二元一次方程组单元测试题及答案

合集下载

《二元一次方程组》基础测试题及参考答案

《二元一次方程组》基础测试题及参考答案

《二元一次方程》基础测试题一、选择题1.方程2x+y =0,3x-xy =1,2x+y ﹣x =7,x −1y =0二元一次方程的个数是( ) A .1个 B .2个 C .3个 D .4个2.把方程2x-y=3改写成用含x 的式子表示y 的形式( )A .y=2x-3B .y=2x+3C .1322x y =+D .132x y =+ 3.若{x =5y =2是关于x 和y 的二元一次方程2x ﹣by =6的解,则b 的值是( ) A . 2 B .﹣2 C . 4 D .﹣44.关于二元一次方程组{y =x +1x −2y =7,消去y 可得( ) A .x-x ﹣1=7 B .x-2x ﹣1=7 C .x-2x ﹣2=7 D .x+2x-2=75.已知二元一次方程组{2x −y =7x −2y =−3,则x+y 的值为( ) A .﹣4 B .4 C .﹣5 D .56.若方程x+y =2,x ﹣2y =8和kx-y =6有公共解,则k 的值是( )A .1B .﹣1C .2D .﹣27.现在小强的年龄是小玲的2倍,2年前小强的年龄是小玲的3倍,今年小强和小玲的年龄是多少岁?设小强今年x 岁,小玲今年y 岁,可列方程组( )A .{x +2=3(y +2)x =2yB .{x −2=3(y −2)x =2yC .{x +2=2(y +2)x =3yD .{x −2=3(y −2)x =3y8.若|x+2y ﹣2|+√x −y +1=0,则x+y 的值为( )A .4B .2C .1D .09.一个两位数数位上的数字之和是8,将它的十位数字和个位数字交换后,得到新的两位数,若新两位数比原两位数小18,则原两位数为( )A .26B .53C .35D .6210.已知关于x 、y 的二元一次方程组的解3+2=+22+3=x y k x y k ⎧⎨⎩满足x+y=2,则k 的值为( ) A .0 B .1 C .2 D .411.已知方程组213616x y z x y z -+=-⎧⎨+-=⎩,则x+y 的值为( ) A .3 B .4 C .5 D .612.今有牛五、羊二,值金十两;牛二、羊五,值金八两,牛、羊各值金几何?题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?解:设一头牛值金x 两,一只羊值金y 两,则列方程组( )A .{5y −2x =102y −5x =8B .{5y −2x =82y −5x =10C .{5y +2x =102y +5x =8D .{5y +2x =82y +5x =10二、填空题13.方程ax+(a +1)y =3a -1是关于x 、y 的二元一次方程,则a 的范围是_______。

人教版七年级上册《二元一次方程组》单元测试卷(附答题卡、参考答案 )

人教版七年级上册《二元一次方程组》单元测试卷(附答题卡、参考答案 )

A.
B.
C.
D.
二、填空题:(每题 4 分,共 24 分)
7.已知
是关于 x、y 的二元一次方程,则 a+b= ﹣ .
1
8.若|x﹣2y+1|+|x+y﹣5|=0,则 2x+3y=
12 .
9. A、B 两人共解方程组
,由于 A 看错了方程(1)中的 a,得到的解是

而 B 看错了方程(2)中的 b,得到的解是
12.
2x 3y 0 (2)用加减法解: 3x y 11
(3)
(4)
4
14.(8 分) 15.(8 分)
5
16.(12 分)ห้องสมุดไป่ตู้
6
七年级上册《二元一次方程组》综合练习卷 参考答案
(考试时间 80 分钟,满分 100 分)
班级: 姓名: 一、选择题:(每题 4 分,共 24 分)
号数:
成绩:
有( ) A.2 个
B.3 个
C.4 个
D.5 个
2.利用加减消元法解方程组
,下列做法正确的是( )
A.要消去 y,可以将 ①×5+ ②×2
B.要消去 x,可以将 ①×3+ ②×(﹣5) C.要消去 y,可以将 ①×5+ ②×3 D.要消去 x,可以将 ①×(﹣5)+ ②×2 3.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各
3
七年级上册《二元一次方程组》综合练习卷
班级: 姓名: 一、选择题(每题 4 分,共 24 分)
1.
2.
3.
二、填空题(每题 4 分,共 24 分)
7.

