【数学】河南省南阳市2019-2020学年高一下学期期末考试试题
河南省南阳市2023-2024学年高一下学期4月期中质量评估数学试题

河南省南阳市2023-2024学年高一下学期4月期中质量评估数学试题一、单选题1.与角20244'-o 终边相同的角是( ) A .4044'-oB .2244'-oC .31556'oD .67556'o2.已知()1,2A ,()4,3B ,(),6C x ,若AB AC ∥u u u r u u u r,则x =( ) A .10B .11C .12D .133.在扇形AOB 中,2AOB ∠=,弦2AB =,则扇形AOB 的面积是( ) A .1sin1B .()21sin1 C .sin1D .()2sin14.在梯形ABCD 中,90BAD CDA ∠=∠=︒,5AD =,则AD BC ⋅=u u u r u u u r( )A .25B .15C .10D .55.在ABC V 与111A B C △中,已知11111π,3AB A B x BC B C C C =====,若对任意这样两个三角形,总有111ABC A B C ≅△△,则( )A .30,2x ⎛⎤∈ ⎥⎝⎦B .(x ∈C .)x ∞∈+D .)32x ∞⎧⎫∈+⋃⎨⎬⎩⎭6.小娟,小明两个人共提一桶水匀速前进,已知水和水桶总重力为G u r,两人手臂上的拉力分别为1F u u r ,2F u u r ,且12F F =u u r u u r ,1F u u r 与2F u u r 的夹角为θ,下列结论中正确的是( )A .θ越小越费力,θ越大越省力B .始终有122G F F ==ru u r u u rC .当2π3θ=时,1F G =u u r r D .当π2θ=时,1F G =u u r r7.若π,,0,2αβθ⎛⎫∈ ⎪⎝⎭,且c o s t a n αα=,cos ββ=,cos sin θθ=,则α,β,θ的大小是( )A .αθβ<<B .αβθ<<C .βαθ<<D .βθα<<8.已知()()sin f x x ωϕ=+,其中0ω>,0πϕ<<.其部分图象如下图,则π6f ⎛⎫= ⎪⎝⎭( )A .1-B .C .12-D .二、多选题9.下列等式恒成立的是( ) A .()sin πsin αα+=B .πcos sin 2αα⎛⎫-= ⎪⎝⎭C .3πsin cos 2αα⎛⎫-+= ⎪⎝⎭D .()tan πtan αα+=-10.已知向量()1,2a =r,2b =r ,a b +=r r )A .a r 在b r 上的投影数量是12-B .b r 在a r 上的投影向量是⎛ ⎝⎭C .a r 与b rD .()4a b b +⊥r r r11.设函数f x =A sin ωx +φ (其中0A >,0ω>,π0ϕ-<<),若()f x 在ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π5ππ266f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)A .2A =B .23ω=C .π2ϕ=-D .当π3π,64x ⎡⎤∈-⎢⎥⎣⎦时,()f x ⎡∈-⎣ 12.在ABC V 中,2AB =,3AC =,60BAC ∠=︒,则( )A .ABC V 的周长是5B .BCC .BCD .BC三、填空题13.若[]0,2πx ∈,满足条件sin cos 0x x +>的x 的集合是.14.将函数1sin 22y x =的图象上各点向左平移π3个单位长度,再把横坐标缩短为原来的13,得到的图象的函数解析式是.15.已知5πsin 3α⎛⎫-= ⎪⎝⎭19πcos 6α⎛⎫-=⎪⎝⎭. 16.在ABC V 中,D 为BC 边上的任一点,若1cos 3B =,22AB AD BD DC =+⋅,则sin C =.四、解答题17.如图,以Ox 为始边作角α与π0π2ββα⎛⎫<<<< ⎪⎝⎭,它们的终边分别与单位圆相交于点P ,Q ,已知点Q 的坐标为x ⎛ ⎝⎭.(1)求2sin 5cos 3sin 2cos ββββ+-的值;(2)若OP OQ ⊥,求P 的坐标.18.如图,在平行四边形ABCD 中,点M 为AB 中点,点N 在BD 上,3BN BD =.(1)设AD a =u u u r r ,AB b =u u u r r ,用a r ,b r 表示向量u u u rNC ; (2)求证:M ,N ,C 三点共线.19.(1)已知()1,0A -,()0,2B ,求满足5AB AD ⋅=u u u r u u u r,210AD =u u u r 的点D 的坐标;(2)设a r ,b r 为单位向量,且12a b ⋅=-r r ,向量c r 与a b +r r 共线,求b c +r r 的最小值.20.在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2c B a b =-. (1)求C ;(2)若5b =,c =ABC V 的面积.21.