正激变换器及其控制电路的设计及仿真

合集下载

正激变换器电流峰值控制建模

正激变换器电流峰值控制建模

由于正激变换电路与Buck变换电路作用相似,因此在这里主要分析Buck变换电 路的cpm控制动态模型。
图 1-1 DCM Buck 变换器的 CPM 控制 图中点划线部分为二端口开关网络。电感电流与波形表 示在图 1-1b 中,这 里电流峰值控制中引入锯齿波补偿。
求解输入输出端口的受控电流源
如图 1-1b 所示,电感电流峰值为
(
s
)
0
Gvg
Fm FgGvd Fm (GvgGid GigGvd 1 Fm (Gid FvGvd )
)
其中 GvgGid GigGvd 0
Gvg cpm
(s)
Gvg 1 Fm
Fm FgGvd (Gid FvGvd
)
DR N
1 den(s)
Fm Fg
VR D
1 den(s)
1
Fm
(
V D
图 1-2 开关网络端口变量
1 sCR den(s)
其中,den(s) s2LCR sL R
Gvg
(s)
vˆ(s) vˆg (s)dˆ(s)0
DR N
1 den(s)
Gig (s)
iˆL (s) vˆg (s)dˆ(s)0
D N
1 sCR den(s)
锯齿波补偿的峰值电流控制中:
dˆ(t)
1 M aTs
iˆc (t)
Fm
1 M aTs
Fg
D2Ts 2NL
Fv
(1 2D)Ts 2L
电流控制器的框图
电流峰值控制正激变换器的小信号模型
正激变换器的传递函数 dˆ
vˆ(s) Gvd (s)dˆ(s) Gvg (s)vˆg (s) iˆL (s) Gid (s)dˆ(s) Gig (s)vˆg (s)

正激式零电压转换开关电源设计及PSPICE仿真

正激式零电压转换开关电源设计及PSPICE仿真

2001年第19卷第3,4期 长春邮电学院学报 2001 V o l119 N o13,4 JOU RNAL O F CHAN GCHUN PO ST AND TEL ECOMMUN I CA T I ON I N ST ITU TE文章编号:100021794(2001)0320094205正激式零电压转换开关电源设计及PSP I CE仿真α刘大年(扬州大学工学院,江苏扬州 225009)摘要:利用电子电路分析程序PSP I CE(Pers onal Si m ulati on P rogram w ith In tegrated C ircuit)软件,设计了一种基于正激式Z V T2P WM(零电流转换脉宽调制)变换器的开关稳压电源,分析了变换电路的工作过程,仿真结果表明了理论分析和参数计算的正确性。

关键词:脉宽调制:开关电源;仿真;正激式;零电流转换中图分类号:TN702 文献标识码:A引 言 传统的P WM(脉宽调制)开关电源中应用的硬开关技术,其主要缺点是随着开关频率的提高,开关过程引起的功耗占功率元件总损耗的比重较大,且元件易受过电压和过电流损坏。

目前较好的解决途径是采用软开关技术。

软开关技术可较大地减小开关损耗,提高开关变换器的效率,其开关频率可达到几十千赫兹,从而使DC DC变换器的高性能、小型化成为可能。

笔者利用PSP I CE(Pers onal Si m ulati on P rogra m w ith In tegrated C ircuit)设计了基于正激式零电压转换脉宽调制变换器的稳压电源,它是在Z V T2P WM变换器的基础上,引入了反馈控制环节,从而构成开关稳压电源,使其输出电压对输入电压和负载参数的变化不敏感。