二元一次方程组单元测试(含答案)

二元一次方程组单元测试(含答案)

第8章 二元一次方程组章末检测(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各方程组中,是二元一次方程组的是A .2113a b a b⎧+=⎪⎨⎪=⎩B .325210x y y z -=⎧⎨-=⎩C .1321x yxy ⎧+=⎪⎨⎪=⎩D .271.1405x y x y -=⎧⎨+=⎩2.二元一次方程2x -y =1有无数多个解,下列四组值中是该方程的解的是 A .00.5x y =⎧⎨=-⎩B .47x y =⎧⎨=⎩C .11x y =⎧⎨=-⎩D .53x y =-⎧⎨=-⎩3.解方程组34791025m n m n -=⎧⎨-=-⎩①②的最简单方法是A .由②得m =10259n -,代入①中 B .由②得9m =10n -25,代入①中 C .由①得m =743n+,代入②中 D .由①得3m =7+4n ,代入②中 4.下列说法正确的是A .3923x y x xy -=⎧⎨+=⎩是二元一次方程组B .方程x +3y =6的解是31x y =⎧⎨=⎩C .方程2x -y =3的解必是方程组2331x y x y -=⎧⎨+=⎩的解D .31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解5.若|3x +2y -4|+27(5x +6y )2=0,则x ,y 的值分别是A .65x y =⎧⎨=-⎩B .352x y =⎧⎪⎨=-⎪⎩C .810x y =⎧⎨=⎩D .5112x y =⎧⎪⎨=-⎪⎩6.七年级两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x 棵,y 棵,那么可列方程组 A .302x y x y+=⎧⎨=⎩B .302x y x y+=⎧⎨=⎩C .302x y y x =-⎧⎨=+⎩D .302x y x y +=⎧⎨=+⎩7.若关于x ,y 的二元一次方程组25245x y k x y k +=+⎧⎨-=-⎩的解满足x +y =9,则k 的值是A .1B .2C .3D .48.已知关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为23x y =⎧⎨=⎩,那么11122223342334a x b y c a x b y c⎧+=⎪⎪⎨⎪+=⎪⎩的解为A .23x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .34x y =⎧⎨=⎩D .43x y =⎧⎨=⎩9.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为A.3.211(1)(1)73x yx y+=⎧⎪⎨+=+⎪⎩B.3.211(1)(1)73x yx y+=⎧⎪⎨-=-⎪⎩C.3.21137x yx y+=⎧⎪⎨=⎪⎩D.3.211(1)(1)37x yx y+=⎧⎪⎨-=-⎪⎩10.小明在解关于x,y的二元一次方程组331x yx y+⊗=⎧⎨-⊗=⎩时得到了正确结果1xy=⊕⎧⎨=⎩,后来发现“⊗”“⊕”处被污损了,请你帮他找出⊗、⊕处的值分别是A.⊗=1,⊕=1 B.⊗=2,⊕=1 C.⊗=1,⊕=2 D.⊗=2,⊕=2 二、填空题(本大题共10小题,每小题3分,共30分)11.请写出一个以11xy=-⎧⎨=⎩为解的二元一次方程:__________.12.方程组1151x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩的解是__________.13.已知2728x yx y+=⎧⎨+=⎩,则x-y=__________,x+y=__________.14.若235323x yx y+=-=-⎧⎨⎩,则2(2x+3y)+3(3x-2y)=__________.15.如果方程组45xax by=⎧⎨+=⎩的解与方程组32ybx ay=⎧⎨+=⎩的解相同,则a+b=__________.16.已知方程组322121x y mx y m+=+⎧⎨+=-⎩,当m__________时,x+y>0.17.在代数式x2+ax+b中,当x=2时,其值是1;当x=-3时,其值是1.则当x=-4时,其值是__________.18.已知关于x,y的二元一次方程组78ax bybx ay+=⎧⎨+=⎩的解为23xy=⎧⎨=⎩,那么关于m,n的二元一次方程组()()7()()8a m n b m n b m n a m n ++-=⎧⎨++-=⎩的解为__________. 19.若关于x 的方程组220x y my x y -=+⎧⎨-=⎩的解是负整数,则整数m 的值是__________.20.