More Meta-Stable Brane Configurations without D6-Branes

合集下载

LTE信令流程详解

LTE信令流程详解

L T E信令流程详解集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#LTE信令流程目录概述本文通过对重要概念的阐述,为信令流程的解析做铺垫,随后讲解LTE中重要信令流程,让大家熟悉各个物理过程是如何实现的,其次通过异常信令的解读让大家增强对异常信令流程的判断,再次对系统消息的解析,让大家了解系统消息的特点和携带的内容。

最后通过实测信令内容讲解,说明消息的重要信元字段。

第一章协议层与概念1.1控制面与用户面在无线通信系统中,负责传送和处理用户数据流工作的协议称为用户面;负责传送和处理系统协调信令的协议称为控制面。

用户面如同负责搬运的码头工人,控制面就相当于指挥员,当两个层面不分离时,自己既负责搬运又负责指挥,这种情况不利于大货物处理,因此分工独立后,办事效率可成倍提升,在LTE网络中,用户面和控制面已明确分离开。

1.2接口与协议接口是指不同网元之间的信息交互时的节点,每个接口含有不同的协议,同一接口的网元之间使用相互明白的语言进行信息交互,称为接口协议,接口协议的架构称为协议栈。

在LTE中有空中接口和地面接口,相应也有对应的协议和协议栈。

信令流数据流图1 子层、协议栈与流图2 子层运行方式LTE系统的数据处理过程被分解成不同的协议层。

简单分为三层结构:物理层、数据链路层L2和网络层。

图1阐述了LTE系统传输的总体协议架构以及用户面和控制面数据信息的路径和流向。

用户数据流和信令流以IP包的形式进行传送,在空中接口传送之前,IP包将通过多个协议层实体进行处理,到达eNodeB后,经过协议层逆向处理,再通过S1/X2接口分别流向不同的EPS实体,路径中各协议子层特点和功能如下:1.2.1NAS协议(非接入层协议)处理UE和MME之间信息的传输,传输的内容可以是用户信息或控制信息(如业务的建立、释放或者移动性管理信息)。

它与接入信息无关,只是通过接入层的信令交互,在UE和MME之间建立起了信令通路,从而便能进行非接入层信令流程了。

stablediffusion 删除采样方法

stablediffusion 删除采样方法

stablediffusion 删除采样方法稳定扩散:删除采样方法
稳定扩散是一种采样方法,其目的是通过删除一部分样本来提高采样效率。

这种方法可以在大规模数据集上提供更有效的采样策略,从而减少计算资源的消耗。

在稳定扩散中,删除采样方法是一种重要的技术手段。

它通过识别和删除一些不重要或重复的样本,以减少采样的冗余性。

这样做既可以节省存储空间,又可以提高采样过程的效率。

删除采样方法的实现方式可以是基于样本的重要性度量。

它使用一些算法或模型来评估每个样本的重要性,然后根据重要性进行排序并删除一部分低重要性的样本。

这种方法通常需要使用一些特征选择或特征提取的技术来帮助确定样本的重要性。

另一种实现删除采样的方法是基于聚类分析。

聚类将相似的样本分组在一起,然后可以从每个组中删除一些样本。

这种方法的优点是能够处理大规模数据,并且可以在提供足够代表性的样本的同时减少数据维度。

删除采样方法在很多领域都有应用。

在机器学习和数据挖掘领域,它可以用于构建更高效的模型训练和特征工程流程。

在社交网络分析和推荐系统中,它可以帮助提高信息过滤和推荐算法的性能。

在图像和视频处理中,它可以应用于图像压缩和视频编码等方面。

总而言之,删除采样方法是稳定扩散中的一项重要技术,它可以通过删除一些不重要或冗余的样本来提高采样效率。

这种方法在各个领域都有广泛的应用,并且可以有效地优化数据处理和分析的过程。

stable diffusion wenui 原理

stable diffusion wenui 原理

Stable Diffusion是一种潜在扩散模型(LDM),它可以从文本描述生成高质量的图像。

其工作原理可以总结为以下步骤:
1. Stable Diffusion由变分自编码器(V AE)、U-Net和一个可选的文本编码器组成。

2. V AE编码器将图像从像素空间压缩到一个更小维度的潜在空间,捕捉图像的更本质的语义含义。

3. U-Net是一个卷积神经网络,它可以从潜在空间重建图像,并去除高斯噪声。

4. 文本编码器是一个预训练的模型,它可以将文本描述转换为一个向量,用来指导图像生成的过程。

5. Stable Diffusion的生成过程是一个迭代的去噪过程。

它从一个随机噪声开始,然后逐步减少噪声的强度,同时根据文本编码器的输出调整图像的内容,直到达到预设的步数为止,最终得到想要的图像。

希望以上信息对你有帮助。

stable diffusion embedding训练 -回复

stable diffusion embedding训练 -回复

stable diffusion embedding训练-回复什么是stable diffusion embedding(稳定扩散嵌入)?如何进行stable diffusion embedding的训练?首先,稳定扩散嵌入是一种用于对高维数据进行降维的方法。