已知()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在5,612ππ⎛⎫ ⎪⎝⎭上是单调函数,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称,且对任意的x ∈R ,都有()512f x f π⎛⎫≤ ⎪⎝⎭. (1)求()f x 解析式;(2)若函数()()()g x f x m m =-∈R 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个零点1x ,2x ,求()12f x x +的值.22.已知a ,b ,c 分别为ABC V 中角A ,B ,C 的对边,G 为ABC V 的重心,AD 为BC 边上的中线.(1)若ABC V 60CGD ∠=o ,1CG =,求AB 的长; (2)若GB GC ⊥,求cos BAC ∠的最小值.。
2019-2020学年河南省南阳市邓州第六高级中学高一数学理下学期期末试题含解析

2019-2020学年河南省南阳市邓州第六高级中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列{a n}中,a5=1,a8+a10=16,则a13的值为(A)27 (B)31 (C)30 (D)15参考答案:D2. 已知锐角三角形的边长分别为1,3,a,则a的取值范围是()A.(8,10)B.C.D.参考答案:B【分析】根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围。
【详解】由题意知,边长为1所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选:C。
【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.3. 函数的零点所在的一个区间是()A.(-2, -1)B.(-1,0)C.(0,1)D.(1,2)参考答案:B函数f(x)=2x+3x是连续增函数,∵f(-1)= ,f(0)=1+0>0∴函数的零点在(-1,0)上,故选:B4. 若是常数,函数对于任何的非零实数都有,且,则不等式的解集为( )A. B. C.D.参考答案:A略5. 已知数列{a n}的前n项和为S n,若S n=n2+n(n≥1),则数列{}的前n项和等于()A.B.C.D.参考答案:A6. 设是上的奇函数,,当时,,则等于( )A、0.5B、C、1.5D、参考答案:B略7. 设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.参考答案:D8. 从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有一个黒球与都是黒球B.至少有一个黒球与恰有1个黒球C.至少有一个黒球与至少有1个红球D.恰有个黒球与恰有2个黒球参考答案:D略9. 已知均为锐角,且满足,则与的关系()参考答案:解析:.由题设:.∴ .∴ .10. 已知定义在R上的函数f(x)满足f(﹣1+x)=f(3﹣x),当x≥1时,f(x)单调递增,则关于θ不等式的解范围()A.B.C.D.参考答案:A【考点】正弦函数的单调性;奇偶性与单调性的综合.【专题】计算题;转化思想;转化法;函数的性质及应用;三角函数的图像与性质.【分析】根据条件判断函数的对称性,结合三角函数的性质将不等式进行转化求解即可.【解答】解:∵f(﹣1+x)=f(3﹣x),∴函数关于=1对称性,∵log82=log82===,∴不等式等价为f(sin2θ)<f(),∵当x≥1时,f(x)单调递增,∴当x<1时,f(x)单调递减,则不等式等价为sin2θ>,即2kπ+<2θ<2kπ+,k∈Z.则kπ+<θ<kπ+,k∈Z.故不等式的解集为(kπ+,kπ+),k∈Z.故选:A【点评】本题主要考查不等式的求解,根据函数对称性和单调性之间的关系将不等式进行转化是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 函数且的图象恒过定点P,P在幂函数f(x)的图象上,则___________.参考答案:2712. 一个圆柱和一个圆锥的底面直径和他们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.参考答案:3:1:213. 已知实数满足,则的最大值为.参考答案:414. , 设△ABC 的内角A满足,且,则BC边上的高AD 长的最大值是________.参考答案:【分析】通过已知条件可求出A角,bc乘积,于是可求得面积,利用余弦定理与基本不等式可得到a的最小值,于是再利用面积公式可求得答案.【详解】根据题意,,故,求得,,故,根据余弦定理得,即,即而三角形面积为,所以边上的高长的最大值是,故答案为.【点睛】本题主要考查解三角形,基本不等式的实际应用,意在考查学生的分析能力,逻辑推理能力,计算能力,难度较大.15. 函数的定义域为______________.参考答案:略16. 已知直线l过点,,则直线l的倾斜角为______.参考答案:【分析】根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.17. 已知函数f(x)=,则f(f(﹣2))= .参考答案:3【考点】函数的值.【分析】由分段函数先求出f(﹣2)=,由此能求出f(f(﹣2))的值.【解答】解:∵函数f(x)=,∴f(﹣2)=,f(f(﹣2))=f()=1﹣=1﹣(﹣2)=3.故答案为:3.三、解答题:本大题共5小题,共72分。