小亮解得方程组2212x y x y +=⎧⎨-=⎩●的解为5x y =⎧⎨=⎩★,由于不小心,有两个数●和★被污损了,看不清楚,则●和★这两个数分别为__________.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解下列二元一次方程组:(1)35382x y y x =-⎧⎨=-⎩;(2)22(1)2(1)(1)5x y x y -=-⎧⎨-+-=⎩.22.解下列方程组:(1)124x y x y +=⎧⎨-=-⎩;(2)1234()5()38x y x yx y x y +-⎧+=⎪⎨⎪+--=-⎩.23.已知方程组51542ax yx by+=⎧⎨-=-⎩①②,由于甲看错了方程①中的a得到方程组的解为31xy=-⎧⎨=⎩,乙看错了方程②中的b得到方程组的解为12xy=⎧⎨=⎩.若按正确的a、b计算,求原方程组的解.24.一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产,若购买3盒豆腐乳和2盒猕猴桃果汁共需60元;购买1盒豆腐乳和3盒猕猴桃果汁共需55元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?25.列方程组解应用题:打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?26.某面粉加工厂要加工一批小麦,2台大面粉机和5台小面粉机同时工作2小时共加工小麦1.1万斤;3台大面粉机和2台小面粉机同时工作5小时共加工小麦3.3万斤.(1)1台大面粉机和1台小面粉机每小时各加工小麦多少万斤?(2)该厂现有9.45万斤小麦需要加工,计划使用8台大面粉机和10台小面粉机同时工作5小时,能否全部加工完?请你帮忙计算一下.27.有一间阶梯教室,第1排的座位数为a,从第2排开始,每一排都比前一排增加b个座位,(1)请你在下表的空格里填写一个适当的式子:(2)已知第4排有18个座位,第15排的座位数是第5排座位数的2倍,求第21排有多少个座位?28.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.1.【答案】D【解析】A、b是二次,故不是二元一次方程组,故此选项错误;B、含有三个未知数,是三元而不是二元方程组,故此选项错误;C、xy是二次项,是二次而不是一次方程,故此选项错误;D、是二元一次方程组.故此选项正确,故选D.2.【答案】B【解析】将x=4,y=7代入方程得:左边=1,右边=1,即左边=右边,则47xy=⎧⎨=⎩是方程2x-y=1的解.故选B.3.【答案】D【解析】解方程组34791025m n m n -=⎧⎨-=-⎩①②的最好方法是由①得347m n =+,再代入②9m =3·3m =3·(47)n +,故选D .6.【答案】A【解析】设甲、乙两班分别植树x 棵,y 棵,根据题意可得,302x y x y +=⎧⎨=⎩,故选A . 7.【答案】B 【解析】25245x y k x y k +=+⎧⎨-=-⎩①②,①-②,得3y =k +7,∴y =73k +, 将y =73k +代入①中,得1383k x -=,∵x +y =9,∴1387933k k -++=, 即14k =28,∴k =2,故选B . 8.【答案】C 【解析】把23x y =⎧⎨=⎩代入方程组得,111222a x b y c a x b y c +=⎧⎨+=⎩,又∵11122223342334a x b y c a x b y c⎧+=⎪⎪⎨⎪+=⎪⎩,∴23x =2,34y =3,即,x =3,y =4,故选C . 9.【答案】D【解析】设爸爸的身高为x 米,儿子的身高为y 米,由题意得:3.211(1)(1)37x y x y +=⎧⎪⎨-=-⎪⎩,故选D . 10.【答案】B【解析】将1x y =⊕⎧⎨=⎩代入方程组,两方程组相加,得x =⊕=1;将x =⊕=1代入x +⊗y =3中,得1+⊗=3,⊗=2,故选B .11.【答案】答案不唯一,如2x +y =0【解析】本题答案不唯一,只要写出的二元一次方程的解为11x y =-⎧⎨=⎩即可,如2x +y =0.故答案为:2x +y =0. 12.【答案】683x y z =⎧⎪=⎨⎪=⎩【解析】已知方程1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩①②③,①+②得2y =16,解得y =8, ②+③得2z =6,解得z =3, ①+③得2x =12,解得x =6,∴方程的解为683x y z =⎧⎪=⎨⎪=⎩,故答案为:683x y z =⎧⎪=⎨⎪=⎩.13.【答案】-1;5【解析】2728x y x y +=⎧⎨+=⎩①②,①-②,得x -y =-1, ①+②,得3x +3y =15, ∴x +y =5,故答案为:-1,5. 14.