它通过在数据上执行扩散过程来寻找数据的低维结构。

稳定扩散嵌入被广泛应用于图像处理、文本分析、生物信息学和社交网络分析等领域。

本文将逐步解释稳定扩散嵌入的训练过程。

首先,让我们了解一下稳定扩散嵌入的基本原理。

稳定扩散嵌入是基于扩散过程的嵌入方法。

扩散过程是指在给定的数据集上执行随机游走,并通过在数据集中滤波来传播信息。

这个过程在数据集中传播信息的同时,也可以将数据的低维结构捕捉到中,从而实现降维的效果。

稳定扩散嵌入的训练过程可以概括为以下几个步骤:1. 构建相似度矩阵:首先,我们需要根据给定的数据集构建一个相似度矩阵。

相似度矩阵用于度量数据点之间的相似程度。

常用的相似度度量方法包括欧几里得距离、余弦相似度和高斯核函数等。

构建好相似度矩阵后,可以将其视为描述数据点之间关系的图。

2. 构建转移矩阵:接下来,根据相似度矩阵构建一个转移矩阵。

转移矩阵用于描述数据集上的扩散过程。

构建转移矩阵的一种常用方法是将相似度矩阵的每一行除以相似度矩阵对应行的和,以保证每一行的和为1。

3. 进行扩散过程:通过多次迭代转移矩阵,可以在数据集上执行扩散过程。

每一次迭代将会使扩散过程在数据上进一步传播。

扩散过程可以通过将转移矩阵与初始的数据进行相乘来实现。

迭代的次数可以根据需要进行设置,一般情况下,经过足够多次的迭代后,扩散过程会收敛到一个稳定状态。

4. 提取低维嵌入结果:一旦扩散过程达到稳定状态,可以通过提取扩散过程的结果来得到数据的低维嵌入。

通常情况下,扩散过程的结果可以通过提取转移矩阵的特征向量来获得。

将特征向量按照对应的特征值大小进行排序,选择前几个特征向量作为数据的低维表示。

Discovery Studio官方教程--基于MODELER构建蛋白酶模型

Discovery Studio官方教程--基于MODELER构建蛋白酶模型

基于蛋白序列构建同源蛋白模型(MODELER)教程介绍蛋白质结构的解析对其功能的理解至关重要。

然而,由于技术手段的限制,利用实验方法(主要为X-ray,NMR)解析蛋白质结构投入大、周期长、风险大。

对于某些膜蛋白,只利用现有技术条件,其结构甚至无法解析。

另一方面,随着分子生物学技术的成熟及高通量测序技术的发展,越来越多的基因序列可以被轻松找到。

这造成了现代蛋白质科学中一个奇怪的现象:蛋白质序列数据的累积量及积累速度远远超过蛋白质结构的解析。

这种序列与结构间不平衡的现象极大地限制了我们对蛋白质功能及其相关作用机理的理解。

因此,我们需要一种能够简单、快速且相对准确的技术来预测蛋白质的空间结构。

同源建模技术可以很好的解决上面的问题。

该方法利用信息技术的手段,可以直接从蛋白的一级结构(氨基酸序列)预测蛋白质的高级结构(主要为三级结构)。

根据最新一届国际建模大赛(CASP)的分类,目前主要的蛋白质建模方法包括两种:基于模板的建模(Template-based Modeling)和自由建模(Free Modeling)。

前者又包括两种方法:同源建模法(Homology Modeling)和“穿线法”(Threading)。

后者主要以从头计算法(ab initio)为主。

所有的建模方法中,以同源建模法(Homology Modeling)使用最为广泛,预测结果的准确性最为可靠。

同源建模的理论基础为蛋白质三级结构的保守性远远超过一级序列的保守性。

因此,人们可以通过使用一个或多个已知结构的蛋白(模板蛋白,template)来构建未知结构蛋白(目标蛋白,target)的空间结构。

Discovery Studio为用户提供了一整套利用Homology Modeling方法自动预测蛋白质空间结构的工具。

用户只需要提供蛋白质的氨基酸序列就可以轻松完成同源模型的构建及模型可信度评估的工作。

DS的Homology Modeling主要基于MODELER程序。

stable_diffusion_prompt更改提示词权重原理__概述及解释说明

stable_diffusion_prompt更改提示词权重原理__概述及解释说明

stable diffusion prompt更改提示词权重原理概述及解释说明1. 引言1.1 概述本文旨在探讨稳定扩散模型中更改提示词权重的原理,并对其进行解释和说明。

稳定扩散模型是一种常用的模型,在自然语言处理、机器学习等领域中有着广泛的应用。

而提示词权重的调整则可以提高模型性能,使得生成的结果更加准确和可靠。

因此,研究和理解如何修改提示词权重的影响因素对于进一步优化稳定扩散模型具有重要意义。

1.2 文章结构本文将从以下几个方面展开论述:首先,介绍stable diffusion prompt更改提示词权重原理的背景和概述;其次,阐明提示词权重在该原理中的重要性;随后,详细探讨修改提示词权重可能产生的影响因素;最后,通过数值实验来验证并解读这些理论。

1.3 目的本文的目标是清晰地描述stable diffusion prompt更改提示词权重原理以及其在稳定扩散模型中的作用。

通过对这一主题的深入分析和解释,我们希望能够增加人们对该原理的理解,并为进一步研究和应用提供有价值的参考。

笔者准备从背景概述、重要性和影响因素三个方面详细论述stable diffusion prompt更改提示词权重原理。

同时,还将通过数值实验来验证这一原理,并对结果进行解读。

最后,本文将对所得结论进行总结,并提出未来研究的建议。

2. stable diffusion prompt更改提示词权重原理:2.1 原理概述在NLP模型中,prompt工程是指为了优化生成结果而对输入进行调整的一种方法。