文中对Z V T2P WM电路的工作过程作了分析,进行了参数设计,针对具体的电路模型作了电路动态和稳态的仿真,给出了运行波形和分析结果。

1 PSP I CE的功能和特点 随着计算机技术的发展,计算机辅助设计与分析(CAD CAA)技术也有了较大的发展,而在电子设计领域中,该技术发展成为电子设计自动化(EDA),并已在电路与系统的设计中发挥了极其重要的作用,PSP I CE是美国M icroSi m公司开发的电子线路设计仿真的微机版EDA软件,具有较高的分析计算能力和精度,其主要功能有:1)直流的工作点、直流小信号传输函数、直流转移特性曲线分析;2)交流小信号的频域分析、噪声α收稿日期:2001208226作者简介:刘大年(1962— ),男,江苏扬州人,扬州大学工学院电气工程系讲师,主要从事高频功率电子电力变换技术及感应电机变频技术的研究。

正激变换器的设计40页PPT

正激变换器的设计40页PPT
正激变换器的设计
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

单端正励变换器的建模及应用仿真

单端正励变换器的建模及应用仿真

单端正励变换器的建模及应用仿真按照输入与输出间是否有电气隔离,可分为非隔离DC/DC变换电路和带隔离变压器的隔离DC/DC变换电路。

根据电路中主功率开关器件的个数,分可为单管、双管和四管三类。

单管隔离:正激(Forward)和反激(Flyback);双管隔离:推挽(Push-Pull)和半桥(Half-Bridge);四管隔离:全桥(Full-Bridge)。

根据变压器的磁芯磁复位方法的不同,正激电路包含多种不同的拓扑结构。

在电路输入端接复位绕组是最基本的磁芯磁复位方法。

单端正励变换器的电路,如图1所示。

开关S采用PWM控制方式、VD1是输出整流二极管、VD2是续流二极管、L和C是输出滤波电感和滤波电容。

隔离变压器有三个绕组,原边绕组W1,匝数N1;副边绕组W2,匝数N2;复位绕组W3,匝数N3。

绕组中标有“•”的一端为同名端。

VD3是复位绕组W3的串连二极管。

图1单端正励变换器原理图图2开关S导通图3开关S 关断单端正励变换器工作原理分析正激电路在一个开关周期内经历开关导通、关断2个开关状态,如图2和图3所示。

对应于一个开关周期T 的两个时段:t 0~t 1和t 1~t 2。

① t 0~t 1时段在t =t 0时刻,开关S 受激励导通,变压器励磁,绕组W 1的电压u W1为上正下负,副边绕组W 2的电压也是上正下负,输出整流二极管VD 1导通,续流二极管VD 2截止,输出滤波电感L 电流i L 逐渐增长。

11W in d u N U dt Φ==(1) 22W d u N dt Φ= (2) 由(1)和(2)可得:221W in N u U N = (3)在这一时段,加在滤波电感L 上的电压为u W2-U o ,于是有221iL W o in o t d N u U L U U d N -==- (4)当t =t 1,Δt 1=t 1-t 0=t ∞时,i L 从最小值I Lmin ,i L 的增加量221in o W o L on N N U U u U i t DT L L +--∆== (5)式中,D=t on /T ,称为占空比;t on 为开关S 的导通时间。

基于SABER仿真器的双管正激参数及控制环路的设计

基于SABER仿真器的双管正激参数及控制环路的设计

基于SABER仿真器的双管正激参数及控制环路的设计目前,正激变流器在中、大功率场合得到广泛的应用,但单管正激变换器的开关管承受两倍输入电压应力,不能用在较高输入场合。

双管正激变换器解决了这个问题,其开关管的电压应力等于输入电压,关断时也不会出现漏感尖峰,加上结构简单、可靠性高,在高输入电压的中、大功率场合得到广泛的应用。

在开关电源的设计过程中,控制环路设计的优劣关系到系统的稳定与否。

因此优良的控制环路,对开关电源系统是至关重要的。

对于PWM变换器的控制环路,传统的方法使用状态空间平均法,求出小信号模型,来设计控制环路。

此方法计算量大,效率低,不利于工程应用。

高效的方法是用仿真软件得出电路开环BODE图来设计控制环路。

市面的仿真软件非常多,功能也很强大,如Matlab、Pspice等,然而Pspice软件的收敛算法不好,带来了非常多的不便;Matlab软件建模复杂,其补偿器为传递函数或状态方程,需利用电网络理论转化为具体的电路,诸多不便。