【答案】1【解析】∵235323x y x y +=-=-⎧⎨⎩,∴2(2x +3y )+3(3x -2y )=2×5+3×(-3)=10-9=1,故答案为:1.16.【答案】>-2【解析】322121x y m x y m +=+⎧⎨+=-⎩①②,②×2-①得:x =-3③,将③代入②得:y =m +5,所以原方程组的解为35x y m =-⎧⎨=+⎩. ∵x +y >0,∴-3+m +5>0,解得:m >-2,∴当m >-2时,x +y >0.故答案为:>-2. 17.【答案】7【解析】由题意得:421931a b a b ++=⎧⎨-+=⎩,解得:15a b =⎧⎨=-⎩,所以原代数式为:x 2+x -5,当x =-4时,x 2+x -5=16-4-5=7,故答案为:7.18.【答案】5212 mn⎧=⎪⎪⎨⎪=-⎪⎩【解析】∵关于x,y的二元一次方程组78ax bybx ay+=⎧⎨+=⎩的解为:23xy=⎧⎨=⎩,∴237238a bb a+=⎧⎨+=⎩,∴23m nm n+=⎧⎨-=⎩,解得:5212mn⎧=⎪⎪⎨⎪=-⎪⎩.故答案为:5212mn⎧=⎪⎪⎨⎪=-⎪⎩.19.【答案】3或2【解析】解方程组220x y myx y-=+⎧⎨-=⎩,得:4121xmym⎧=⎪⎪-⎨⎪=⎪-⎩,∵解是负整数,∴1-m=-2或1-m=-1,∴m=3或2.故答案为:3或2.20.【答案】8,-2【解析】将x=5代入2x-y=12,得y=-2,将x,y的值代第一个方程,得2x+y=2×5-2=8,所以●表示的数为8,★表示的数为-2,故答案为:8,-2.21.【解析】(1)35382x yy x=-⎧⎨=-⎩①②,把①代入②,得3y=8-2(3y-5),解得y=2,把y=2代入①,可得x=3×2-5,即x=1,∴原方程组的解为12 xy=⎧⎨=⎩.(2)方程组化简得:2028x yx y-=⎧⎨+=⎩①②,②-①×2,得5y=8,解得y=85,将y=85代入①,得x=165,∴原方程组的解为16585xy⎧=⎪⎪⎨⎪=⎪⎩.22.【解析】(1)124x yx y+=⎧⎨-=-⎩①②,①+②,得3x=-3,解得x=-1,把x=-1代入①,得y=2,所以原方程组的解为12xy=-⎧⎨=⎩.(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩①②,由①,得5x+y=6,③由②,得-x+9y=-38,所以x=9y+38,将x=9y+38代入③,得46y=-184,所以y=-4,把y=-4代入x=9y+38,得x=2,所以原方程组的解为24 xy=⎧⎨=-⎩.23.【解析】把31xy=-⎧⎨=⎩代入②得:122b--=-,解得:10b=-,把12xy=⎧⎨=⎩代入①得:1015a+=,解得:5a=,即方程组为:5515 4102x yx y+=⎧⎨+=-⎩①②,①×2-②得:632x=,解得:163x =, 把163x =代入①得:805153y +=, 解得:73y =-, 即原方程组的解为:16373x y ⎧=⎪⎪⎨⎪=-⎪⎩.25.【解析】(1)设打折前A 商品每件x 元、B 商品每件y 元,根据题意,得:105400510350x y x y +=⎧⎨+=⎩, 解得:3020x y =⎧⎨=⎩. 答:打折前A 商品每件30元、B 商品每件20元.(2)打折前,买100件A 商品和100件B 商品共用:100×30+100×20=5000(元)比不打折少花:5000-3800=1200(元),答:打折后,买100件A 商品和100件B 商品比不打折少花1200元.26.【解析】(1)设1台大面粉机每小时加工小麦x 万斤,1台小面粉机每小时加工小麦y 万斤,根据题意得:2(25) 1.15(32) 3.3x y x y +=⎧⎨+=⎩, 解得:0.20.03x y =⎧⎨=⎩, 答:1台大面粉机每小时加工小麦0.2万斤,1台小面粉机每小时加工小麦0.03万斤;(2)(8×0.2+10×0.03)×5=9.5(万斤),∵9.5>9.45,∴能全部加工完.27.【解析】(1)a +3b .(2)根据题意,得318142(4)a b a b a b +=⎧⎨+=+⎩, 解得122a b =⎧⎨=⎩, 所以12+20×2=52, 答:第21排有52个座位.28.【解析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, 答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨. (2)结合题意,和(1)可得3a +4b =35,∴a =3543b -, ∵a 、b 都是整数,∴82a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩, 答:有3种租车方案:方案一:A 型车8辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆。