其中,stable diffusion prompt是一种有效的提示建设技术,可以通过调整生成过程中不同单词或短语的权重来指导模型生成更准确、有逻辑性的结果。

2.2 提示词权重的重要性在NLP任务中,给定一个输入序列作为提示信息,模型需要根据这些提示来合理地生成输出结果。

而不同单词或短语在提示信息中的位置和权重往往对生成结果产生显著影响。

stable diffusion webui的原理

stable diffusion webui的原理

稳定的扩散WebUI原理1. 简介稳定的扩散WebUI是一种用于管理和监控分布式系统的界面,它提供了一种可视化的方式来查看和操作系统的各个组件。

它的原理是基于稳定的扩散算法,该算法通过使用网络连接来实现系统的自动调节和平衡,从而确保系统的稳定性和可靠性。

2. 稳定的扩散算法稳定的扩散算法是一种用于管理分布式系统的方法,它通过使用网络连接来实现系统的自动调节和平衡。

该算法的原理是通过将系统的各个组件连接在一起,形成一个稳定的网络。

这样,当一个组件出现故障或负载过高时,其他组件可以自动接管其工作,从而实现系统的自动平衡和稳定。

3. WebUI界面稳定的扩散WebUI提供了一个用户友好的界面,用户可以通过该界面来监控系统的各个组件。

界面通常包括系统的整体状态、各个组件的负载情况、以及系统的运行日志等信息。

用户可以通过界面来进行系统的操作,例如重新分配组件的负载、重启故障组件等。

4. 工作原理稳定的扩散WebUI的工作原理是将系统的各个组件连接在一起,形成一个稳定的网络。

当一个组件出现故障或负载过高时,其他组件可以自动接管其工作。

系统会根据各个组件的负载情况自动调节和平衡,以确保系统的稳定性和可靠性。

用户可以通过WebUI界面来监控和操作系统的各个组件,从而实现对系统的实时管理和监控。

5. 应用领域稳定的扩散WebUI广泛应用于各种分布式系统的管理和监控中,例如云计算、大数据处理等领域。

它为用户提供了一种可视化的方式来管理和监控系统,极大地简化了操作流程,提高了工作效率。

6. 总结稳定的扩散WebUI是一种基于稳定的扩散算法的管理和监控界面,它通过将系统的各个组件连接在一起,形成一个稳定的网络,从而实现了系统的自动调节和平衡。

用户可以通过WebUI界面来监控和操作系统的各个组件,从而实现对系统的实时管理和监控。

该技术在各种分布式系统中得到了广泛的应用,并为用户带来了极大的便利。

稳定的扩散WebUI在现代分布式系统中起着非常重要的作用,它为用户提供了一种直观简便的方式来管理和监控系统的各个组件。

清华大学研究生学位论文格式模版与要求

清华大学研究生学位论文格式模版与要求

清华大学博士论文编辑排版建议采用的字体、字号与正文段落字号相适应,用Word 2000 编辑数学公式时建议采取如下尺寸定义清华大学博士论文格式样例:芳杂环高分子的高温水解特性与量子化学研究(申请清华大学理学博士学位论文)培养单位:清华大学化学系Array专业:物理化学研究生:易某某指导教师:某甲甲教授某乙乙教授副指导教师:芳杂环高分子的高温水解特性与量子化学研究易某某三号仿宋或华文仿宋请将中文封面左边Experimental and Theoretical Investigations of HydrolyticStability of Aromatic Heterocyclic Polymers in High TemperatureDissertation Submitted toTsinghua Universityin partial fulfillment of the requirementfor the degree ofDoctor of Natural SciencebyDong-ming YI( Physical Chemistry )Dissertation Supervisor : Professor Yong-chang TANG Associate Supervisor : Professor Da-long WUApril, 2001中文摘要摘要论文采用共振多光子电离和Ion-dip两种检测手段对碱土金属单卤化物的里德堡态进行了实验研究。

主要成果是:⑴首次观测到中等有效主量子数的CaCl 预解离里德堡态:在n*=5-7区域内,有5个文献未报导过的2∑+实贯穿里德堡态,填补了CaCl分子此一区域里德堡态研究的空白,对CaCl里德堡态结构的完整分析和其电子态完整的图像的建立具有重要意义;⑵通过理论分析,论证了这些态是因为和一个2∑+连续态的相互作用而导致强烈的预解离。

