微积分练习题(含答案)

合集下载

微积分练习题带答案

微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。

在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。

在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。

1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。

答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。

答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。

答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。

答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。

答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。

答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。

答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。

答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。

答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。

通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。

微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

微积分试卷(附答案)

微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。

9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。

A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。

(完整word版)《微积分》各章习题及详细答案

(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→x x k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。

解析:首先,我们需要找到函数的极值点。

极值点对应于函数的导数为零的点。

对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。

令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。

使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。

所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。

接下来,我们需要找到函数的拐点。

拐点对应于函数的二阶导数为零的点。

对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。

令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。

综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。

第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。

解析:切线方程的斜率 m 等于函数在给定点的导数。

对函数 f(x) = e^x 求导得到 f'(x) = e^x。

根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。

将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。

所以切线的斜率 m = 1。

切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。

由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。

将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。

综上所述,切线方程为 y = x + 1。

第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin+=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分综合练习试题和参考答案与解析

微积分综合练习试题和参考答案与解析

(1)函数 f(X)=•1 In(x - 2) 的定义域是(2)函数 f(x)=1 ln( x 2)的定义域是 ____________ •答案:(—2, —1)^(—1,2](4)若函数f(x T xs 「x 0在X 二0处连续,则k =x _ 0•答案:k = 1(1)设函数y 二-xe,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数综合练习题1 (函数、极限与连续部分)1 •填空题(3)函数 f (x 2^ x 2 4x 7,贝U f(x)二 _______________________ •答案:f(x^ x 2 3(5) 函数 f(x-1) =x 2 -2x ,则 f(x)二 __________________ .答案:f(x) =x 2 -1x 2 _2x _3(6)函数y _________________________ 的间断点是.答案:x- -1x +1 1(7)lim xsin .答案:1X护 x sin 4x(8)若 lim _______________ 2,则 k = .答案:k = 2―0 sin kx2.单项选择题答案:B(2)下列函数中为奇函数是( ).答案:CA. xsin xln (x . 