汇编常用伪指令

合集下载

汇编语言伪指令

汇编语言伪指令

汇编语言伪指令汇编语言作为一种低级编程语言,广泛应用于嵌入式系统、驱动程序开发和操作系统内核等领域。

在进行汇编语言编程时,我们常常会使用到一些伪指令。

本文将介绍一些常见的汇编语言伪指令及其用法。

1. 数据定义伪指令数据定义伪指令用于声明并初始化数据。

在汇编语言中,我们可以使用以下伪指令来定义不同类型的数据:1.1 DB(Define Byte):用于定义一个字节的数据。

例如:DB 10 ;定义一个字节的数据,值为101.2 DW(Define Word):用于定义一个字的数据。

例如:DW 100 ;定义一个字的数据,值为1001.3 DD(Define Doubleword):用于定义一个双字的数据。

例如:DD 1000 ;定义一个双字的数据,值为10001.4 DQ(Define Quadword):用于定义一个四字的数据。

例如:DQ 10000 ;定义一个四字的数据,值为100001.5 DT(Define Ten Bytes):用于定义一个十个字节的数据。

例如:DT 1234567890 ;定义一个十个字节的数据,值为12345678902. 代码段和数据段伪指令在汇编语言中,我们通常需要将代码和数据分开存放,以便于管理和执行。

以下是一些常用的代码段和数据段伪指令:2.1 CODE SEGMENT:用于定义代码段。

例如:CODE SEGMENT;代码段内容CODE ENDS2.2 DATA SEGMENT:用于定义数据段。

例如:DATA SEGMENT;数据段内容DATA ENDS2.3 STACK SEGMENT:用于定义堆栈段。

例如:STACK SEGMENT;堆栈段内容STACK ENDS3. 控制指令伪指令控制指令伪指令用于控制程序的执行流程。

以下是一些常见的控制指令伪指令:3.1 IF-ELSE-ENDIF:用于条件判断。

例如:IF 条件;条件为真时执行的代码ELSE;条件为假时执行的代码ENDIF3.2 REPEAT-UNTIL:用于循环执行一段代码直至满足条件。

《汇编语言》学习笔记6——伪指令

《汇编语言》学习笔记6——伪指令

《汇编语⾔》学习笔记6——伪指令1.伪指令⼜称伪操作,即不能像汇编指令⼀样⽣成可执⾏的⼆进制机器代码,⽽是在汇编程序对汇编语⾔源程序进⾏汇编(编译)期间,由汇编程序执⾏。

它与C中的说明性语⾔的含义类似,起到说明作⽤,⽤来指出程序分段、数据定义、存储分配、程序开始和结束等信息,这些信息在汇编(编译)完成后就不⽤了。

但程序中没伪指令,则系统就⽆法完成编译。

2.段定义伪指令:⽤来定义各种类型的段 1.格式:段名 SEGMENT [类型参数] ...... 段名 ENDS 1.其中SEGMENT和ENDS必须成对出现,表⽰段的开始和结束。

⼀般的,段名和段的意义⼀致,便于识别。

2.段名实际就是段地址,在汇编过程中,系统给出具体的地址值,⼀个段必须有⼀个名字来标识。

3.参数是可选项(可有可⽆),⽤于指出段的边界、段的组合、类别标识,⼀般⽤于多模块程序设计中。

2.类型参数 1.定位类型 PARA 该段的起始地址必须为⼩段的⾸地址,即起始地址的16进制数最低位为0 BYTE 该段可以从任意地址开始 WORD 该段必须从字边界开始,即起始地址为偶数 DWORD 该段必须从双字边界开始,即起始地址的16进制数为最低应为4的倍数 PAGE 该段必须从页边界开始,即起始地址的16进制数最低两位为00(能被256整除) 若不指定定位类型,系统默认为PARA 2.组合类型 PRIVATE 该段为私有段,连接时不与其他同名段合并 PUBLIC 连接时可与其他模块中的同名段按顺序连接成⼀个段 COMMON 表⽰该段与其他模块中的同名段有相同的起始地址,如果连接将产⽣覆盖,连接后段的长度为同名段中的最长者 STACK 表⽰该段为堆栈段 AT 表达式 该段直接定位在表达式指出的位置上 若不指定组合类型,默认为PRIVATE 3.类型标识:在引号中给出段的类型名。

