列出变电所所在地的气象条件:年均最高、最低气温、最大风速、覆冰厚度、地震强度、年平均雷暴日、污秽等级,把这些作为设计的技术条件。

主变压器的选择:变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。

它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。

选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN,d11常规接线)、调压方式、冷却方式。

由于本变电所具有三种电压等级110KV、35KV、10KV,各侧的功率均达到变压器额定容量的15%以上,低压侧需装设无功补偿,所以主变压器采用三绕组变压器。

为保证供电质量、降低线路的损耗此变压器采用的是有载调压方式,在运行中可改变分接头开关的位置,而且调节范围大。

由于本地区的自然地理环境的特点,故冷却方式采用自然风冷却。

为保证供电的可靠性,该变电所装设两台主变压器。

当系统处于最大运行方式时两台变压器同时投入使用,最小运行方式或检修时只投入一台变压器且能满足供电要求。

所以选择的变压器为2×SFSZL7-31500/110型变压器。

变电站电气主接线:变电站主接线的设计要求,根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。

通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,随出线数目的不同,可采用桥形、单母线、双母线及角形接线等。

如果变电站电压为超高压等级,又是重要的枢纽变电站,宜采用双母线带旁母接线或采用一台半断路器接线。

变电站的低压侧常采用单母分段接线或双母线接线,以便于扩建。

6~10KV馈线应选轻型断路器,如SN10型少油断路器或ZN13型真空断路器;若不能满足开断电流及动稳定和热稳定要求时,应采用限流措施。

在变电站中最简单的限制短路电流的方法,是使变压器低压侧分列运行;若分列运行仍不能满足要求,则可装设分列电抗器,一般尽可能不装限流效果较小的母线电抗器。

故综合从以下几个方面考虑:1 断路器检修时,是否影响连续供电;2 线路能否满足Ⅰ,Ⅱ类负荷对供电的要求;3大型机组突然停电对电力系统稳定运行的影响与产生的后果等因素。

主接线方案的拟定:对本变电所原始材料进行分析,结合对电气主接线的可靠性、灵活性及经济性等基本要求,综合考虑。

在满足技术、经济政策的前提下,力争使其技术先进,供电可靠,经济合理的主接线方案。

此主接线还应具有足够的灵活性,能适应各种运行方式的变化,且在检修、事故等特殊状态下操作方便、调度灵活、检修安全、扩建发展方便。

故拟定的方案如下:方案Ⅰ:110KV侧采用内桥接线,35KV采用单母分段,10KV单母接线。

方案Ⅱ:110KV侧采用单母分段,35KV采用单母分段带旁母,10KV采用单母分段。

由以上两个方案比较可知方案Ⅰ的110KV母线侧若增加负荷时不便于扩建,35KV、10KV出线的某一回路出现故障时有可能使整个线路停止送电,所以很难保证供电的可靠性、不便于扩建检修,故不采用。

方案Ⅱ的110KV母线侧便于扩建,35KV线路故障、检修、切除或投入时,不影响其余回路工作,便于倒闸操作,10KV侧某一线路出现故障时不至于使整个母线停电,满足供电可靠、操作灵活、扩建方便等特点,所以采用方案Ⅱ,主接线图如图所示。

高压断路器和隔离开关的选择:1 断路器种类和型式的选择按照断路器采用的灭弧介质可分为油断路器、压缩空气断路器、SF6断路器、真空断路器等。

2 额定电压和电流选择ImUn≥Uns,In≥as式中Un、Uns—分别为电气设备和电网的额定电压,KVIm—分别为电气设备的额定电流和电网的最大负荷电In、as流,A。

3 开断电流选择高压断路器的额定开断电流Inbr,不应小于实际开断瞬间的短路电流周期分量Ipt,即Inbr≥Ipt4 短路关合电流的选择为了保证断路器在关合短路电流时间的安全,断路器的额定关合电流iNel不应小于短路电流最大冲击值ish。

iNel≥ish5 断路热稳定和动稳定的校验校验式I t2≥Q,i es≥i shk隔离开关的选择:隔离开关也是发电厂和变电所中常用的开关电器。

它需与断路器配套使用。

但隔离开关无灭弧装置,不能用来接通和切断负荷电流和短路电流。

隔离开关与断路器相比,额定电压、额定电流的选择及短路动、热稳定的项目相同。

但由于隔离开关不用来接通和切断短路电流,故无需进行开断电流和短路关合电流的校验。

互感器的选择:互感器是电力系统中测量仪表、继电保护等一次设备获取电气一次回路信息的传感器。

互感器将高电压、大电流按比例变成低电压(100、100/)和小电流(5、1A)。

电流互感器的二次侧绝对不能够开路。

电压互感器的二次侧绝对不能够短路1 种类和型式的选择选择电流互感器时,应根据安装地点(如屋内、屋外)和安装方式(如穿墙式、支持式、装入式)选择其型式。

当一次电流较小时,宜优先采用一次绕组多匝式,弱电二次额定电流尽量采用1A,强电采用5A。

2 一次回路额定电压和电流的选择ImUn≥Uns,In≥as式中Un、Uns—分别为电气设备和电网的额定电压,KVIn 、as Im —分别为电气设备的额定电流和电网的最大负荷电3准确级和额定容量的选择互感器所选定准确级所规定的额定容量s N 2应大雨等于二次册所接负荷Z I L n 222,即s N 2≥Z I L n 2224 热稳定和动稳定的校验It2≥Q k,i es ≥i shIt2为电流互感器1S 通过的热稳定电流,i es 为电流互感器的动稳定电流。