2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()
2019-2020学年高一下学期课后复习卷数学试题(平面向量)含答案

六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是( ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( )2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( )A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( ) A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( )A .21 B .31 C .41 D .61 10.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b .12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为_______. 14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=b a . (1)求a 与b的夹角的余弦值;(2)若向量b k a +与b k a -互相垂直,求实数k 的值.17.设a 、b 是两个不共线的向量,(1)记OA =a ,OB =tb ,OC =13(a +b ),当实数t 为何值时,A 、B 、C 三点共线?(2)若|a |=|b |=1且a 与b 的夹角为120°,那么实数x 为何值时,|a -x b |的值最小?18.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是(C ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( C ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( A )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( B ) A .||||||⋅≤a b a b B .||||||||--≤a b a b C .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( B)2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( D ) A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( C B )A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( B A )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( C D )A .21 B .31 C .41 D .6110.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( A B )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b 4 . 12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 50 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为____120⁰____.14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 2 3 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 1/3 1/2 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=.(1)求与的夹角的余弦值;(2)若向量k+与k-互相垂直,求实数k的值.⑴解:由题意:a(4,-3),b(5,0)∴cosa,b=a·b/|a||b|=20/5×5=4/5∴a与b夹角的余弦值为4/5⑵解:由题意知:(a+kb)·(a-kb)=a²-k²b²=0∵a²=25=b²∴25-25k²=0∴k=1或-117.