由实验测定的预解离线宽拟合出45000-47500cm-1范围内的2∑+连续态势能曲线,它能很好地解释这些里德堡态的预解离行为;⑶还观测到若干转动常数值反常小的里德堡态,它们可能是实非贯穿里德堡态的片段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :0707.0092v 2 [h e p -t h ] 21 S e p 2007More Meta-Stable Brane Configurations without D6-Branes Changhyun Ahn Department of Physics,Kyungpook National University,Taegu 702-701,Korea ahn@knu.ac.kr Abstract We describe the intersecting brane configurations,consisting of NS-branes,D4-branes(and anti-D4-branes),in type IIA string theory corresponding to the meta-stable nonsupersymmet-ric vacua of N =1SU (N c )×SU (N ′c )×SU (N ′′c )gauge theory with bifundamentals.By adding the orientifold 4-plane to these brane configurations,we also discuss the meta-stable brane configurations for other gauge theory with bifundamentals.Furthermore,we study the inter-secting brane configurations corresponding to the nonsupersymmetric meta-stable vacua of other gauge theory with bifundamentals,by adding the orientifold 6-plane.1IntroductionIn the standard type IIA brane configuration,the quark masses correspond to the relative dis-placement of the D6-branes(0123789)and D4-branes(01236)along the45directions geomet-rically.Then the eigenvalues of quark mass matrix correspond to the positions of D6-branes in45directions.See the review paper[1]for the gauge theory and the brane dynamics.The Seiberg duality in the classical brane picture can be accomplished by exchanging the locations of the NS5-brane(012345)and NS5’-brane(012389)along x6direction each other.The geometric misalignment of D4-branes connecting both NS5’-brane and D6-branes in the magnetic brane configuration can be interpreted as a nontrivial F-term condition in the gauge theory with massiveflavors.Then the F-term equations can be partially cancelled by both recombination offlavor-D4-branes with the color-D4-branes and then movement of those D4-branes into the45directions.This phenomenon in magnetic brane configuration corresponds to the fact that some entries in the magnetic dual quarks acquire nonzero vacuum expectation values to minimize the F-term in the dual gauge theory side.Moreover,the remainingflavor-D4-branes that do not move to45directions,connecting to NS5’-brane,can move along89directions freely since D6-branes and NS5’-brane are parallel and this geometric freedom of mesonfield corresponds to the classical pseudomoduli space of nonsupersymmetric vacua of the gauge theory.On the other hand,it is known that the NS-brane configuration in type IIA string theory, where there exist only two types of NS5-brane and NS5’-brane,preserves N=2supersym-metry in four dimensions[1].The geometry[2]of the coincident NS5-branes is characterized by the metric,the dilaton,and thefield strength and is useful to construct the DBI action for D4-branes.In order to break the supersymmetry,one adds D4-branes and anti-D4-branes[3]. By adding D4-branes suspending between the NS5-brane and the NS5’-brane,and anti-D4-branes(a quadratic term of bifundamentals in an electric theory.Also the linear term in a meson appears in this magnetic superpotential.Then the F-term equation for this mesonfield leads to the supersymmetry breaking.Onefinds that supersymmetry is broken classically but is re-stored quantum mechanically.It turns out the classical nonsupersymmetric vacuum becomes long-lived state[3].As the distance between the two NS5’-branes along the45directions becomes zero,this brane configuration with D4-and1A replacement of D6-branes with NS5’-brane corresponds to the gauging of theflavor group(global sym-metry)of the gauge theory realized on the D4-branes and this replacement might be useful to construct the phenomenological model building.the number of NS-branes is increased for a given gauge theory with matters since the role of D6-branes is replaced by NS5’-brane.Some of the meta-stable brane configurations lead to the known meta-stable brane configuration corresponding to the gauge theory with less gauge group factors in the literature,by replacing the NS5’-brane with coincident D6-branes. Basically,the gauge group will be a triple product gauge group for four NS-branes with D4-branes.When we add an orientifold4-plane into this brane configuration,the gauge group will be a triple product between symplectic gauge group and an orthogonal gauge group, alternatively,depending on the orientifold4-plane charge.When we add an orientifold6-plane into six NS-branes with D4-branes,one of the gauge group factor will be a symplectic or an orthogonal gauge group depending on the orientifold6-plane charge and the other gauge group factor will be unitary.In section2,we describe the type IIA brane configuration corresponding to the electric theory based on the N=1SU(N c)×SU(N′c)×SU(N′′c)gauge theory with the bifundamentals and deform this theory by adding the mass term for the bifundamental.We construct the three different dual magnetic theories by taking the Seiberg dual for each gauge group factor.Then we consider the nonsupersymmetric meta-stable minimum and present the corresponding intersecting brane configurations of type IIA string theory.In section3,we discuss the type IIA brane configuration,by adding the oreintifold4-plane to the brane onfiguration in section2,corresponding to the electric theory based on the N=1 Sp(N c)×SO(2N′c)×Sp(N′′c)gauge theory with matters and deform this theory by adding the mass term for the bifundamental.Then we construct the