SABER与其他仿真软件相比,具有更丰富的元件库和更精确的仿真描述能力,真实性更好。

特别是在电源领域的先天优势,借助其强大的仿真功能缩短电源产品的上市时间。

目前,用SABER软件设计控制环路尚不多见,基于此,提出用SABER仿真设计双管正激参数及控制环路。

1 电路结构双管正激拓扑结构如图1所示,工作原理为:VT1、VT2同时导通,同时关断;VT1与VT2导通时,电源经高频变压器T,快恢复二极管VD3向负载输出能量,经L给C充电;VT1与VT2关断时,输出电流由快恢复二极管VD4续流,同时变压器原边绕组的励磁电流经VD1-UiN-VD2向电源反馈能量。

由于VD1与VD2的箝位,VT1与VT2的开关应力等于电源电压。

与单管正激电路相比,多用一个开关管,电压应力为单管的一半,不存在漏感尖峰,变压器无需磁通复位绕组,适用于较高输入电压的中、大功率等级场合。

2 控制环路的设计方法系统稳定的条件:系统回路开环BODE图,在剪切频率处幅值斜率为-20dB/dec,且至少有45°的相位裕度。

正激式直流变换器的设计

正激式直流变换器的设计

计算变压器、扼流圈
2. 技术指标
• • • • • • 输入电压 单相交流100V
输入电压变动范围 交流85~132V 输入频率 输出电压 50/60Hz V0=5V
输出电压变动范围 4.5~5.5V 输出电流 I0=20A
3.工作频率的确定
工作频率对电源体积以及特性影响很大,必须很好选择。 选用较高工作频率较高时 •优点: 可使输出滤波器小型化; 可使输出变压器可小型化; 1 1 暂态响应速度快。 T s 3 f 0 20010 •缺点: 主开关元件的热损耗增大; 噪声增多; 所使用的元器件(控制IC、主开关元件、输出二极 管、输出电容以及输出变压器的铁心等)受到限制。 零部件及配置型式,都受到限制。 输出变压器绕组要格外注意。 还有电路设计等都受到限制。另外还要注意输出变压 器绕组匝数。因此这里基本工作频率选为200KHz。
p
2
V
I
p
V
2
D
V
V
1
1
3
D
3
Q
b) a) (1)复位电路如上图a)所示,开关Q导通期间,变压器T1的 磁通增加,磁能就储存在变压器T1中;又当开关Q关断期间, 即释放出已励磁的磁能,以使磁通恢复为剩余磁通。T1上绕有
复位专用的绕组,在关断期间可使磁能通过D3向输入端回馈。
_
_
Q
2
变压器初级绕组N1上的电压为:
1950 2200 2390 1630 2070 2350
8200
10000
0.022
0.018
0.055
0.045
2550
2900
6800
8200
0.022
0.018

