高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

合集下载

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。

已知月球的半径为R ,求: (1)月球的质量; (2)月球的自转周期。

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案).docx

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案).docx

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题( 含答案 )一、高中物理精讲专题测试万有引力定律的应用1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1 、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w ,w.根据题意有12w1=w2①(1 分)r +r =r ②( 1 分)12根据万有引力定律和牛顿定律,有G③( 3分)G④( 3 分)联立以上各式解得⑤(2分)根据解速度与周期的关系知⑥(2分)联立③⑤⑥式解得(3 分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解2.“天舟一号”货运飞船于2017 年 4 月 20 日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

已知地球质量为M ,半径为R,万有引力常量为G。

(1)求质量为m 的飞船在距地面高度为h 的圆轨道运行时的向心力和向心加速度大小。

(2)若飞船停泊于赤道上,考虑地球的自转因素,自转周期为小物体所受重力大小G0。

T0,求飞船内质量为m0的(3)发射同一卫星到地球同步轨道时,航天发射场一般选取低纬度还是高纬度发射基地更为合理?原因是什么?【答案】 (1)(2)(3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能【解析】【详解】(1)根据万有引力定律和牛顿第二定律有解得(2)根据万有引力定律及向心力公式,有及解得(3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMv R. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1GMv R=2)2=M E G R '引;(3)22GMv R=4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R= 解得:1GMv R=; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr 引 质点所在处的引力场强度=F E m引引 得2=M E Gr引该星球表面处的引力场强度'2=M E GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.5.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月.【答案】(1)r =22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解6.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度; (2)月球绕地球运行的周期. 【答案】(1)203GT π(2)002 T r r R gπ= 【解析】 【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π=得23204R M GT π= 且月球的体积V =43πR 3根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T由万有引力提供向心力2202004 r GM M M r Tπ=根据黄金代换GM 0=gR 02 得002r r T R gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

(1)卫星进入轨道后的加速度大小 gr; (2)卫星的动能 Ek。
【答案】(1) gR2 (2) mgR2
r2
2r
【解析】
【详解】
(1)设地球的质量为 M
,对在地球表面质量为 m 的物体,有: G
Mm R2
m g
对卫星,有:
G
Mm r2
mgr
解得: gr
gR2 r2
(2)万有引力提供卫星做匀速圆周运动所需的向心力,有: G
Mm r2
m
v2 r
卫星的动能为: Ek
1 2
mv2
解得: Ek
mgR2 2r
8.我国首颗量子科学实验卫星于 2016 年 8 月 16 日 1 点 40 分成功发射。量子卫星成功运
行后,我国已首次实现了卫星和地面之间的量子通信,成功构建了天地体化的量子保密通 信与科学实验体系。假设量子卫星轨道在赤道平面, 如图所示。已知量子卫星的轨道半径 是地球半径的 m 倍,同步卫星的轨道半径是地球半径的 n 倍,图中 P 点是地球赤道上一 点,求量子卫星的线速度与 P 点的线速度之比。
如图,O 和 O′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线 OO′与地月球面
的公切线 ACD 的交点,D、C 和 B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.
根据对称性,过 A 点的另一侧作地月球面的公切线,交卫星轨道于 E 点.卫星在上运动时发出
的信号被遮挡.
设探月卫星的质量为 m0,万有引力常量为 G,根据万有引力定律有:
6.“嫦娥一号”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经 过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为 R 和 R1,地球半径为 r,月球半

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+ 解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R =可得2v gR =则14g g星=(2)由平抛运动的规律:212H L g t-=星s v t=解得024gsvH L=-(3)由牛顿定律,在最低点时:2vT mg mL-星=解得:21142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.【答案】(1)02tanvtα;(2)03tan2vGRtαπ;02tanav Rt;(4)2tanRtvα【解析】【分析】【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tanα2gty gtx v t v===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.6.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mgmR'=解得:星球上发射卫星的第一宇宙速度02Rv g R vh=='7.如图所示,A是地球的同步卫星.另一卫星 B的圆形轨道位于赤道平面内.已知地球自转角速度为0ω,地球质量为M ,B离地心距离为r ,万有引力常量为G,O为地球中心,不考虑A和B之间的相互作用.(图中R、h不是已知条件)(1)求卫星A的运行周期AT(2)求B做圆周运动的周期BT(3)如卫星B绕行方向与地球自转方向相同,某时刻 A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)2ATπω=(2)32BrTGM=3)3tGMrω∆=-【解析】【分析】【详解】(1)A的周期与地球自转周期相同2ATπω=(2)设B的质量为m,对B由牛顿定律:222()BGMmm rr Tπ=解得:32BrTGM=(3)A、B再次相距最近时B比A多转了一圈,则有:()2Btωωπ-∆=解得:3tGMrω∆=-点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.8.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R和R1,地球半径为r,月球半径为r1,地球表面重力加速度为g,月球表面重力加速度为.求:(1)卫星在停泊轨道上运行的线速度大小;(2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得;(2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.9.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r,周期为T,月球半径为R.(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R = 对于嫦娥三号由万有引力等于向心力:2224GMm m rr Tπ= 联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R==可得月球的第一宇宙速度:2324r v gR T Rπ==10.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.【答案】2324r GTπ 【解析】 【详解】对双星系统,角速度相同,则:22122MmGM r m r rωω== 解得:221Gm r r ω=; 222GM r r ω=;其中2Tπω=,r =r 1+r 2; 三式联立解得:2324r M m GT π+=。

