零件参数设计matlab程序(数学建模)

合集下载

Matlab中的数学建模方法

Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。

Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。

本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。

一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。

在Matlab中,可以使用regress函数来拟合线性回归模型。

例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。

首先,我们需要收集一组已知的身高和体重数据作为训练集。

然后,可以使用regress函数来计算回归模型的参数,并进行预测。

最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。

二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。

在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。

在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。

例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。

首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。

然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。

最后,可以使用拟合后的模型来进行预测和分析。

三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。

在Matlab中,可以使用fmincon函数来求解最优化问题。

例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。

可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。

通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。

四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。

通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。

在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。

二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。

2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。

3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。

4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。

5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。

6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。

三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。

2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。

3.优化问题:使用`optimize`函数求解优化问题。

4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。

5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。

数学建模MATLAB教案

数学建模MATLAB教案

数学建模MATLAB教案第一章:MATLAB简介1.1 MATLAB概述介绍MATLAB的发展历程和特点解释MATLAB的缩写和全称1.2 MATLAB界面介绍MATLAB的工作空间熟悉MATLAB的菜单栏和工具栏1.3 MATLAB基本操作学习MATLAB的变量类型和赋值方式掌握MATLAB的运算符和矩阵运算1.4 MATLAB的帮助系统学习如何使用MATLAB的帮助系统熟悉MATLAB的文档和教程第二章:MATLAB编程2.1 MATLAB脚本编程学习编写MATLAB脚本文件掌握MATLAB脚本的基本结构2.2 MATLAB函数编程学习编写MATLAB函数文件掌握MATLAB函数的输入输出参数2.3 MATLAB编程技巧学习MATLAB的条件语句和循环语句掌握MATLAB的文件操作和数据读取2.4 MATLAB编程实例举例讲解MATLAB编程的实际应用分析并解决实际问题第三章:数学建模基础3.1 数学建模概述介绍数学建模的定义和发展历程解释数学建模的重要性和应用领域3.2 数学建模方法学习数学建模的基本方法和步骤掌握数学建模的常见技巧和策略3.3 数学建模实例举例讲解数学建模的实际应用分析并解决实际问题3.4 