双管正激电路的设计与仿真3-10(开环设计与仿真)2010

双管正激电路的设计与仿真3-10(开环设计与仿真)2010

– Vout 28VDC – Vout(p-p) <100mV – Iout 2- 20A,在所有负载下,电路工作于CCM
• 其他性能:
– 开关频率 100kHz
5
(2)双管正激电路的工作原理
• 主电路拓扑选择
– 非隔离式拓扑 X
– 隔离式拓扑:单端正激、单端反激、推 挽、全桥、半桥、双管正激等;
Dmax<0.5
11
滤波电感设计
• 电感量,2A时(1/10负载),电感电流临 界连续。
ΔI L L = UL → ΔT Lmin(CCM )
U −28 (1 − 0.33)10u ≈ 46.9uH = L ΔTmax = ΔI L −4
12
滤波电容设计
• If>Io充电,If<Io放电;
Cf =
8
占空比、匝比设计 (1)占空比
拓扑限制:Dmax<0.5; 控制芯片限制:Dmax<0.45Æ Dmax=0.42
(2)变压器匝比Æ变压器设计
输入、输出关系:
Vout
V D 240*0.42 n = in min max = = 3.6 28 Vout
1 = Vin *( ) * D n
设经计算,原副边匝比=24:7=3.43(注意匝数取整)
• 其他设置
– 基本、输入输出、校准、数值积分、算法
34
Analysis > Time Domain > Transient :
Basic
• End Time:定义瞬态分 析结束时间; • Time Step:步长;
– 设计中有关时间常数的 1/10; – 驱动源最小的上升或下 降沿; – 正弦驱动源输入周期的 1/100。

正激变换器工作原理及基本及基本设计

正激变换器工作原理及基本及基本设计

U P Vin UP(rms) DUP DVin U P(ave) DU P DVin
IP(rms) DIP I P(ave) DI P
由(1)得
I P(rms)
1 D
I in
I P(ave) Iin
IP

1 D
I in
(2) (3)
8
四. 输出端电流电压关系
Pout Vout Iout U I S (rms) S (rms) I SVD (4)
W1
d dt
Vin
( )

Vin W1
D
Ts
iMP

Vin LP
t
正激变换器
4
二, 基本工作原理(续) [Ton, Tr]
Q turned OFF
复位绕组的电压为: VW 3 Vin
原副边绕组上的电压为:
VW1 K13Vin VW 2 K23Vin
Where K13 = W1/W3, K23 = W2/W3
Q oQff,tu&rnedreOseFtF
励磁电流iM从W1转移到W3上后, 减小到零:
iW3

K13[VLiPn
Ton
Vin LP
(t Ton )
到Tr时刻后, 所有绕组中电流为零, 电压也为零.
Q上的电压: VQ Vin
正激变换器
7
UP,IP
正激变换器
三. 输入端电流电压关系
Pin Vin Iin U I P(rms) P(rms) (1)
L f min
(1 D)(VD Vout ) 2Iout fs
(27)
iLf
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正激变换器及其控制电路的设计及仿真设计要求:1、输入电压:100V(±20%);2、输出电压:12V;3、输出电流:1A;4、电压纹波:<70mV(峰峰值);5、效率:η>78%;6、负载调整率:1%;7、满载到半载,十分之一载到半载纹波<200mV。

第一章绪论1.课题研究意义:对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC 变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC 变换器。

而正激变化器就实现了这种功能。

2.课题研究内容:1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。

2、正激变换器的控制方式主要通过闭环实现。

其中闭环方式又分为PID 控制和fuzzy 控制。

本文分别针对开环、PID 控制,fuzzy 控制建立正激变换器的Matlab 仿真模型,并进行仿真分析了,最后对得出的结果进行比较。

第二章:正激电路的参数计算本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。

1、正激变换器的等值电路图图1 正激变换器等值电路图2、参数计算 (1)变比n根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:n=D U U out in ⨯=4.012100⨯=3.3 (2) 最大、最小占空比最大占空比D max 定义为D max =()nU U U in dout 1min ⨯+, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。

最小占空比D min 定义为D min =()nU U U in dout 1max ⨯+, 式中U in(max) =120V , 所以D min =0.333。

(3) 电容电容的容量大小影响输出纹波电压和超调量的大小。

取开关频率f=200KHZ ,则T=5×10-6 s ,根据公式:C=ripplerippleV f I ⨯⨯81, 式中取I ripple =0.2A ,V ripple =0.07mV ,所以C=1.79μF 。

为稳定纹波电压,放大电容至50μF 。

(4) 电感可使用下列方程组计算电感值:U out =L ×dt di , dt=fD m in1-,式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。