在连接时,类别标识相同的段放在连续的存储区中。

(如:"STACK"⽤啦标识该段为堆栈段) 4.END:结束标记,若碰到伪指令END则停⽌编译3.ASSUME伪指令:⽤于指明段寄存器与段的对应关系 1.格式:ASSUME 段寄存器:段名,[段寄存器:段名,段寄存器:.....]【[]中标识可选项】 2.除了代码段寄存器CS不能⽤MOV指令赋值外,其他段寄存器都可⽤MOV指令进⾏初始化。

asm汇编伪指令大全

asm汇编伪指令大全

在ARM 汇编语言程序里,有一些特殊指令助记符,这些助记符与指令系统的助记符不同,没有相对应的操作码,通常称这些特殊指令助记符为伪指令,他们所完成的操作称为伪操作。

伪指令在源程序中的作用是为完成汇编程序作各种准备工作的,这些伪指令仅在汇编过程中起作用,一旦汇编结束,伪指令的使命就完成。

在ARM 的汇编程序中,有如下几种伪指令:符号定义伪指令、数据定义伪指令、汇编控制伪指令、宏指令以及其他伪指令。

符号定义(Symbol Definition )伪指令符号定义伪指令用于定义ARM 汇编程序中的变量、对变量赋值以及定义寄存器的别名等操作。

常见的符号定义伪指令有如下几种:—用于定义全局变量的GBLA 、GBLL 和GBLS 。

—用于定义局部变量的LCLA 、LCLL 和LCLS 。

—用于对变量赋值的SETA 、SETL 、SETS 。

—为通用寄存器列表定义名称的RLIST 。

1、GBLA、GBLL 和GBLS语法格式:GBLA (GBLL 或GBLS )全局变量名GBLA 、GBLL 和GBLS 伪指令用于定义一个ARM 程序中的全局变量,并将其初始化。

其中:GBLA 伪指令用于定义一个全局的数字变量,并初始化为0 ;GBLL 伪指令用于定义一个全局的逻辑变量,并初始化为F (假);GBLS 伪指令用于定义一个全局的字符串变量,并初始化为空;由于以上三条伪指令用于定义全局变量,因此在整个程序范围内变量名必须唯一。

使用示例:GBLA Test1 ;定义一个全局的数字变量,变量名为Test1Test1 SETA 0xaa ;将该变量赋值为0xaaGBLL Test2 ;定义一个全局的逻辑变量,变量名为Test2Test2 SETL {TRUE} ;将该变量赋值为真GBLS Test3 ;定义一个全局的字符串变量,变量名为Test3Test3 SETS “ Testing ” ;将该变量赋值为“ Testing ”2、LCLA、LCLL 和LCLS语法格式:LCLA (LCLL 或LCLS )局部变量名LCLA 、LCLL 和LCLS 伪指令用于定义一个ARM 程序中的局部变量,并将其初始化。

汇编常见伪指令

汇编常见伪指令

汇编常见伪指令汇编常见伪指令转⾃:⼀、与宏有关的伪指令在宏定义时,为了满⾜某种特殊需要,汇编语⾔还提供了⼏个伪指令。

9.3.1 局部标号伪指令LOCAL在宏定义体中,如果存在标号,则该标号要⽤伪指令LOCAL说明为局部标号,否则,当在源程序中,有多于⼀次引⽤该宏时,汇编程序在进⾏宏扩展后将会给出:标号重复定义的错误。

伪指令LOCAL的⼀般格式如下:LOCAL 标号1, 标号2, ……伪指令LOCAL必须是伪指令MACRO后的第⼀条语句,并且在MACRO和LOCAL之间也不允许有注释和分号标志。

汇编程序在每次进⾏宏扩展时,总是把由LOCAL说明的标号⽤⼀个唯⼀的符号(从??0000到??FFFF)来代替,从⽽避免标号重定义的错误。

例9.7 编写求⼀个求绝对值的宏。

解:⽅法1:ABSMACROword1CMPword1, 0JGEnextNEGword1next:ENDM假设对宏ABS有以下两次引⽤,点击它们将会显⽰汇编程序对它们进⾏宏扩展后所得到程序⽚段: ABS BX 1 CMP BX, 0 1 JGE next 1 NEG BX 1 next:… ABS AL 1 CMP AL, 0 1 JGE next 1 NEG AL 1 next:在上述程序⽚段中,显然标号next定义了⼆次,所以,汇编程序将显⽰“标号重复定义”的错误信息。