设a、b是两个不共线的向量,(1)记=a,=tb,=13(a+b),当实数t为何值时,A、B、C三点共线?(2)若|a|=|b|=1且a与b的夹角为120°,那么实数x为何值时,|a-x b|的值最小?⑴解:由题意知:AB=λAC,即-a+tb=λ(b-a)解得:t=1∴当t=1时,A,B,C三点共线⑵解:由题意知:|a-xb|=√(a-xb)²解得x=-1/2∴当x=-1/2时,其最小值为√3/218.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.⑴解:设点p (cosα,sinα),AP=(cosα+1/2,sinα),BP=(cosα-3/2,sinα) ∵AP·BP=-1/4,解得cosα=1/3∵α是锐角∴α=π/3 ⑵解:设M 点坐标为(t,0),则MP=(cosα-t,sinα) 由题意知(4+2t )cosα-t²+4=0恒成立,解得t=-2 ∴M (-2,0)。
【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。
河南省南阳市2019-2020学年高一下学期期末考试历史试题+Word版含答案

南阳市2020年春期高中一年级期终质量评估历史试题弟I卷(选择题60分)一、选择题(共40小题,每小题1.5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.汉代董仲舒、王莽等人对商鞅“废井田,开阡陌”的土地变革极为不满;宋代王安石、朱熹等人主张“复古井田制,田尽归官”;近代孙中山曾多次给予井田制高度的评价。
这些主张的共同目的是A.保护田庄经济B.发展商品经济C.维护封建统治D.限制土地兼并2.隋唐是我国封建社会的繁荣时期。
由于农业经济的发展、手工业的进步,特别是隋朝时开凿的贯通南北的大运河,促进了商品流通范围的扩大。
在此基础上出现了邸店、柜坊、飞钱等,它们的共同作用是A.为对外贸易服务B.为远距离和大宗商品交易服务C.为存款、贷款、兑换钱币服务D.为储存金银财物服务3.北宋初年,统治者非常注重朝贡的政治、军事意义,而置朝贡的经济利益于不顾;至南宋时期,重名不重实的朝贡贸易开始降到次要地位,市舶贸易成为国家财政收入的主要来源之一。
这一变化反映了A.南宋统治者采取务实政策B.传统朝贡贸易体制已动摇C.南宋统治者注重贸易管理D.官方贸易让位于民间贸易4.南宋时期,商品价格由行户、行头、官府三方制定,将商品质量分为精、次、粗三等,然后按照质量等级确定商品价格,最后将制定好的价格登录在案写成状文,报送官府专门管理价格的部门备案。
这表明当时A.商品价格由市场决定B.商品经济高度发达C.政府重视市场的监管D.官府操纵商品价格5.元代时,中国的棉纺织技术与近代英国一样都进行了技术革新,但在中国没有引发与英国相同的革命性效应,反而为自闭创造了条件。
其根源是中国A.小农经济的生产模式B.农民的购买力低下C.重农抑商政策的影响D.长途贩运呈现萎缩6.明朝嘉靖年间,山西武城县县令鉴于该县“集日寡而旷多”,每逢集日,便组织“歌舞剧戏之徒,各呈其技于要街”,结果“众且观且市,远近毕至,喧声沸腾……粟米丝麻布帛,禽而鸡骛,兽而牛羊,食而鱼肉果菰,与夫南北水陆之产,可以供民生所需者,错然填街溢巷”。
河南省南阳市2023-2024学年高一下学期期末质量评估数学试题

2024年春期高中一年级期终质量评估数学试题一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.()AB .CD2.已知:,其中为虚数单位,则( )A .1B CD .23.如图是底面半径为1的圆锥,将其放倒在水平面上,使圆锥在此平面内绕圆锥顶点滚动,当这个圆锥在水平面内首次转回原位置时,圆锥本身恰好滚动了3周,则滚动过程中该圆锥上的点到水平面的距离最大值为()A .B .2C D4.已知:,,,若,则与的夹角为()A .30°B .60°C .120°D .150°5.在平面直角坐标系中,平面向量,将绕原点逆时针旋转得到向量,则向量在向量上的投影向量是( )A .B .C .D .6.如图,一个三棱锥容器的三条侧棱上各有一个小洞,,,经测量知,这个容器最多可盛原来水的()22cos 15sin 15︒-︒=12()11z i i -=+i z =O ()1,2a = ()2,4b =-- c = ()52a b c +⋅= a c xOy ()3,4OA = OA 23πOB OB OA322⎛+-⎝3,22⎛⎫⎪⎝⎭322⎛---+ ⎝3,22⎛⎫-- ⎪⎝⎭D E F :::2:1SD DA SE EB CF FS ===A.B .C .D .7.在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义为角的正矢,记作;定义为角的余矢,记作,则下列命题正确的是()A .函数的对称中心为B .若,则C .若,且,则圆心角为,半径为3的扇形的面积为D .若,则8.