1 x 2) D . x x 2).D . x 卞 一5 且 x = -4x(3)函数y ln(x • 5)的定义域为(x +4A. x 占-5 B . x -4 C . x 占 一5 且 x = 0答案:D2(4)设 f(X * 1) = X 「1 ,则 f(X)二( )A. x(x 1)C. x=1,x=2, x=3D x 2 -3x 2(1)(2)解: limX —3x 2 -3x 2x 2 -4-9(x-2)(x-1) (x-2)(x 2)lim x =3 x-9(x-3)(x 3)-2x -3xB (x -3)(x 1)= lim 』^X —3 X 14 2答案:A3.计算题-4C. x(x _2)D . (x +2)(x —1)答案: Ce^2,x 式0亠 (5) 当k =()时,函数f f(x) =在x=0处连续..k,x = 0A. 0B. 1C .2D . 3答案:Dx +1,x 式0 (6) 当k =()时,函数f f(x)—w,在X = 0处连续、k,x = 0 A. 0 B. 1C .2D .-1答案:B(7) 函数f (x)x —3— 2 的间断点是()X 2 _3x +2A. x =1,x = 2B.x =3.无间断点解:WORD 格式整理版综合练习题2 (导数与微分部分)(3)解:lim "卫二 lim HX T x 2 -5x 4x —4 & -4)(x -1)二lim x j4x -2x —11 •填空题(1)曲线f(x) __________________________________ ・1在(1,2)点的切斜率是11答案:2(2)_______________________________________________________ 曲线f(x) =e x在(0,1)点的切线方程是 __________________________________________ •答案:y = x • 1(3)已知f (x^ x3 3x,则f (3) =答案: f (x) =3x23x ln3f (3) =27 (1 ln 3)(4)已知f(x) = In x ,贝U f (x) = _____________________ •1 1答案:f (x) , f (x) = 2x x(5)若f (x) _______________________________ ,贝y f (0)二答案:f (x)二「2e» xe」f (0) =「22.单项选择题(1)若f (x) = e^ cosx,贝U f (0)= ( ) •A. 2B. 1C. -1D. -2因f (x) = (e“ cosx) = (e“)cosx e^(cosx)-x X x=-e cosx -e sin x = -e (cosx sinx)所以f (0) - -e-0 (cos0 sin0) - -1答案:C(2)设y = lg2 x,则dy 二(1 1A. dx B dx2x xln 10答案:B(3)设y二f (x)是可微函数,则)•ln 10 1 C •dx D • 一dxx x df(cos2x)二( )•A • 2f (cos2x)dxB f (cos2x)sin 2xd2x(4)若 f(X) . 丄3=si nx a,其中a 是常数,则f (x) =().A2.cosx 3a B. sin x 6ac.-sin xD.cosx答案 :C3.计算题1e ,求八(1 )设 y = x 211 2 1 .1C . 2f (cos2x)sin 2xdxD . - f (cos2x)sin2xd2xx(2 )设 y = sin 4x cos 3 x ,求 y .2解: y = 4cos4x 3cos x(-sinx)2= 4cos4x 「3sinxcos x(3 )设 y = e % 12,求讨.x答案:D21 解: / = 2xe x x 2e x (-p)二 e x (2x-1)A.单调增加 B .单调减少C.先增后减 D •先减后增答案:D(2)满足方程f (x) =0的点一定是函数y二f (x)的( ).A极值点 B.最值点 C .驻点 D.间断点答案:C(3)下列结论中( )不正确.A . f (x)在X=X0处连续,则一定在X0处可微.B . f(X)在X = X0处不连续,则一定在X0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(-::,•::)上单调增加的是( ).A . sinxB . e XC . X10D . 3「x答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为h m容器的表面积为y m l。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题第六章 定积分1.1()(2(0)xF x dt x =->⎰的单调增加区间为_____. 1(,)4+∞2. 函数0()xt F x te dt -=⎰在点x =____处有极值. 03.设sin 201()sin ,()sin 2x f x t dt g x x x ==-⎰,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =4.计算3523220sin sin 2sin cos . []3515x x x xdx ππ⋅-=⎰5.计算21e ⎰1)6.求函数dt t t x x I )ln 1(1)(-=⎰在],1[e 上的最大值与最小值. 最大值()3412-e ,最小值07.设函数⎪⎩⎪⎨⎧≥=<<-+01 2cos 110 )(2x xx xe x f x ,计算⎰-41)2(dx x f .()11tan 214-+e 8.2sin ()xt dt tπ'=⎰( C ) (其中2x π>).(A)sin x x (B)sin xC x+ (C)sin 2x x π- (D) sin 2x C x π-+ 9. 设()f x 是连续函数,且3()x f t dt x =⎰,则(8)f =_____.11210. xdt t x x cos 1)sin 1ln(lim-+⎰→=___1__ ;)1ln(cos lim202x tdtx x +⎰→=__1__ .11. 设()()()bad d I f x dx f x dx f x dx dx dx '=+-⎰⎰⎰存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =12. 已知1(2),(2)02f f '==,及20()1f x dx =⎰,则120(2)x f x dx ''⎰ = 0__ .13. 若sin 0()cos xf t dt x x =+⎰(0)2x π<<,则()f x ___.第五章 不定积分1. 若()()F u f u '=,则(sin )cos f x xdx =⎰__ _. (sin )F x C +2. 