为了避免这种情况的发⽣,我们需要⽤下⾯的⽅法来定义该宏。

⽅法2:ABSMACROword1LOCALnextCMPword1, 0JGEnextNEGword1next:ENDM假设对宏ABS有以下两次引⽤,点击它们将会显⽰汇编程序对它们进⾏宏扩展时所得到程序⽚段: ABS BX 1 CMP BX, 0 1 JGE ??0000 1 NEG BX 1 ??0000:… ABS AL 1 CMP AL, 0 1 JGE ??0001 1 NEG AL 1 ??0001:在上述程序⽚段中,宏体内部的局部标号next分别⽤符号??0000和??0001来对应它的⼆次引⽤。

汇编 第四章伪指令及汇编语言源程序结构

汇编 第四章伪指令及汇编语言源程序结构

MOV AL, BUF1
ADD AL, BUF2 MOV SUM, AL
;取第一个加数
;两数加 ;和放入SUM单元
3
伪指令(指 示性)语句: 提供相关辅 助信息。
指令性语句: 完成一定功 能,能翻译 成机器码。
伪指令语句
DATA SEGMENT ;DATA段定义开始 BUF1 DB 34H BUF2 DB 27H SUM DB ? DATA ENDS ;DATA段定义结束 CODE SEGMENT ;CODE段定义开始 ASSUME CS:CODE ASSUME DS:DATA ;段性质规定 START: MOV AX,DATA MOV DS,AX ;给DS赋值 MOV AL, BUF1 ;取第一个加数 ADD AL, BUF2 ;两数加 MOV SUM, AL ;和放入SUM单元 MOV AH,4CH INT 21H ;返回DOS CODE ENDS ;CODE段定义结束 END START ;源程序结束
14
二、= 等号伪指令
格式:符号名 = 表达式 功能:为常量、表达式及其他各种符号定义一个等价的符号 名,并能对所定义的符号多次重复定义,且以最后一次定义 的值为准。 例:COST = 20 M = MOV LOST = COST+10 ;30→LOST M = ADD ;M=ADD 注 : “ = ” 伪 指 令 的 格 式 和 功 能 与 EQU 类 似 。 二者区别:在同一程序中,“=”可以对一个符号重 复定义,EQU不能对同一符号重复定义。
26
三、变量、标号的分析运算和合成运算
例:DATA SEGMENT A DB ‘ABCDEF’ B DW 10 DUP(1,2DUP(2)) C DB 3,20 DUP(0) DATA ENDS ┆ MOV AX,LENGTH A ;1→AX MOV BX,LENGTH B ;10→BX MOV CX,LENGTH C ;1→CX ┆

汇编指令、伪指令大全

汇编指令、伪指令大全

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器.MOV DST , SRC // Byte / Word执行操作: dst = src1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器).2.立即数不能直接送段寄存器3.不允许在两个存储单元直接传送数据4.不允许在两个段寄存器间直接传送信息PUSH入栈指令及POP出栈指令: 堆栈操作是以"后进先出"的方式进行数据操作.PUSH SRC //Word入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器.入栈时高位字节先入栈,低位字节后入栈.POP DST //Word出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器.执行POP SS指令后,堆栈区在存储区的位置要改变.执行POP SP 指令后,栈顶的位置要改变.XCHG(eXCHanG)交换指令: 将两操作数值交换.XCHG OPR1, OPR2 //Byte/Word执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp1.必须有一个操作数是在寄存器中2.不能与段寄存器交换数据3.存储器与存储器之间不能交换数据.XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码.XLAT (OPR 可选) //Byte执行操作: AL=(BX+AL)指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码.LEA(Load Effective Address) 有效地址传送寄存器指令LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中.执行操作: REG = EAsrc注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器MOV BX , OFFSET OPER_ONE 等价于 LEA BX , OPER_ONEMOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中LDS(Load DS with pointer)指针送寄存器和DS指令LDS REG , SRC //常指定SI寄存器。