MATLAB在数学建模中的应用介绍MATLAB在数学建模中的优势熟悉MATLAB的数学建模工具和函数第四章:MATLAB在微积分中的应用4.1 微积分基本概念复习微积分的极限、导数和积分等基本概念4.2 MATLAB求解微积分问题学习使用MATLAB求解微分和积分问题掌握MATLAB的微积分函数和工具4.3 MATLAB在微积分建模中的应用举例讲解MATLAB在微积分建模中的实际应用分析并解决实际问题4.4 微积分建模实例举例讲解微积分建模的实际应用分析并解决实际问题教案继续:第六章:MATLAB在线性代数中的应用6.1 线性代数基本概念复习线性代数的相关概念,如矩阵、向量、线性方程组等6.2 MATLAB求解线性代数问题学习使用MATLAB求解矩阵运算、线性方程组、特征值等问题掌握MATLAB线性代数相关的函数和工具6.3 MATLAB在线性代数建模中的应用举例讲解MATLAB在线性代数建模中的实际应用分析并解决实际问题6.4 线性代数建模实例举例讲解线性代数建模的实际应用分析并解决实际问题第七章:MATLAB在概率论与数理统计中的应用7.1 概率论与数理统计基本概念复习概率论与数理统计的基本概念,如随机变量、概率分布、统计量等7.2 MATLAB求解概率论与数理统计问题学习使用MATLAB进行概率计算、统计量计算、假设检验等掌握MATLAB概率论与数理统计相关的函数和工具7.3 MATLAB在概率论与数理统计建模中的应用举例讲解MATLAB在概率论与数理统计建模中的实际应用分析并解决实际问题7.4 概率论与数理统计建模实例举例讲解概率论与数理统计建模的实际应用分析并解决实际问题第八章:MATLAB在differential equations中的应用8.1 常微分方程基本概念复习常微分方程的定义、分类和解法8.2 MATLAB求解常微分方程学习使用MATLAB求解常微分方程,包括初值问题和边界值问题掌握MATLAB常微分方程相关的函数和工具8.3 MATLAB在常微分方程建模中的应用举例讲解MATLAB在常微分方程建模中的实际应用分析并解决实际问题8.4 常微分方程建模实例举例讲解常微分方程建模的实际应用分析并解决实际问题第九章:MATLAB在优化问题中的应用9.1 优化问题基本概念复习优化问题的定义、目标和常见方法9.2 MATLAB求解优化问题学习使用MATLAB求解无约束和有约束的优化问题掌握MATLAB优化相关的函数和工具9.3 MATLAB在优化建模中的应用举例讲解MATLAB在优化建模中的实际应用分析并解决实际问题9.4 优化建模实例举例讲解优化建模的实际应用分析并解决实际问题第十章:MATLAB在数据分析和可视化中的应用10.1 数据分析基本概念复习数据分析的定义、目的和常用方法10.2 MATLAB进行数据分析学习使用MATLAB进行数据预处理、统计分析和数据可视化掌握MATLAB数据分析相关的函数和工具10.3 MATLAB在数据分析建模中的应用举例讲解MATLAB在数据分析建模中的实际应用分析并解决实际问题10.4 数据分析建模实例举例讲解数据分析建模的实际应用分析并解决实际问题教案继续:第十一章:MATLAB在信号处理中的应用11.1 信号处理基本概念复习信号处理的基本概念,如信号、系统、傅里叶变换等11.2 MATLAB进行信号处理学习使用MATLAB进行信号的、分析和处理掌握MATLAB信号处理相关的函数和工具11.3 MATLAB在信号处理建模中的应用举例讲解MATLAB在信号处理建模中的实际应用分析并解决实际问题11.4 信号处理建模实例举例讲解信号处理建模的实际应用分析并解决实际问题第十二章:MATLAB在图像处理中的应用12.1 图像处理基本概念复习图像处理的基本概念,如图像、像素、滤波等12.2 MATLAB进行图像处理学习使用MATLAB进行图像的读取、处理和显示掌握MATLAB图像处理相关的函数和工具12.3 MATLAB在图像处理建模中的应用举例讲解MATLAB在图像处理建模中的实际应用分析并解决实际问题12.4 图像处理建模实例举例讲解图像处理建模的实际应用分析并解决实际问题第十三章:MATLAB在控制系统中的应用13.1 控制系统基本概念复习控制系统的基本概念,如系统、稳定性、传递函数等13.2 MATLAB进行控制系统分析学习使用MATLAB进行控制系统的建模、分析和仿真掌握MATLAB控制系统相关的函数和工具13.3 MATLAB在控制系统建模中的应用举例讲解MATLAB在控制系统建模中的实际应用分析并解决实际问题13.4 控制系统建模实例举例讲解控制系统建模的实际应用分析并解决实际问题第十四章:MATLAB在机器学习中的应用14.1 机器学习基本概念复习机器学习的基本概念,如监督学习、非监督学习、神经网络等14.2 MATLAB进行机器学习学习使用MATLAB进行机器学习模型的构建、训练和预测掌握MATLAB机器学习相关的函数和工具14.3 MATLAB在机器学习建模中的应用举例讲解MATLAB在机器学习建模中的实际应用分析并解决实际问题14.4 机器学习建模实例举例讲解机器学习建模的实际应用分析并解决实际问题第十五章:MATLAB在数学建模竞赛中的应用15.1 数学建模竞赛基本概念介绍数学建模竞赛的背景、规则和重要性15.2 MATLAB在数学建模竞赛中的策略学习如何利用MATLAB解决数学建模竞赛中的实际问题掌握MATLAB在数学建模竞赛中的优势和技巧15.3 数学建模竞赛实例分析分析数学建模竞赛中的实际案例讲解如何利用MATLAB提高竞赛成绩15.4 数学建模竞赛训练和指导提供数学建模竞赛的训练方法和指导建议帮助学生提高数学建模竞赛的能力和水平重点和难点解析1. MATLAB的基本操作和编程:理解MATLAB的工作空间,熟悉菜单栏和工具栏,掌握变量类型和赋值方式,以及矩阵运算。