第三章 正激变换器开环的Matlab 仿真本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

1、仿真模型的建立根据之前的等值电路图和参数的计算结果,可以对正激电路进行建模,其开环模型如图2:图2 正激电路的开环仿真模型2、仿真结果在Matlab上进行仿真,得到如下的输出电压,及其纹波,输出电流及其纹波的波形:图3 开环电压波形图4 开环纹波电压图5 开环电流波形图6 开环纹波电流从图中可以看出,开环占空比为40%时输出电压不能达到12V,只能稳定在11.98V 左右,纹波电压为1mV ,输出电流是0.998A ,纹波电流不到0.1mA 。

虽然纹波电压符合要求,但输出电压值和电流值不符合要求,且电压有较大超调。

分析其原因,可能是由于电路中的二极管压降以及变压器参数的影响。

需要调大占空比才能稳定到12V 。

且开环系统有较弱的抗干扰性,不够稳定,因此应采用闭环。

第四章 正激变换器闭环PID 的Matlab 仿真本章首先介绍了工程上对系统的闭环稳定条件的要求,然后对开环系统绘制了伯德图,接着根据其开环幅频和相频特性曲线来确定所加PID 环节的三个主要参数,进行闭环系统的Matlab 仿真,得到经过两次切载后的输出电压波形和输出电流波形,并进行了分析。

1、闭环稳定的条件:(1)开环Bode 图的幅频特性曲线中增益为1的穿越频率应等于开关角频率的1/5~1/10。

(2)幅频特性曲线应以-20dB 的斜率穿越横轴。

(3)相位裕量γ>45°。

2、开环传递函数:查阅资料得到未补偿的开环传递函数为:G 0 (S)=)1(11++⨯RsC RsLnU i,代入数据,得到G 0 (S)=110783.21067.13.30528+⨯+⨯--s s 。

3、未补偿的开环传函的Bode 图图7 开环传递函数伯德图从图中可以看出,穿越频率为 6.89⨯103 Hz ,小于要求的最小开关频率K 200101⨯=20000Hz ,且以-40dB 穿越横轴,相位裕度仅为1°。

三项指标都不符合。

因此必须加入补偿环节。

4、 补偿函数的确定首先确定补偿后系统的剪切频率f c1 =K 20081⨯=2.5×104 Hz ,ωc1 =2πf c1=1.57×105rad/s 。

在f=2.5×104 Hz 处,原伯德图的增益为-22.6dB ,相角为-179°。

取相位裕度为50°,则需补偿49°。

新补偿的函数可分为PD 和PI 两部分 (1)PD 环节设PD 环节的传递函数为G1=Kp (1+τs ),作出其伯德图,得到以下比例关系:149tan 101=τωc , 所以τ=7.33×10-6 。

又20lgKp 2121c ωτ+=22.6,所以Kp=8.848。

得到G1=8.848(1+7.33×10-6s )(2)PI 环节取PI 环节传函为G2=ss 1000+。

(3)补偿传函G3G3=G1×G2=ss s 8848848.8104856.625++⨯-。

即Kp=8.848, Ki=8848, K D =6.5e-5。

5、 补偿后系统的新开环传函GnGn=G 0 G3=ss s s s +⨯+⨯++⨯---25382310783.21067.14.2680940944.2681096514.1。

其伯德图如下:图8 补偿后系统伯德图从图中可以看出,此时系统的幅频特性曲线以-20dB穿越横轴,且剪切频率为2.49×104 Hz,相位裕度为49°,完全符合工程要求。

6、闭环PID控制的Matlab仿真模型用Mosfet 1和2控制切载过程。

用Timer和Timer1控制切载情况,在t=0.02s处负载由12Ω切到24Ω,在t=0.03s处负载由24Ω切到120Ω,在0.05s 处由120Ω切到24Ω。