8086汇编语言伪指令

8086汇编语言伪指令

一、伪指令详解伪指令在百度百科中的定义为:伪指令(Pseudo Instruction)是用于对汇编过程进行控制的指令,该类指令并不是可执行指令,没有机器代码,只用于汇编过程中为汇编程序提供汇编信息。

例如,提供如下信息:哪些是指令、哪些是数据及数据的字长、程序的起始地址和结束地址等。

伪指令有2个特点:1.由于是伪“指令”,因而它只存在于汇编语言中。

高级语言中不叫指令,叫语句;2.由于是“伪”指令,也即“假”指令,因而不是可执行指令,不会产生机器代码,不会占用ROM空间,只用于汇编过程中为汇编程序提供汇编信息。

与指令的区别::1.指令是在执行阶段发挥作用的,由CPU(Intel、AMD等)来执行。

2.伪指令是在编译阶段发挥作用的,由汇编器(MASM、TASM等)来解释。

二、数据定义伪指令为源程序中的数据和堆栈区分配数据存储单时,使用最多的伪指令。

数据定义伪指令格式如下:常用的数据定义伪指令类型有:∙DB(定义字节,常用)一个字节数据占1个字节单元,读完一个,偏移量加1∙DW(定义字,常用)一个字数据占2个字节单元,读完一个,偏移量加2∙DD(定义双字)一个双字数据占4个字节单元,读完一个,偏移量加4∙DQ(定义四字)一个四字数据占8个字节单元,读完一个,偏移量加8∙DT(定义十字节,用于BCD码)数据定义伪指令后面的初值表可以是常数、表达式、字符串。

例如:D2DW110*230;为D2分配1个字,存放表达式的值D3DB‘GOOD!’;为D3分配5字节,用来存放字符串‘GOOD!’D4DD2.4E+3;为D4分配2个字,存放一个浮点数D5DB‘AB’;为D5分配2字节,字符A在低字节,B在高字节D6DW‘AB’;为D6分配1个字,字符A在高字节,B在低字节S1DB5DUP(?);为S1预留5字节的存储空间S2DW3DUP(0);为S2分配3个字,初值设为0语句1相当于C语言中的DW D2=110*230,只不过是语法结构不太一样注意:通过变量名操作时,变量名代表存储区的第一个数据的地址。

汇编言语——常用伪指令

汇编言语——常用伪指令

(5)可以用ASSUME伪指令指定两个或两个以上的段寄存 器作为同一个段中标识符的缺省段寄存器。当数据定义与指令 写在同一个段中时,就会出现以CS、DS甚至ES一起作为一个 段的缺省段寄存器的情况。此时,有关数据的操作(取值、存 数等)优先以DS作为段寄存器。 (6)ASSUME可以在程序的不同行上出现多次,并且可以 对一个段寄存器进行两次或两次以上的对应关系指定。当程序 中用ASSUME指定了一个段寄存器是某个段的缺省段寄存器后, 在程序的后续行中一直有效,除非再次使用ASSUME伪指令改 变该段寄存器与段的对应关系。
【解】变量a的定义中出现的$是带引号的,表示ASCII码 值为24H的符号而不是偏移地址;定义变量b时用的两个$没有 加引号,表示偏移地址,按照地址分配原则,第一个$代表 0001H,第二个$代表0003H;在变量c的定义中,$出现在数值 表达式中,是当前偏移地址0005H,变量a的起始偏移地址是 0000H,两者相减的结果是5,并且不再有类型,因此可以作 为字节型变量的一项初值。图5.6是该数据段对应的内存图。 a b
5.3 ASSUME
ASSUME伪指令占一行,用于指出后续程序中所使用的变 量、标号等标识符在涉及到逻辑地址的段地址部分时,用哪 个段寄存器作为缺省段地址。 【格式】ASSUME R1:S1 , R2:S2 , ... 【说明】 (1)格式中的Ri代表段寄存器名。必须是DS、ES、SS、 CS四个之一,Si是段地址,只能是一个段名或者“SEG 变量 名”的形式。 (2)Ri:Si是一组对应关系,表示Si段中的标识符都使用Ri 作为缺省段寄存器。 。
5.6 $ $是汇编语言中的一个特殊符号,代表汇编程序在处理到$ 所在的位置时当前安排的偏移地址值。程序中出现的$可以作 为常量看待,但是不同位置上的$,其代表的值是不同的。与 一般的数据不同的是,通常所说的常量(数值)是没有类型的, 包括“OFFSET 变量名”也没有类型,但$所表示的数据一定 是字型。$一般作为字型变量定义时的一个初值使用。 【例5.18】分析下面数据段中各$符所表示的值。 data SEGMENT a DB '$' b DW $,$ c DB $-a data ENDS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本段定义格式常用结构STACK SEGMENT PARA
'STACK;
DB 100 DUP('STACK')
STACK ENDS
DATA SEGMENT
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STACK
START:
MOV AX,data
MOV DS,AX
MOV ES,AX
MOV AL,4CH
INT 21H
CODE ENDS
END START
------------------------------------------------------------------------------------------------------------------------ 段名segment[定位][组合][段字][‘类别’] ...
段名ends (1)定位
段定位(align)属性——指定逻辑段在主存储器中的边界:
BYTE:段开始为下一个可用的字节地址(xxxx xxxxb),属性值为1
WORD:段开始为下一个可用的偶数地址(xxxx xxx0b),属性值为2
DWORD:段开始为下一个可用的4倍数地址(xxxx xx00b),属性值为4
PARA:段开始为下一个可用的节地址(xxxx 0000b),属性值为16
PAGE:段开始为下一个可用的页地址(0000 0000b),属性值为256
简化段定义伪指令的代码和数据段默认采用WORD定位,堆栈段默认采用PARA定位。