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤引言:Matlab是一种功能强大的数学计算软件,被广泛应用于各个领域的科学研究和工程技术中。

其中,建模和仿真是Matlab应用的重要方面,它可以帮助工程师和研究人员分析和预测各种系统的行为。

本文将介绍使用Matlab技术进行建模和仿真的步骤,包括建立模型、定义参数、进行仿真和分析结果等。

一、确定建模目标在开始建模之前,首先需要明确建模的目标和需求。

例如,我们可以通过建模来分析电路、机械系统或者物理过程等。

只有明确了建模目标,才能选择合适的建模方法和工具。

二、选择合适的建模方法建模方法可以根据系统的特点和需求进行选择。

常用的建模方法包括物理建模、统计建模、数据驱动建模等。

物理建模是基于系统的物理原理和方程进行建模,统计建模是通过统计分析来描述系统的行为,数据驱动建模则是利用已有的数据来建立模型。

根据不同的情况,选择合适的建模方法至关重要。

三、建立模型在Matlab中,建立模型可以使用Simulink或者编程的方式。

Simulink是一种基于图形化界面的建模工具,可以通过拖拽组件和连接线来搭建模型。

编程的方式则可以使用Matlab脚本语言来描述系统的数学模型。

根据系统的特点和个人的喜好,选择适合自己的建模方式。

四、定义参数和初始条件在建立模型之后,需要定义参数和初始条件。

参数是影响系统行为的变量,可以通过Matlab的变量赋值来定义。

初始条件是模型在仿真开始之前系统的状态,也需要进行设定。

对于一些复杂的系统,可能需要对模型进行调优和参数敏感性分析等,以获取更加准确的结果。

五、进行仿真在模型建立并定义好参数和初始条件之后,就可以进行仿真了。

仿真是通过运行模型,模拟系统在不同条件下的行为。

Matlab提供了强大的仿真功能,可以灵活地设置仿真时间步长和仿真条件,进行数据记录和后续分析。

六、分析结果仿真完成后,需要对仿真结果进行分析。

Matlab提供了各种分析工具和函数,可以方便地对仿真数据进行处理和可视化。

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。

本章将介绍MATLAB的基本特点、主要功能以及安装方法。

首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。

其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。

最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。

为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。

用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。

安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。

激活成功后,用户将可以使用MATLAB的全部功能。

第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。

本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。

首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。

变量名可以包含字母、数字和下划线,但不允许以数字开头。

其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。

用户只需要输入相应的矩阵运算符和矩阵变量即可。

然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。

最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。

第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。

本章将介绍如何使用MATLAB进行数学建模与优化。

首先,数学建模的第一步是问题描述和模型构建。

用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。

其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。

数学建模MATLAB程序设计专题ppt课件

数学建模MATLAB程序设计专题ppt课件

全局变量
全局变量(Global Variables)是可以在不同的函数工作空间和MATALB工作空间中共享使用的变量。 用 global定义, 而且每个要共享全局变量的函数和工作空间,都必须逐个定义, 先定义后使用. 注意:由于全局变量在任何定义过的函数中都可以修改,因此不提倡使用全局变量;使用时应十分小心,建议把全局变量的定义放在函数体的开始,全局变量用大写字符命名。
M函数文件的基本格式
函数声明行
function [输出变量列表] = 函数名(输入变量列表)
H1行(用%开头的注释行) 在线帮助文本 (用%开头) 编写和修改记录(用%开头)
函数体
创建M函数文件并调用的步骤
编写函数代码 将函数文件保存为“函数名.m”。 在命令窗口输入命令调用程序
利用泛函命令求极小值
2. fminsearch函数 :求多变量无约束非线性最小值。 x=fminsearch(h_fun,x0) x=fminsearch(‘funname’,x0) x0是最小值点的初始猜测值。
其它泛函命令
3 .fzero函数:求一维函数的零点,即求f(x)=0的根。 x=fzero(h_fun, x0, tol, trace) x=fzero(‘funname’, x0, tol, trace) x0有两个作用:预定待搜索零点的大致位置和搜索起始点;tol用来控制结果的相对精度,默认值为eps;trace指定迭代信息是否在运算中显示。
其它泛函命令
4. 数值积分:quad和quad8是基于数学上的正方形概念来计算函数的面积。 5. 微分方程的数值解:MATLAB提供ode23、ode45和ode113等多个函数求解微分方程的数值解。
泛函命令
在MATLAB中,所有以函数为输入变量的命令,都称为泛函命令。

数学建模零件参数的优化设计

数学建模零件参数的优化设计

数学建模零件参数的优化设计Company number【1089WT-1898YT-1W8CB-9UUT-92108】零件参数的优化设计摘要本文建立了一个非线性多变量优化模型。

已知粒子分离器的参数y由零件参数)72,1(=ixi 决定,参数ix的容差等级决定了产品的成本。

总费用就包括y偏离y造成的损失和零件成本。

问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。

我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。

2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。

在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。

但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。

经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。

最终计算出的各个零件的标定值为:ix={,,,,,,},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:元与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。