裸导体的选择:导体截面可按照长期发热允许电流或经济电流密度选择。

对年负荷利用小时数大(通常指T max >5000h ),传输容量大,长度在20m 以上的导体,如发电机、变压器的连接导体其截面一般按经济电流密度选择。

而配电装置的汇流母线通常在正常运行方式下,传输容量大,可按长期允许电流来选择。

1 按导体长期发热允许电流选择as Im ≤k I al2 按经济电流密度选择Sj=JI max 3 电晕电压校验U cr>UMAX4 热稳定动稳定校验S min =C1K Q f k 按电压损失要求选择导线截面(一般用于10KV 以下):为保证供电质量,导线上的电压损失应低于最大允许值,通常不超过5%。

因此,对于输电距离较长或负荷电流较大的线路,必须按允许电压损失来选择或校验导线截面。

设线路允许电压损失为△Ual%即 [ P (rl )+Q (xl )]/10Un 2≤△Ual%补偿装置的选择:电力系统的无功功率平衡是系统电压质量的根本保证。

在电力系统中,整个系统的自然无功负荷总大于原有的无功电源,因此必须进行无功补偿。

通常情况下110KV 的变电所是在35KV 母线和10KV 母线上进行无功补偿,本变电所是在10KV 母线上并联电容器和可调节的并联电抗器为主要的无功补偿(并联电容器和并联电抗器是电力系统无功补偿的主要常用设备,予优先采用),既将功率因数由0.8提高至0.92,合理的无功补偿和有效的电压控制,不仅可以提高电力系统运行的稳定性、安全性和经济性,故所选的电容器型号为TBB 310-1500/50。

避雷装置的选择: 避雷针:单根接地电阻不大雨10Ω,应布置单根垂直接地体,P=50Ω/m ,L=2.5m ,d=0.05m 的钢管,由60*6的扁钢连接,埋入地下3m 处。

接地电阻Rc=dL L P 4ln 2 =22.9Ω。

避雷器:对于本变电所来说,采用氧化锌避雷器,110KV 线路侧一般不装设避雷器,主变压器低压侧的一相上宜装设一台Y5W-12.7/42型避雷器,35KV 出线侧装设Y10W5-42/142型避雷器。

接地网:变电所内必须安装闭合的接地网,并装设必需的均压带,接地网采用水平接地为主,辅以垂直的封闭复合式接地网。

主接地网电阻R≤4Ω;避雷针设独立接地体,它于主接地网地中距离T≥5m ,其接地电阻R≤10Ω。

接地网有均压、减少接触电势和跨步电压的作用,又有散流作用。

在防雷接地装置中,可采用垂直接地体作为避雷针、避雷线和避雷器附近加强集中接地和散泄电流的作用。

变电所不论采用何种接地体应敷设水平接地体为主的人工接地网。

人工接地网的外缘应闭合,外缘的各角应做成圆弧行,圆弧半径不宜小于均牙带间距的一半,接地网内敷设水平的均压带。

接地网一般采用0.6m ~0.8m ,在冻土地区应敷设在冻土层以下。

均压带经常有人出入的走道应铺设沥青面(采用高电阻率的路面结构层),接地装置敷设成环形,目的是防止应接地网流过中性点的不平衡电流在雨后地面积水成泥污时,接地装置附近的跨步电压引起行人和牲畜的触电事故。

此接地网水平接地体采用的是60*6的扁钢敷于地下0.8m 处,垂直接地体为φ50 ,L=2.5m 的圆钢,自地下0.8m 处与水平接地体焊接,接地体引上线采用25*4的扁钢与设备焊接。

接地网的工频电阻R <0.5Ω。

敷设在大气和土壤中有腐蚀的接地体和接地引下线,需采取一定的防腐措施(热镀锌,镀锡)。

所用变的设置:为保证重要变电所的安全用电,所以需装设两台所用变,以备用。

为了保证供电的可靠性应在35KV 和10KV 母线上各装设一台变压器。

若只在10KV 母线上引接所用电源,由于低压线路故障率较高,所以不能保证变电所的不间断供电。

故所用变采用的型号是S6-50/10、S6-50/35。

接线图如下所示:Ⅰ变电所的自动化控制:本变电所采用综合自动化设备,远动信息按四遥配置。

1.遥测35KV线路有功功率、电流和电能;10KV 线路有功功率、电流和电能;10KV电容器电流和电能;110KV、35KV、10KV各段母线电压;主变压器高、中、低侧有功功率、电流和电能;所用电和直流系统母线电压;2.遥信110KV、35KV、10KV线路断路器、隔离开关、PT隔离刀闸位置;主变三侧断路器、隔离开关、中性点接地位置;主变瓦斯动作信号;差动保护动作信号;复合电压闭锁过电流保护动作信号;低频减载动作信号;35KV、10KV系统接地信号、保护动作信号;断路器控制回路断线总信号;变压器油温过高信号;主变压器轻瓦斯动作信号;变压器油温过低总信号;微机控制系统交流电源消失信号;微机控制系统下行通道信号;直流系统绝缘监测信号;遥控转为当地控制信号;3.遥调变压器档位调节4.遥控110KV及以下断路器分合、预告信号复归。

电缆设施及防水:该变电所配电设有电缆沟,电缆沟沿主建筑物至主变区配合装置。

相关文档
最新文档