若()sin 2,f x dx x C =+⎰则()f x =__ _. 2cos 2x3.2()1xf x dx C x =+-⎰,则sin (cos )xf x dx =⎰_ __. 2cos sin x C x-+ 4. 若()()f u du F u C =+⎰.则211()f dx x x⋅=⎰__ _. 1()F C x -+5.求sin cos sin cos x xdx x x -=+⎰_____. ln sin cos x x C -++6. 求ln(ln )x dx x ⎰. ln (ln ln 1)x x C -+7. 已知()f x 的一个原函数为xe -,求(2)xf x dx '⎰. 211()22x e x C--++8.计算⎰+dx xx2cos 12. tan ln cos x x x C ++9.求dx ex⎰-11. ln 1xx e C --+10.计算⎰+dx x xe x2)1(. 1xx xe e C x -+++ 11.计算 ⎰++dx x xx )1(21222. 1arctan x C x-++ 12.求⎰dx x x 2sin 2cos 2. 12sin 2Cx -+13.求ln(x x C -+第四章 导数应用1.计算极限 (1)0ln lim ln sin x xx+→=___1___. (2) cot20lim(1)xx x →+ =___2e ___(3) 01lim(ln )xx x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__(5) +1ln(1)lim arccot x x x →∞+=___1___2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 33. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 111lim xx x-→ (B)201sinlimsin x x x x→(C) limx lim ln x x ax x a→+∞-+4. 设()y f x =满足方程sin 0xy y e'''+-=,且0()0f x '=,则()f x 在( A ).(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x ax af xg x →→==,且()lim()x af x Ag x →=,则( C ). (A)必有()lim()x af x Bg x →'='存在,且A B = (B) 必有()lim()x af x Bg x →'='存在,且A B ≠ (C) 如果()lim()x af x Bg x →'='存在,则A B = (D) 如果()lim()x af x Bg x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点(B) 一定是函数()f x 的极值点(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定7.求曲线22x y -=的单调区间、极值、拐点并研究图形的凹向.8.求函数32)1()4()(+⋅-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.9. 证明不等式:13(0)x x≥->.10. 证明方程5510x x -+=在(0,1)内有且仅有一个实根. (提示:设5()51f x x x =-+,利用零点存在定理和罗尔中值定理.) 11. 证明不等式:ln(1)1xx x x<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)第三章 导数1.设函数()f x 依次是,,sin x ne x x ,则()()n fx =____ ,!,sin()2x ne n x π+.2.若直线12y x b =+是抛物线2y x =在某点处的法线,则b =_____.32 3.设)(x f 是可导函数,则220()()limx f x x f x x∆→+∆-=∆( D ).(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '4.若0()sin 20ax e x f x b x x ⎧<=⎨+≥⎩ 在0x = 处可导,则,a b 值应为( A ).(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01()3f x '=,则0x ∆→ 时,该函数在0x x =的微分dy 是( B ).(A) 与x ∆等价的无穷小(B) 与x ∆同价的无穷小,但不是等价无穷小 (C) 比x ∆低阶的无穷小 (D) 比x ∆高阶的无穷小6.曲线21y ax =+在点1x =处的切线与直线112y x =+垂直,则a =__ _. -1 7.设()2xf x =,则0()(0)limx f x f x→''-=____. 2ln 28.)(x f =21sin00x x xx ⎧≠⎪⎨⎪=⎩ 在点x=0处 D .A.连续且可导B.连续,不可导C.不连续D .可导,但导函数不连续9.设()f x ''存在,求函数()f x y e-=的二阶导数. ()2[(())()]f x y ef x f x -'''''=-10.2ln(1)x y e =+,求dy . 2222ln(1)1x xx e x dy e dx dx e⋅'=+=+.11.arctanyxe =确定y 是x 的函数,求导数x y '.第一、二章 函数极限与连续1. )(x f 定义域是[2,3],则)9(2x f -的定义域是___. ]5,5[-2. 设x x g -=2)(,当1≠x 时,[]1)(-=x xx g f ,则=)23(f _ _. -13. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-(C) )()()()(x g x f x g x f ⋅=-⋅- (D) )()()()(x g x f x g x f ⋅-=-⋅-4.()()()10201521213lim16x x x x →∞+++. 53()25.()()111lim 13352121n n n →∞⎛⎫+++⎪ ⎪••-+⎝⎭. 12 6. 231sin 53limxx x x -∞→. 37. 设⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0sin01)1()(1x e x x x x x x f x ,求)(lim 0x f x →. e8. 0x →512。

相关文档
最新文档