为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。

最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

零件参数包括标定值和容差两部分。

进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。

若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。

进行零件参数设计,就是要确定其标定值和容差。

这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。

数学建模MATLAB教案

数学建模MATLAB教案

数学建模MATLAB教案第一章:MATLAB简介1.1 课程目标了解MATLAB的发展历程和应用领域熟悉MATLAB的工作环境掌握MATLAB的基本命令和操作1.2 教学内容MATLAB的历史和发展MATLAB的应用领域MATLAB的工作环境MATLAB的基本命令和操作1.3 教学方法讲解和示范相结合学生上机实践1.4 教学资源MATLAB软件PPT课件1.5 教学评估课后作业上机实践第二章:MATLAB基本操作2.1 课程目标掌握MATLAB的变量和数据类型熟悉MATLAB的运算符和表达式学会在MATLAB中进行矩阵操作2.2 教学内容MATLAB的变量和数据类型MATLAB的运算符和表达式矩阵的创建和操作矩阵的运算2.3 教学方法讲解和示范相结合学生上机实践2.4 教学资源MATLAB软件PPT课件2.5 教学评估课后作业上机实践第三章:MATLAB函数3.1 课程目标了解MATLAB内置函数的分类和用法学会自定义函数掌握MATLAB脚本文件的编写和运行MATLAB内置函数的分类和用法自定义函数的创建和调用MATLAB脚本文件的编写和运行3.3 教学方法讲解和示范相结合学生上机实践3.4 教学资源MATLAB软件PPT课件3.5 教学评估课后作业上机实践第四章:MATLAB绘图4.1 课程目标熟悉MATLAB绘图的基本命令掌握MATLAB绘图的格式和技巧学会使用MATLAB绘制各种图形4.2 教学内容MATLAB绘图的基本命令MATLAB绘图的格式和技巧绘制各种图形的函数和方法讲解和示范相结合学生上机实践4.4 教学资源MATLAB软件PPT课件4.5 教学评估课后作业上机实践第五章:数学建模基本方法5.1 课程目标了解数学建模的基本概念和方法学会使用MATLAB进行数学建模掌握数学建模的常用算法和技巧5.2 教学内容数学建模的基本概念和方法使用MATLAB进行数学建模的步骤和技巧数学建模的常用算法和实例5.3 教学方法讲解和示范相结合学生上机实践5.4 教学资源MATLAB软件PPT课件5.5 教学评估课后作业上机实践第六章:线性方程组求解6.1 课程目标理解线性方程组的数学理论学会使用MATLAB解线性方程组掌握MATLAB中求解线性方程组的多种方法6.2 教学内容线性方程组的数学描述MATLAB中的线性方程组求解函数(如`解方程组`函数)稀疏矩阵在线性方程组求解中的应用使用`linsolve`函数求解线性方程组使用`guess`函数进行参数估计6.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习6.4 教学资源MATLAB软件线性方程组求解实例6.5 教学评估课后练习题上机练习第七章:最优化问题求解7.1 课程目标理解最优化问题的数学模型学会使用MATLAB解决最优化问题掌握最优化问题的常见求解算法7.2 教学内容最优化问题的数学基础MATLAB中的最优化工具箱概述使用`fmincon`函数求解约束最优化问题使用`fminunc`函数求解无约束最优化问题了解其他最优化函数和算法7.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习7.4 教学资源MATLAB软件最优化问题求解实例7.5 教学评估课后练习题上机练习第八章:微分方程求解8.1 课程目标理解微分方程的基本概念学会使用MATLAB求解微分方程掌握MATLAB中微分方程求解工具的使用8.2 教学内容微分方程的分类和基本概念MATLAB中的微分方程求解函数(如`ode45`)边界值问题的求解(如`bvp4c`)参数估计和敏感性分析8.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习8.4 教学资源MATLAB软件PPT课件微分方程求解实例8.5 教学评估课后练习题上机练习第九章:概率论与数理统计9.1 课程目标掌握概率论和数理统计的基本概念学会使用MATLAB进行概率论和数理统计分析能够运用概率论和数理统计方法解决实际问题9.2 教学内容概率论基本概念和公式数理统计基本方法MATLAB中的概率论和数理统计函数随机数和概率分布函数的绘制假设检验和置信区间的计算9.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习9.4 教学资源MATLAB软件PPT课件概率论和数理统计实例9.5 教学评估课后练习题上机练习第十章:综合案例分析10.1 课程目标能够综合运用所学的数学建模和MATLAB知识解决实际问题学会分析问题、建立模型、选择合适的算法和工具求解10.2 教学内容综合案例的选择和分析建立数学模型的方法MATLAB在模型求解中的应用数学建模报告的结构和要求10.3 教学方法案例分析与讨论学生分组实践10.4 教学资源MATLAB软件PPT课件综合案例数据和背景资料10.5 教学评估数学建模报告评分学生口头报告和讨论第十一章:非线性方程和方程组的求解11.1 课程目标理解非线性方程和方程组的概念学会使用MATLAB求解非线性方程和方程组掌握MATLAB中非线性求解的多种方法11.2 教学内容非线性方程和方程组的数学描述MATLAB中的非线性方程求解函数(如`fsolve`)非线性方程组的求解方法(如`ode45`)图像法求解非线性方程和方程组初始参数的选择和影响11.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习11.4 教学资源MATLAB软件PPT课件非线性方程和方程组求解实例11.5 教学评估课后练习题第十二章:插值与拟合12.1 课程目标理解插值和拟合的概念学会使用MATLAB进行插值和拟合掌握MATLAB中插值和拟合的多种方法12.2 教学内容插值和拟合的基本概念MATLAB中的插值函数(如`interp1`)MATLAB中的拟合函数(如`fit`)插值和拟合的误差分析插值和拟合在数学建模中的应用12.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习12.4 教学资源MATLAB软件PPT课件插值和拟合实例12.5 教学评估课后练习题第十三章:数值分析13.1 课程目标理解数值分析的基本概念学会使用MATLAB进行数值分析掌握MATLAB中数值分析的多种方法13.2 教学内容数值分析的基本概念MATLAB中的数值分析函数误差和稳定性分析数值分析在数学建模中的应用常见数值方法的比较和选择13.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习13.4 教学资源MATLAB软件PPT课件数值分析实例13.5 教学评估课后练习题第十四章:MATLAB在信号处理中的应用14.1 课程目标理解信号处理的基本概念学会使用MATLAB进行信号处理掌握MATLAB中信号处理的基本方法14.2 教学内容信号处理的基本概念MATLAB中的信号处理函数信号的时域和频域分析信号处理在实际应用中的例子MATLAB在信号处理中的优势和局限性14.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习14.4 教学资源MATLAB软件PPT课件信号处理实例14.5 教学评估课后练习题第十五章:MATLAB在图像处理中的应用15.1 课程目标理解图像处理的基本概念学会使用MATLAB进行图像处理掌握MATLAB中图像处理的基本方法15.2 教学内容图像处理的基本概念MATLAB中的图像处理函数图像的增强、滤波和边缘检测图像处理在实际应用中的例子MATLAB在图像处理中的优势和局限性15.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习15.4 教学资源MATLAB软件PPT课件图像处理实例15.5 教学评估课后练习题重点和难点解析重点:1. MATLAB的工作环境及基本命令和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Min=90000;
global H A C %全局变量
H=[10000,25,10000;20,50,10000;20,50,200;50,100,500;50,10000,10000;10,25,100;10000,25,100 ]; %成本矩阵
A=[0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01]; %容差矩阵
C=zeros(7,3); 把容差选择矩阵元素全部赋值为0
for z=1:1:3
for x=1:1:3
for c=1:1:3
for v=1:1:3
for g=1:1:3
for n=1:1:3
for m=1:1:3
D=[z x c v g n m];
C=zeros(7,3);
for i=1:1:7
C(i,D(i))=1;
end %产生7 3列矩阵,该矩阵特点是每一行只有一个
1 ,其它两个数为0。