corresponding dual magnetic theories by taking the Seiberg dual for each gauge group factor.We consider the nonsupersymmetric meta-stable minimum and present the corresponding intersecting brane configurations of type IIA string theory.We also comment on the case of N=1SO(2N c)×Sp(N′c)×SO(2N′′c) gauge theory with matters.In section4,we discuss the type IIA brane configuration corresponding to the electric theory based on the N=1Sp(N c)×SU(N′c)×SU(N′′c)gauge theory with matters and deform this theory by adding the mass term for the bifundamental.Then we construct the two different dual magnetic theories by taking the Seiberg dual for each unitary gauge group factor.We consider the nonsupersymmetric meta-stable minimum and present the corresponding intersecting brane configurations of type IIA string theory.Moreover,we also discuss the meta-stable brane configurations corresponding to the electric theory based on the N=1SO(N c)×SU(N′c)×SU(N′′c)gauge theory by changing the orientifold6-plane charge.In section5,we make some comments for the future directions.2Meta-stable brane configurations with four NS-branes 2.1Electric theoryThe type IIA brane configuration[10,11]corresponding to N=1supersymmetric gauge theory with gauge groupSU(N c)×SU(N′c)×SU(N′′c)(2.1)and with afield F charged under(N c,N′′c),and their conjugates F and G can be described by the left NS5′L-brane(012389),the left NS5L-brane(012345),the right NS5′R-brane(012389),the right NS5R-brane(012345),N c-,N′c-andN′′c-color D4-branes(01236).Thefields F and F correspond to4-4strings connecting the N c-color D4-branes with N′c-color D4-branes while thefields G and G correspond to4-4strings connecting the N′c-color D4-branes with N′′c-color D4-branes.The left NS5L-brane is located at x6=0and let us denote the x6coordinates for theNS5′L-brane,the NS5′R-brane and the NS5R-brane by x6=−y1,y2,y2+y3respectively. The N c D4-branes are suspended between the NS5′L-brane and the NS5L-brane,the N′c D4-branes are suspended between the NS5L-brane and the NS5′R-brane,and the N′′c D4-branes are suspended between the NS5′R-brane and the NS5R-brane.We draw this brane configuration in Figure1A for the vanishing mass case2.The gauge couplings of SU(N c),SU(N′c)and SU(N′′c)are given by a string coupling constant g s,a string scaleℓs and the x6coordinates y i for three NS-branes throughg2 1=g sℓsy2,g23=g sℓs2There are similar brane configurations in the context of quiver gauge theory[12,13].Figure 1:The N =1supersymmetric electric brane configuration for the gauge groupSU (N c )×SU (N ′c )×SU (N ′′c )and bifundamentals F, F,G and G with vanishing(1A)and non-vanishing(1B)mass for the bifundamentals F and F .The N ′c D4-branes in 1A are decomposedinto (N ′c −N ′′c )D4-branes which are moving to +v direction in 1B and N ′′c D4-branes which are recombined with those D4-branes connecting between NS 5′R -brane and NS 5R -brane in 1B.where the first gauge group indices in F and Fare contracted,each second gauge group index in them is encoded in Φ′and the mass m is given bym =∆xℓ2s .(2.3)The gauge-singlet Φ′for the first dual gauge group is in the adjoint representation forthe second dual gauge group,i.e.,(1,(N ′c −N ′′c )2−1,1)⊕(1,1,1)under the dual gauge group (2.4).Then the Φ′is a (N ′c −N ′′c )×(N ′c −N ′′c )matrix.The NS 5′R -brane together with(N ′c −N ′′c )-color D4-branes is moving to the +v direction for fixed other branes during this massdeformation.In other words,the N ′′c D4-branes among N ′c D4-branes are not participatingin the mass deformation.Then the x 5coordinate(≡x )of NS 5′L -brane is equal to zero while the x 5coordinate of NS 5′R -brane is given by ∆x .Giving an expectation value to the mesonfield Φ′corresponds to recombination of N c -and N ′c -color D4-branes,which will becomeN c -color D4-branes in Figure 1A such that they are suspended between the NS 5′L -brane and the NS 5′R -brane and pushing them into thew ≡x 8+ix 9direction.We assume that the number of colors satisfiesN ′c ≥N c ≥N ′′c .Now we draw this brane configuration in Figure 1B for nonvanishing mass for the fieldsF and F.2.2Magnetic theoryBy applying the Seiberg dual to the SU(N c)factor in(2.1),the two NS5′L,R-branes can be located at the inside of the two NS5-branes,as in Figure2.Starting from Figure1A and moving the NS5′R-brane with(N′c−N′′c)D4-branes to the+v direction leading to Figure1B and interchanging the NS5′L-brane and the NS5L-brane,one obtains the Figure2A.Before arriving at the Figure2A,there exists an intermediate step where the(N′c−N c)D4-branes are connecting between the NS5L-brane and the NS5′L-brane,(N′c−N′′c)D4-branes connecting between the NS5′L-brane and NS5′R-brane,and N′′c D4-branes between the NS5′L-brane and the NS5R-brane.By introducing−N′′c D4-branes and−N′′c anti-D4-branes between the NS5L-brane and NS5′L-brane,reconnecting the former with the N′c D4-branes connecting between NS5L-brane and the NS5′L-brane(therefore N′c−N′′c D4-branes)and moving those combined(N′c−N′′c)D4-branes to+v-direction,one gets thefinal Figure2A where we are left with(N c−N′′c)anti-D4-branes between the NS5L-brane and NS5′L-brane.When two NS5’-branes in Figure2A are close to each other,then it leads to Figure2B by realizing that the number of(N′c−N′′c)D4-branes connecting between NS5L-brane and NS5′R-brane can be rewritten as(N c−N′′c)plus N c.If we ignore N′′c D4-branes and NS5R-brane from Figure2B,then the brane configuration becomes the one in[3].Figure2:The N=1magnetic brane configuration for the gauge group SU( N c=N′c−N c)×SU(N′c)×SU(N′′c)corresponding to Figure1B with D4-andThe matter contents are thefield f charged under( N c,),and their conjugates f and g under the dual gauge group(2.4)and the gauge-N′′csingletΦ′for thefirst dual gauge group in the adjoint representation for the second dual gauge group,i.e.,(1,(N′c−N′′c)2−1,1)⊕(1,1,1)under the dual gauge group(2.4).The cubic superpotential with the mass term(2.2)in the dual theory is given byW dual=Φ′f f+mΦ′.