如图,在直角梯形中,已知,,,,现将沿折起到的位置,使二面角的大小为45°,则此时三棱锥的外接球表面积是()A .B .C .D .二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列有关复数内容表述正确的是()A .若复数满足,则一定为纯虚数B .对任意的复数均满足:C .设在复数范围内方程的两根为,,则D .对任意两个复数,,若,则,至少有一个为019272327293331351cos θ-θsin ver θ1sin θ-θcov ers θ()sin cov 1f x ver x ersx =-+,14k k ππ⎛⎫-∈ ⎪⎝⎭Z ()sin cov 1g x ver x ersx =⋅-()g x 1()sin 2cov 1h x ver x ersx =-+()1h α=02πα<<α43πsin 1cov 1ver x ersx -=-cov 311cov 13ers x ersx -=-ABCD AD BC 1AD AB ==90BAD ∠=︒45BCD ∠=︒ABD △BD PBD △P BD C --P BCD -83π143π4π6πz 0z z +=z z 22z z=24130x x -+=1x 2x 124x x +=1z 2z 120z z ⋅=1z 2z10.已知函数,且,则( )A .B .函数是偶函数C .函数的图像关于直线对称D .函数在区间上单调递减11.如图,在正三棱锥中,底面边长为,侧棱长为,点,分别为侧棱,上的异于端点的动点.则下列说法正确的是()A .若,则不可能存在这样的点,使得B .若,,则C .若平面,则D .周长的最小值是三、填空题(本大题共3小题,每小题5分,共15分.)12.已知向量,,点是线段的三等分点,则点的坐标是___________.13.如图,在中,,,,的角平分线交于,交过点且与平行的直线于点,则___________.14.设为函数图象上任意一点,的最大值是___________.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)(1)已知复数满足,求;()()sin cos 0f x a x b x ab =+≠44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭a b=4f x π⎛⎫-⎪⎝⎭()f x 54x π=()f x ,44ππ⎛⎫- ⎪⎝⎭A BCD -a 2a E F AC AD BE AC ⊥F EF AC⊥13AE AC = 23AF AD = 29E ABF B EFDCV V --=CD BEF EF CDBEF △52a ()1,2OA = ()2,1OB =-P AB P ABC △60ABC ∠=︒AC =2BC =ABC ∠AC D A BC E DE =(),P x y ()[]()sin cos 11,122f x x x x ππ⎛⎫=++∈- ⎪⎝⎭z 13z i z =+-()()1334i i z++(2)设,复数在复平面内对应的点在第三象限,求的取值范围.16.(本小题满分15分)已知为锐角,为钝角,且,.(1)求的值;(2)求的值.17.(本小题满分15分)在中,,.(1)求证:;(2)若,,求的值.18.(本小题满分17分)如图,平面,底面为矩形,,点是棱的中点.(1)求证:;(2)若,分别是,上的点,且,为上任意一点,试判断:三棱锥的体积是否为定值?若是,请证明并求出该定值;若不是,请说明理由.19.(本小题满分17分)x ∈R ()2121log 1log cos 2z x i x ⎛⎫=++⋅+ ⎪⎝⎭x αβsin α=1tan 7β=-sin 2β2βα-ABC △ABD α∠=DBC β∠=()sin sin sin BD BA BCαββα+=+AB AC =72C ∠=︒cos36︒PA ⊥ABCD ABCD 112PA AB BC ===E PB AE PC ⊥M N PD AC 2PM ANDM CN==Q MN P ABQ -已知在中,角,,所对应的边分别为,,.圆与的边及,的延长线相切(即圆为的一个旁切圆),圆与边相切于点.记的面积为,圆的半径为.(1)求证:;(2)若,,①求的最大值;②当时,求的值.ABC △AB C a b c M ABC △AC BA BC M ABC △M AC T ABC △S M r 2Sr a b c=-+3B π=8b =r r =AM AC ⋅。
河南省南阳市2019-2020学年初二下期末调研数学试题含解析