本矩阵是为了对零件容差等级
进行选择
lb=[0.075 0.225 0.075 0.075 1.125 12 0.5625];
ub=[0.125 0.375 0.125 0.125 1.875 20 0.935];
X0=[0.075 0.225 0.075 0.075 1.125 12 0.5625];
[xopt fopt]=fmincon(@mubiao,X0,[],[],[],[],lb,ub,[]);
if fopt<Min
Min=fopt;
XOPT=xopt;
Q=C;
end
end
end
end
end
end
end
end
function f=junzhi(X)
f=3.4512+[24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504]*X'
; %把一组X取值带入经验公式的简化式,得到期望值μ
function f=junzhi2(X)
f=([24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504].*X)/3; %得到一个行向量,为计算均方差σ做准备
function f=mubiao(X)
global C A H %全局变量
B=C.*A;
E=(sum(B,2));
G= junzhi2(X);
F=(G'.*E).^2;
b=(sum(F(:)))^0.5; %求解产品参数的均方差,b即是均方差
a= junzhi(X); %求解产品参数的期望值
p0=normcdf(1.6,a,b)-normcdf(1.4,a,b); %产品为合格品的概率
p1=normcdf(1.8,a,b)-normcdf(1.6,a,b)+normcdf(1.4,a,b)-normcdf(1.2,a,b ); %产品为次品的概率
p2=1-p0-p1; %产品为废品的概率
sunshi=1000*p1+9000*p2; %产品的损失费用
I=C.*H; %用容差选择矩阵选择容差等级
chengben=sum(I(:)); %零件的总成本
f=chengben+sunshi; %目标函数。

相关文档
最新文档