(2.5) Here the magneticfields f and f correspond to4-4strings connecting the N c-color D4-branes(that are connecting between the NS5L-brane and the NS5′R-brane in Figure2B) with N′c-flavor D4-branes(that are a combination of three different D4-branes in Figure2B). Among these N′c-flavor D4-branes,only the strings ending on the upper(N′c−N c)D4-branes and on the tilted middle(N c−N′′c)D4-branes in Figure2B enter the cubic superpotential term.Although the(N′c−N′′c)D4-branes in Figure2A cannot move any directions,the tilted (N c−N′′c)-flavor D4-branes can move w direction in Figure2B.The remaining upper N c D4-branes arefixed also and cannot move any direction.Note that there is a decomposition(N′c−N′′c)=(N c−N′′c)+ N c.The brane configuration for zero mass for the bifundamental,which has only a cubic superpotential,can be obtained from Figure2A by moving the upper NS5′R-brane together with(N′c−N′′c)color D4-branes into the origin v=0.Then the number of dual colors for D4-branes becomes N c between NS5L-brane and NS5′L-brane and N′c between two NS5’-branes as well as N′′c D4-branes between NS5′R-brane and NS5R-brane.Or starting from Figure1A and moving the NS5L-brane to the left all the way past the NS5′L-brane,one also obtains the corresponding magnetic brane configuration for massless case.The brane configuration in Figure2A is stable as long as the distance∆x between the upper NS5’-brane and the lower NS5’-brane is large,as in[3].If they are close to each other, then this brane configuration is unstable to decay and leads to the brane configuration in Figure2B.One can regard these brane configurations as particular states in the magnetic gauge theory with the gauge group(2.4)and superpotential(2.5).The(N′c−N′′c− N c)flavor D4-branes of straight brane configuration of Figure2B bend due to the fact that there exists an attractive gravitational interaction between thoseflavor D4-branes and NS5L-brane from the DBI action,by following the procedure of[3],as long as the distance y3goes to∞because the presence of an extra NS5R-brane does not affect the DBI action.For thefinite and small y3,the careful analysis for DBI action is needed in order to obtain the bending curve connecting two NS5’-branes.When the upper NS5’-brane(or NS5′R-brane)is replaced by coincident(N′c−N′′c)D6-branes and the NS5R is rotated by an angleπy1,g22,mag=g sℓsy3.The dual gauge theory has an adjointΦ′of SU(N′c)and bifundamentals f, f,g and g under the dual gauge group(2.4)and the superpotential corresponding to Figures2A and2B is given byW dual=hΦ′f f−hµ2Φ′,h2=g22,mag,µ2=−∆xwhere the zero of<f>is a(N′c−N′′c− N c)× N c matrix,the zero of< f>is a N c×(N′c−N′′c− N c)matrix and the zeros of<Φ′>are N c× N c, N c×(N′c−N′′c− N c),and (N′c−N′′c− N c)× N c matrices.Then one can expand thesefields around on a point(2.6),as in[4,15,16,17,18]and one arrives at the relevant superpotential up to quadratic order in thefluctuation.At one loop,the effective potential V(1)forΦ′0leads to the positive value foreffimplying that these vacua are stable.m2Φ′02.3Other magnetic theory-ILet us consider other magnetic theory for the same undeformed electric theory given in the subsection2.1.Here we consider the different mass deformation.By applying the Seiberg dual to the SU(N′c)factor in(2.1),the two NS5′L,R-branes can be located at the left hand side of the two NS5-branes,as in Figure4.Figure3:The N=1supersymmetric electric brane configuration for the gauge group SU(N c)×SU(N′c)×SU(N′′c)and bifundamentals F, F,G and G with vanishing(3A)which is identical to Figure1A and nonvanishing(3B)mass for the bifundamentals F and F.This deformation is different from the one(2.2)given previously.In3B,the NS5′L-brane together with N c D4-branes is moving to+v direction.By starting from Figure3A which is the same as Figure1A and moving the NS5′L-brane with N c D4-branes to the+v direction leading to Figure3B and interchanging the NS5L-brane and the NS5′R-brane,one obtains the Figure4A.Before arriving at the Figure 4A,there exists an intermediate step where the N c D4-branes are connecting between the NS5′-brane and the NS5′R-brane,(N′′c−N′c+N c)D4-branes are connecting between the L-brane and NS5L-brane,and N′′c D4-branes are suspended between the NS5L-brane NS5′Rand the NS5R-brane.By moving the combined N c D4-branes,obtained from reconnection of those D4-branes between NS5′L-brane and the NS5′R-brane and those D4-branes betweenthe NS5′R-brane and NS5L-brane(therefore between the NS5′L-brane and the NS5L-brane), to+v-direction,one gets thefinal Figure4A where we are left with(N′c−N′′c)anti-D4-branes between the NS5′R-brane and NS5L-brane.We assume that the number of colors satisfiesN c+N′′c≥N′c≥N′′c.When two NS5’-branes in Figure4A are close to each other,then it leads to Figure4B by realizing that the number of N c D4-branes connecting between NS5′L-brane and