最新高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

最新高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大?
(3)细线所能承受的最大拉力?
【答案】(1)
g星
=
1 4
g0
(2) v0
s 4
2g0 H L
(3) T
1 [1 4
s2 2(H
L)L ]mg0
【解析】
【分析】
【详解】
(1)由万有引力等于向心力可知 G
Mm R2
m
v2 R
G
Mm R2
(1)求卫星 B 的运行周期. (2)如卫星 B 绕行方向与地球自转方向相同,某时刻 A、B 两卫星相距最近(O、B、A 在同一 直线上),则至少经过多长时间,它们再一次相距最近?
【答案】(1) TB
2
(R h)3 gR 2
t
(2)
2
gR2 (R h)3
0
【解析】
【详解】
(1)由万有引力定律和向心力公式得 G
光也不能从它的表面逃逸出去。②地球的逃逸速度是第一宇宙速度的 2 倍,这个关系对
于其他天体也是正确的。③地球质量 me =6.0×1024kg,引力常量 G= 6.67×10-11N• m 2/ kg 2。 请你根据以上信息,利用高中学过的知识,通过计算求出:假如地球变为黑洞,在质量不
变的情况下,地球半径的最大值(结果保留一位有效数字)。(注意:解题过程中需要用
①若在北极上空高出地面 h 处称量,弹簧测力计读数为 F1,求比值 的表达式,并就
h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字);
②若在赤道表面称量,弹簧测力计读数为 F2,求比值 的表达式.
(2)设想地球绕太阳公转的圆周轨道半径为 r、太阳半径为 Rs 和地球的半径 R 三者均减小 为现在的 1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+ 解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。

土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。

【答案】()()()()21?2?3?2GM GM R hR h R R h GMπ+++ 【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:2MmG mg R = 可得2GMg R =(2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GMv R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+4.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr =mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV②而r 是球形空腔中心O 至Q 点的距离Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vdρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/3d .(1)L k G k δρ==-5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.人类对未知事物的好奇和科学家们的不懈努力,使人类对宇宙的认识越来越丰富。

(1)开普勒坚信哥白尼的“日心说”,在研究了导师第谷在20余年中坚持对天体进行系统观测得到的大量精确资料后,提出了开普勒三定律,为人们解决行星运动问题提供了依据,也为牛顿发现万有引力定律提供了基础。

开普勒认为:所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。

行星轨道半长轴的三次方与其公转周期的二次方的比值是一个常量。

实际上行星的轨道与圆十分接近,在中学阶段的研究中我们按圆轨道处理。

请你以地球绕太阳公转为例,根据万有引力定律和牛顿运动定律推导出此常量的表达式。

(2)天文观测发现,在银河系中,由两颗相距较近、仅在彼此间引力作用下运行的恒星组成的双星系统很普遍。

已知某双星系统中两颗恒星围绕它们连线上的某一点做匀速圆周运动,周期为T ,两颗恒星之间的距离为d ,引力常量为G 。

求此双星系统的总质量。

(3)北京时间2019年4月10日21时,由全球200多位科学家合作得到的人类首张黑洞照片面世,引起众多天文爱好者的兴趣。

同学们在查阅相关资料后知道:①黑洞具有非常强的引力,即使以3×108m/s 的速度传播的倍,这个关系对于其他天体也是正确的。

③地球质量m e =6.0×1024kg ,引力常量G = 6.67×10-11N• m 2/ kg 2。

请你根据以上信息,利用高中学过的知识,通过计算求出:假如地球变为黑洞,在质量不变的情况下,地球半径的最大值(结果保留一位有效数字)。

(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1) 3224s Gm r T π= (2) 2324d GTπ (3) 9×10-3m 【解析】 【详解】⑴设太阳质量为m s ,地球质量为m e ,地球绕太阳公转的半径为r 太阳对地球的引力是地球做匀速圆周运动的向心力 根据万有引力定律和牛顿运动定律2224s e e m m G m r r Tπ=解得常量3224sGm r T π= ⑵设双星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2 根据万有引力定律及牛顿运动定律21211224m m G m r d T π=21222224m m G m r d Tπ= 且有12+r r d =双星总质量231224=d m m m GTπ+=总 ⑶设地球质量为m e ,地球半径为R 。

质量为m 的物体在地球表面附近环绕地球飞行时,环绕速度为v 1由万有引力定律和牛顿第二定律212e m m v G m R R=解得1eGm v R=逃逸速度22eGm v R=假如地球变为黑洞v 2≥c代入数据解得地球半径的最大值R =9×10-3m7.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体。

(1)求在地球北极地面称量时弹簧秤的读数F 0,及在北极上空高出地面0.1R 处称量时弹簧秤的读数F 1;(2)求在赤道地面称量时弹簧秤的读数F 2;(3)事实上地球更接近一个椭球体,如图所示。

如果把小物体放在北纬40°的地球表面上,请定性画出小物体的受力分析图,并画出合力。

【答案】(1)02Mm F G R = ()120.1GMm F R R =+ (2)22224Mm RF G m R Tπ=-(3)【解析】 【详解】(1)在地球北极,不考虑地球自转,则弹簧秤称得的重力则为其万有引力,有:02GmMF R=在北极上空高处地面0.1R 处弹簧秤的读数为:12(0.1)GmMF R R =+;(2)在赤道地面上,重力向向心力之和等于万有引力,故称量时弹簧秤的读数为:22224GmM RmF R T π=-(3)如图所示8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)2324r M GTπ=;22GM R c '= 【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GTπ= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭ 解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c'=9.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R =-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=10.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后Fk mg=称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)(2)求地球的笫一宇宙速度;(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s 【解析】 【分析】(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值. 【详解】(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma 即:6mg -mg =ma 解得:a =5g(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,由万有引力提供向心力得:2v mg m R=所以:37.9210m/s v ===⨯(3)由万有引力提供向心力周期表达式可得:222()Mm Gm r T π= 在地面上万有引力等于重力:2Mm G mg R =解得:5420s T === 【点睛】本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.。

相关文档
最新文档