河南省南阳市2019-2020学年初二下期末调研数学试题一、选择题(每题只有一个答案正确)1.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( )A .0x >B .0x <C .1x >-D .1x <-2.如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b+ab 2的值为( )A .60B .16C .30D .113.若关于x 的方程33x m x -=+的解为负数,则m 的取值范围是( ) A .3m >-B .3m <-C .3m ≥-D .3m ≤-4.若,,a b c 是三角形的三边长,则式子()22a b c --的值( ). A .小于0B .等于0C .大于0D .不能确定5.若关于x 的方程x 2+5x+a =0有一个根为﹣2,则a 的值是( ) A .6B .﹣6C .14D .﹣146.如图,在△ABC 中,P 为BC 上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③7.已知第一象限内点(4,1)P a +到两坐标轴的距离相等,则a 的值为( ) A .3B .4C .-5D .3或-58.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米9.定义:如果一元二次方程ax 2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax 2+bx+c=0(a≠0)满足a ﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( ) A .方有两个相等的实数根 B .方程有一根等于0 C .方程两根之和等于0D .方程两根之积等于010.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)6558774根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分 二、填空题11.直角三角形的两边长分别为3和5,则第三条边长是________. 12.计算:2b cc b- =_____. 13.直线21y x =-+过第_________象限,且y 随x 的增大而_________. 14.已知反比例函数12my x-=的图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 _______________15.如图,在ABC ∆中,点D 在AB 上,请再添加一个适当的条件,使ADC ∆与ACB ∆相似,那么要添加的条件是__________.(只填一个即可)16.已知一组数据3,5,9,10,x ,12的众数是9,则这组数据的平均数是___________. 17.若n 边形的内角和是它的外角和的2倍,则n= . 三、解答题18.如图,小巷左右两侧是竖直的墙,一架梯子AB 斜靠在左墙时,梯子底端到左墙角的距离AC 为0.7米,顶端到地面距离BC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离'B D 为2米,求小巷的宽度CD .19.(6分)计算(1)计算:04(2019)|32|π--+- (2)2(22)21+-- 20.(6分)当m ,n 是正实数,且满足m +n =mn 时,就称点P (m ,mn)为“完美点”.(1)若点E 为完美点,且横坐标为2,则点E 的纵坐标为 ;若点F 为完美点,且横坐标为3,则点F 的纵坐标为 ;(2)完美点P 在直线 (填直线解析式)上;(3)如图,已知点A (0,5)与点M 都在直线y =﹣x +5上,点B ,C 是“完美点”,且点B 在直线AM 上.若MC 3AM =2MBC 的面积.21.(6分)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,AO CO =,EF 过点O 且与AD 、BC 分别相交于点E 、F ,OE OF =(1)求证:四边形ABCD 是平行四边形;(2)连接AF ,若EF AC ⊥,ABF ∆周长是15,求四边形ABCD 的周长. 22.(8分)已知等腰三角形的周长是18cm ,底边()y cm 是腰长()x cm 的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省南阳市2019-2020学年高一下学期期末考试试题
【参考答案】
一、选择题
1-6 DBCABB 7-12 BDCADC 二、填空题
13.31 14.9 15.3
5 16.
[)2,+∞
三、解答题 17、解:(1)
a 与
b 的夹角为45︒,
•cos 4511a b a b ∴=︒=⨯=.………………………………………………2分
222(2)()221122a b a b a a b b ∴-⋅+=+⋅-=+
-=+ .……………………… 5分
(2)
向量ka b +与ka b -的夹角为钝角,
∴(ka b +)(ka b -)<0,且不能反向共线,………………………………………7分 0122
2
2<-=-∴→→k b a k ,解得11,0k k -<<≠
∴实数k 的取值范围是{k |-11k <<且0k ≠ } .………………………………………10分
18、解:(1)补充表格:
…………………………………………………………4分(每空1分) 由最大值为2,最小值为-2,可知A=2.