NS5L-brane can be rewritten as(N′c−N′′c)plus N′c.Figure4:The N=1magnetic brane configuration for the gauge group SU(N c)×SU( N′c= N c+N′′c−N′c)×SU(N′′c)corresponding to Figure3B with D4-andN′c,1),afield g charged under ,(1, N′3One can also construct the mass deformation by rotating NS5R-brane and moving it to+v direction.Then the brane configuration will look like as the Figure15.where we defineΦasΦ≡F F,the second gauge group indices in F and F are contracted, eachfirst gauge group index in them is encoded inΦand the mass m is given by(2.3)where ∆x refers to the distance between two NS5’-branes along the x5direction in Figure4A.Let us emphasize that although theΦwhich hasfirst gauge group indices looks similar to the previousΦ′which has second gauge group indices in(2.2),the group indices are different.Here the magneticfields f and f correspond to4-4strings connecting the N′c-color D4-branes(that are connecting between the NS5′L-brane and the NS5L-brane in Figure4B)with N c-flavor D4-branes(which are realized as corresponding D4-branes in Figure4A).Although the N c D4-branes in Figure4A cannot move any directions,the tilted(N′c−N′′c)-flavor D4-branes can move w direction in Figure4B.The remaining upper N′c D4-branes arefixed also and cannot move any direction.Note that there is a decompositionN c=(N′c−N′′c)+ N′c.The brane configuration for zero mass for the bifundamental,which has only a cubic superpotential,can be obtained from Figure4A by moving the upper NS5’-brane(or NS5′L-brane)together with N c color D4-branes into the origin v=0.Then the number of dual colors for D4-branes becomes N c between two NS5’-branes, N′c between NS5′R-brane and NS5L-brane and N′′c between NS5L-brane and NS5R-brane.Or starting from Figure3A and moving the NS5L-brane to the right all the way past the NS5′R-brane,one also obtains the corresponding magnetic brane configuration for massless case.The brane configuration in Figure4A is stable as long as the distance∆x between the upper NS5’-brane and the lower NS5’-brane is large.If they are close to each other,then this brane configuration is unstable to decay to the brane configuration in Figure4B.One can regard these brane configurations as particular states in the magnetic gauge theory with the gauge group(2.7)and superpotential(2.8).The(N c− N′c)flavor D4-branes of straight brane configuration of Figure4B bend since there exists an attractive gravitational interaction between thoseflavor D4-branes and NS5L-brane from the DBI action,as long as the distance y3is large because the presence of an extra NS5R-brane does not affect the DBI action.For thefinite and small y3,the careful analysis for DBI action is needed in order to obtain the bending curve connecting two NS5’-branes.Or if y3goes to zero,then this extra NS5R-brane plays the role of enhancing the strength for the NS5-branes and will affect both the energy of bending curve,E curved,which is proportional to1kℓs where k is the number of NS5-branes and∆x which depends on both1similar to the one found in[14]wherethe gauge group was given by SU(n′f+n c−n′c)×SU(n c)with n f multiplets,n′f multiplets,flavor singlets and gauge singlets.Then the present N c corresponds to the n′f,the number N′c corresponds to n′c,and N′′c corresponds to the n c of [14].The low energy dynamics of the magnetic brane configuration can be described by the N=1supersymmetric gauge theory with gauge group(2.7)and the gauge couplings for the three gauge group factors are given byg21,mag=g sℓsy2,g23,mag=g sℓs2πg sℓ3s.Then f f is a N′c× N′c matrix where thefirst gauge group indices for f and f are contracted with those ofΦwhileµ2is a N c×N c matrix.The product f f has the same representation for the product of quarks and moreover,thefirst gauge group indices for thefieldΦplay the role of theflavor indices when there are D6-branes before.Therefore,the F-term equation,the derivative W dual with respect to the mesonfieldΦcannot be satisfied if the N c exceeds N′c.So the supersymmetry is broken.That is,there exist three equations from F-term conditions:f f−µ2=0andΦf=0= fΦ.Then the solutions for these are given by<f>= µ1e N′c0 ,< f>= µ1e N′c0 ,<Φ>= 000Φ01(N c−e N′c)(2.9)where the zero of<f>is a(N c− N′c)× N′c matrix,the zero of< f>is a N′c×(N c− N′c) matrix and the zeros of<Φ>are N′c× N′c, N′c×(N c− N′c)and(N c− N′c)× N′c matrices. Then one can expand thesefields around on a point(2.9),as in[4,15]and one arrives at the relevant superpotential up to quadratic order in thefluctuation.At one loop,the effectivepotential V(1)eff forΦ0leads to the positive value for m2Φimplying that these vacua are stable.2.4Other magnetic theory-IIOne can think of the following dual gauge groupSU(N c)×SU(N′c)×SU( N′′c=N′c−N′′c)(2.10)by performing the magnetic dual for the last gauge group in(2.1).The electric brane configu-ration can be given in terms of Figure1A or Figure1A with an exchange between NS5-brane and NS5’-brane.Then for the latter,the resulting brane configuration is given by NS5L-brane, -brane,NS5R-brane,and NS5′R-brane from the left to the right in the x6direction. NS5′LIn order to obtain the above dual gauge group,we need to interchange between the NS5R-brane and the NS5′R-brane,as we did before.One can do this either by following the previous procedure or by looking at the Figure2from the negative w direction which is an opposite viewpoint,compared with Figure2.In other words,we are looking at