输出电压值与12V比较后进入PID,再与三角载波形比较,在交点处控制Mosfet通断,从而控制占空比。

图9 闭环PID控制电路图7、闭环PID仿真结果在Matlab上进行仿真,得到如下的电压波形:图10 初始PID参数下的输出电压波形通过此图可以看出输出电压超调过大,已超过额定输出电压的1倍。

尽管输出电压值、纹波、切载的尖峰都符合要求。

此时需要对PID参数进行调整。

在这=7.3e-5。

里选取Kp=0.5,Ki=500,KD此时可得到如下电压和电流波形:图11 调整PID参数后的输出电压波形图12 满载电压纹波波形图图13 切载后第一个尖峰图14 切载后第二个尖峰图15 输出电流波形图16 满载输出电流纹波波形从图中可以看出,此时输出电压基本稳定在12V ,且无超调。

满载输出平均电压约为11.9995V, 满载时电压纹波最大,约为0.7mA 。

切载时的电压尖峰也低于200mV 。

半载输出平均电压为11.99935V ,所以负载调整率为9995.1199935.119995.11-×100%=0.00125%<1%。

满载,半载,1/10载的电流纹波基本相等,均不到1mA 。

变压器原边电流为0.1521A,所以效率η=1001521.010019995.11⨯⨯⨯%=78.9%。

均符合要求。

8、 补偿后系统的伯德图图17 PID 补偿后系统的伯德图从图中可以看出,补偿后系统的剪切频率为2.12×104Hz ,约为开关频率的0.106倍,并以-20dB 穿越横轴,且相位裕度为88°,符合工程要求。

第五章 正激变换器基于Fuzzy 控制的Matlab仿真分析本章针对正激变换器进行了模糊控制。

首先进行了模糊化的设计,然后建立了规则库,最后针对其Matlab 模型进行了仿真分析。

1、模糊化设计对误差e 、误差变化率dtde和控制量U 的模糊集和域定义如下:(1)模糊集合均为{NB,NM,NS,ZE,PS,PM,PB},e 的域为{-1,+1},dtde的域为{-0.5,+0.5}。

U 的域为{-1,+1}。

(2)隶属度函数均选三角函数,input1为e ,input2为dtde,output 为U 。

例如,变量dtde的隶属度函数如下图所示:图18 输入dtde的隶属度函数2、模糊规则的建立(1)模糊规则表如下:(2)Fuzzy 控制器规则库如下:图19控制器规则库3、Matlab 仿真分析通过开环的输出电压范围,初步确定对于e ,Gain1=65,对于dtde ,Gain2=10-5。

由采样定理,采样频率 为开关频率的2倍,即400KHz ,从而采样时间为2.5×10-6s 。

还要加入限幅模块和零阶保持器模块,然后进行仿真。

其仿真模型如下图:E EC NB NM NS ZE PS PM PB NB PB PB PM PM PS PS ZE NM PB PB PM PM PS ZE NS NS PM PM PS PS ZE NS NS ZE PM PM PS ZE NS NM NM PS PS PS ZE NS NS NM NM PM PS ZE NS NM NM NB NB PBZENSNSNMNMNBNB图20 基于Fuzzy控制的Matlab仿真模型仿真后得到的电压和电流波形如下:图21 输出电压波形图图22 切载前后纹波及切载尖峰电压波形图图23 输出电流波形图24 满载及半载电流纹波图25 1/10载电流纹波从图中可以看出,输出电压基本稳定在12V,在满载时纹波为350mV;半载时纹波为170mV;1/10载时纹波为30mV。

两次切载的尖峰电压分别为300mV和150mV。

未切载输出电流基本稳定在1A,在满载时纹波为30mA;半载时纹波为7mA;1/10载时纹波为0.3mA。

输出基本上符合要求。

第六章总结从闭环PID控制和Fuzzy控制的仿真结果的对比中可以看出,Fuzzy控制的控制方式更加简单,稳定度高,且纹波也基本满足要求。

相关文档
最新文档