完整段定义伪指令的默认定位属性是PARA。

(2)组合
PUBLIC: 所有此类型的同名段组合成一个逻辑段,公用一个段地址,运行时装入同一个物理段中。

COMMON : 所有此类型的同名段具有相同的起始地址(覆盖),共享相同的存储区域。

AT <数值表达式> : 按绝对地址定位,段地址就是表达式的值。

STACK : 专用于说明堆栈段,组合方式同PUBLIC
NONE : 不组合
MEMORY :置于地址最高处,多个时取第一个,其余作为COMMON
PRIVATE:本段与其他段没有逻辑关系,不与其他段合并。

PUBLIC:连接程序把本段与所有同名同类型的其他段相邻地连接在一起,指定一个共同的段地址。

PRIVATE是完整段定义伪指令默认的段组合方式。

PUBLIC简化段定义伪指令默认的段组合。

3) 类别
用单引号’’括起来的字符串。

所有同类别的段被安排在连续的存储区域中。

二、段定义的简化
常用结构:
程序
.MODEL SMALL ;定义内存模式为小模式
.586 ;选择处理器
.STACK 512 ;定义堆栈段及其尺寸为512字节
.DATA ;数据段开始
;数据在此处定义
.CODE ;代码段开始
.STARTUP ;加载后程序入口点
;代码在此处定义
.EXIT ;返回DOS或父程序
END ;整个程序结束
在MASM5.0以上的版本中,提供了简化的段定义伪指令:
MODLE模式:
TINY 程序和数据在64K字节段内
SMALL 独立的代码段和独立的数据段
MEDIUM 单个数据段,多个代码段
COMPACT 单个代码段,多个数据段
LARGE 多个代码段,多个数据段
三、子程序
常用格式:
子程序名PROC 类型
指令序列
子程序名ENDP
类型:影响汇编程序对子程序调用指令CALL和返回指令RET的翻译方式
NEAR
如果被调用的子程序是NEAR类型,则IP的值入栈,这会使SP减2,然后把IP改成子程序的第一条指令的便宜地址FAR
如果被调用的子程序是FAR类型,把CS寄存器的值入栈,在把IP 入栈,这会使SP-4,然后把CS:IP改为子程序的第一条指令的逻辑地址
CALL
跳转指令。

与无条件跳转指令相同的是,CALL在跳转之前保留了CS:IP或者IP的值存入栈中保存。

RET
通常写在子程序的最后一条指令。

用于返回原程序处继续执行。

相关文档
最新文档