the Figure2from the other side of w.Then the resulting brane configuration in this case can be obtained by taking a reflection for all the NS-branes,D4-branes and anti D4-branes with respect to the NS5L-brane(rotating them to the left forfixed NS5L-brane)in Figure2A and Figure2B.Then the N=1magnetic brane configuration for the gauge group SU(N c)×SU(N′c)×SU( N′′c=N′c−N′′c)corresponds to the Figure5A’with D4-andwhich will become NS5′M-brane,mov-2ing it with the(N′c−N c)D4-branes to+v direction where we introduce(N′c−N c)D4-branes and(N′c−N c)anti D4-branes between the NS5R-brane and the NS5′R-brane,one gets the final Figure5A”where we are left with(N′′c−N c)anti-D4-branes between the NS5-brane and the NS5′R-brane.When two NS5’-branes in Figure5A”are close to each other,then it leads to Figure5B”by realizing that the number of(N′c−N c)D4-branes connecting between -brane and NS5-brane can be rewritten as(N′′c−N c)plus N′′c.NS5′MThe brane configuration in Figure5A”is stable as long as the distance∆x between the upper NS5’-brane and the lower NS5’-brane(or NS5′R-brane)is large.If they are close to each other,then this brane configuration is unstable to decay to the brane configuration in Figure 5B”.One can regard these brane configurations as particular states in the magnetic gauge theory with the gauge group and superpotential.The(N′c−N c− N′′c)flavor D4-branes of straight brane configuration of Figure5B”bend since there exists an attractive gravitationalFigure5:The N=1magnetic brane configuration for the gauge group SU(N c)×SU(N′c)×SU( N′′c=N′c−N′′c)with D4-and,1),afield g charged underN′c(1,N′c,and cannot move any direction.Note that there is a decomposition(N′c−N c)=(N′′c−N c)+ N′′c.The brane configuration for zero mass for the bifundamental,which has only a cubicsuperpotential,can be obtained from Figure5A”by moving the upper NS5’-brane together with(N′c−N c)color D4-branes into the origin v=0.Then the number of dual colors for D4-branes becomes N c between the NS5′L-brane and the NS5′M-brane,N′c between theNS5′M-brane and the NS5-brane and N′′c between NS5-brane and NS5′R-brane.Or starting from Figure1A and moving the NS5′R-brane to the right all the way past the NS5R-brane, one also obtains the corresponding magnetic brane configuration for massless case.The low energy dynamics of the magnetic brane configuration can be described by theN=1supersymmetric gauge theory with gauge group(2.10)and the gauge couplings for thethree gauge group factors are given byg21,mag =g sℓs(y2−y3),g23,mag=g sℓs2πg sℓ3s.Then g g is a N′′c× N′′c matrix where the second gauge group indices for g and g are contracted with those ofΦ′whileµ2is a(N′c−N c)×(N′c−N c)matrix.The product g g has the same representation for the product of quarks and moreover,the second gauge group indices for thefieldΦ′play the role of theflavor indices.Therefore,the F-term equation,the derivative W dual with respect to the mesonfieldΦ′cannot be satisfied if the(N′c−N c)exceeds N′′c.So the supersymmetry is broken.That is, there exist three equations from F-term conditions:g g−µ2=0andΦ′g=0= gΦ′.Then the solutions for these are given by<g>= µ1e N′′c0 ,< g>= µ1e N′′c0 ,<Φ′>= 000Φ′01(N′c−N c)−e N′′cwhere the zero of<g>is a(N′c−N c− N′′c)× N′′c matrix,the zero of< g>is a N′′c×(N′c−N c− N′′c)matrix and the zeros of<Φ′>are N′′c× N′′c, N′′c×(N′c−N c− N′′c)and (N′c−N c− N′′c)× N′′c matrices.Then one can expand thesefields around on a point,as in[4,15]and one arrives at the relevant superpotential up to quadratic order in thefluctuation.At one loop,the effective potential V(1)eff forΦ′0leads to the positive value for m2Φ′0implyingthat these vacua are stable.3Meta-stable brane configurations with four NS-branes plus O4-planeIn this section,we add an orientifold4-plane to the previous brane configurations andfind out new meta-stable brane configurations.Or one can realize these brane configurations by inserting the extra NS-brane and O4-planes into the brane configuration[16].3.1Electric theoryThe type IIA brane configuration[19]corresponding to N=1supersymmetric gauge theory with gauge groupSp(N c)×SO(2N′c)×Sp(N′′c)(3.1)and with afield F charged under(2N c,2N′c),afield G charged under(2N′c,2N′′c)can be described by the left NS5′L-brane,the left NS5L-brane,the right NS5′R-brane,the right NS5R-brane,2N c-,2N′c-and2N′′c-color D4-branes as well as an O4±-plane(01236)we should add.The O4±-planes act as(x4,x5,x7,x8,x9)→(−x4,−x5,−x7,−x8,−x9)as usual and they have RR charge±1playing the role of±1D4-brane.We draw this brane configuration in Figure6A for the vanishing mass case.There is no superpotential in Figure6A.Let us deform this theory.Displacing the two NS5’-branes relative each other in the+v direction corresponds to turning on a quadratic mass-deformed superpotential for thefield F as follows:W=mF F≡mΦ′(3.2)where thefirst gauge group indices in F are contracted,each second gauge group index in F is encoded inΦ′and the mass m is given by(2.3).The gauge-singletΦ′for the first dual gauge group is in the adjoint representation for the second dual gauge group, i.e.,(1,(N′c−N′′c)(2N′c−2N′′c−1),1)under the dual gauge group(3.3).Then theΦ′is a2(N′c−N′′c)×2(N′c−N′′c)matrix.The half NS5′R-brane[20]together with(N′c−N′′c)-colorD4-branes is moving to the+v direction(and their mirrors to−v direction)forfixed other branes during this mass deformation.The2N′′c D4-branes among2N′c D4-branes are not。

相关文档
最新文档