又
,23652212T πππωπ=-=⋅=故2=ω
再根据五点作图法,
可得
,23
2π
ϕπ
=
+⋅
得
6π
ϕ-
=,故)62sin(2)(π
-=x x f .………6分
将函数)(x f y =的图像向左平移4π
个单位后,可得到 )
32sin(2]6)4(2sin[2π
ππ+=-+=x x y 的图像,
再将得到图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数
)321(sin 2)(π+==x x g y 的图像(也可写成)
621(c 2)(π
-==x os x g y ). ………8分
已知函数x y sin =的单调递减区间为)(232,22Z k k k ∈⎥⎦⎤⎢⎣⎡
++ππππ
故令2323212
2ππππ
π+≤+≤
+
k x k ,求得3
7434π
πππ+≤≤+k x k 故)(x g 的单调递减区间为)(374,34Z k k k ∈⎥⎦⎤⎢⎣⎡
++ππππ.………………………12分
19.解:(1)
245683040605070
5,
50
5
5x y ++++++++=
==
= ………2分
5
1
5
2
2
1
13805550
ˆ 6.5145555
i i
i i
i x y nx y
b
x
nx ==-⋅-⨯⨯==
=-⨯⨯-∑∑ ……………………………………4分
a 50 6.5517.5y bx =-=-⨯=,
因此,所求回归直线方程为: 6.517.5y x =+. …………………………………6分 (2)
记事件A 为:所取两组数据其预测值与实际值之差的绝对值都不超过5, 从两组数据中任取两组数据基本事件包括:
()()()()()()()()()
30,4030,6030,5030,7040,6040,5040,7060,5060,7050,(7)0,,,,,,,,,共10个, ……………………………………………………………………………9分
其中事件A 包括:
()()()30,4030,7040,70,,共3个,所以
103)(==
n m A P .
即两组数据其预测值与实际值之差的绝对值都不超过5的概率为3
10 .……………12分
20.解:(1)(
)sin 222sin 23f x x x x π⎛
⎫
=+=+
⎪⎝
⎭
………………………3分 令()23
2
x k k π
π
π+
=+
∈Z ,()f x 的对称轴为()212k x k ππ
=
+∈Z
………4分 最小正周期22
T π
π== ……………………………………………………………5分 (2)当50,
12x π⎡⎤
∈⎢⎥⎣⎦
时,72,336x πππ⎡⎤+∈⎢⎥⎣⎦,……………………………………7分 因为sin y x =在32ππ⎡⎤
⎢⎥⎣⎦
,单调递增,在726ππ⎡⎤
⎢⎥⎣⎦
,单调递减,
在2
x π
=
取最大值,在76
x π
=
取最小值 ……………………………………………9分 所以1sin 2,132x π⎛⎫⎡⎤
+
∈- ⎪⎢⎥⎝
⎭⎣⎦
,
所以()[]
1,2f x ∈- ………………………………………………………………12分
21.解:(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:
……………………2分
(2)中位数的估计值:
由50.0250.02450.0260.350.5⨯+⨯+⨯=<,
0.3550.0360.530.5+⨯=>
所以中位数位于区间[)2530,中,
设中位数为x ,则
()0.35250.0360.5
x +-⨯=,
解得29.2x ≈.即样本中位数是29.2. …………………………………………6分 (3)依题意可知,休闲跑者共有()50.0250.024*******⨯+⨯⨯=人,
核心跑者
()50.02650.03650.04450.0301000680⨯+⨯+⨯+⨯⨯=人,
精英跑者1000220680100--=人, 所以该市每位跑步爱好者购买装备,平均需要
220250068040001004500
3720
1000⨯+⨯+⨯=元.
即该市每位跑步爱好者购买装备,平均需要3720元……………………………12分
22.解:(1)由题意知,,A B C 三点满足12
33OC OA OB
=+, 可得2()3OC OA OB OA -=-,所以22
()
33AC AB AC CB ==+,
即12
33AC CB
=即2AC CB =,
则2AC CB
=,所以||
2||AC CB =…………………….…………4分
(2)由题意,
函数2222()2||1cos cos 2cos 333f x OA OC m AB x x m x
⎛⎫⎛
⎫=•-+=++-+ ⎪ ⎪⎝⎭⎝⎭
22(cos )1x m m =-+-………………………………………………………………6分
因为
0,2x π⎡⎤
∈⎢⎥
⎣⎦,所以cos [0,1]x ∈, 当0m <时,当cos 0x =时,()f x 取得最小值()1g m =,
当01m ≤≤时,当cos x m =时,()f x 取得最小值2
()1g m m =-,
当1m 时,当cos 1x =时,()f x 取得最小值()22g m m =-,
综上所述,21
0()101
221m g m m m m m <⎧⎪
=-≤≤⎨⎪->⎩
,…………………………………………10分
易得函数
()
g m 的最大值为1.………………………………………………………12分。