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学 第8章《二元一次方程组》单元提优测试题完成时间:120分钟 满分:150分姓名 成绩10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. ⎩⎨⎧20x +30y =11010x +5y =85 B. ⎩⎨⎧20x +10y =11030x +5y =85 C. ⎩⎨⎧20x +5y =11030x +10y =85 D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100 C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A. 50人,40人 B. 30人,60人 C. 40人,50人 D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= ,◆= .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;②16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知 购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔 方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?22.(12分)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元. (1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱?23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.人教版七年级数学 第8章《二元一次方程组》单元提优测试题参 考 答 案1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( D )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A. ⎩⎨⎧20x +30y =11010x +5y =85B. ⎩⎨⎧20x +10y =11030x +5y =85C. ⎩⎨⎧20x +5y =11030x +10y =85D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( C ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( A )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( A ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C ) A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( D ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( B )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( C )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( D ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= 17 ,◆= 9 .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ⎩⎪⎨⎪⎧y -x =4.5y 2=x -1 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为 35. 三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;② 解:由②,得y =2x -1.③ 将③代入①,得3x +4x -2=19. 解得x =3.将x =3代入③,得y =5. ∴原方程组的解为⎩⎨⎧x =3,y =5.16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意,得⎩⎨⎧x +3y =104,3x +2y =116, 解得⎩⎨⎧x =20,y =28.答:1套文具和1套图书各需20元、28元.17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.解:把⎩⎨⎧x =2,y =-1代入⎩⎨⎧ax +y =b ,4x -by =a +5得⎩⎨⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5. 解得a =-2.把a =-2代入①,得2×(-2)-1=b. 解得b =-5. ∴a =-2,b =-5.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 解:把⎩⎨⎧x =-3,y =-1代入方程②中,得4×(-3)-b×(-1)=-2,解得b =10. 把⎩⎨⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1. ∴a2 017+(-110b)2 018=(-1)2 017+(-110×10)2 018=(-1)+1=0. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.解:把⎩⎨⎧x =1,y =-1代入⎩⎨⎧ax +by =2,cx -3y =2中,得⎩⎨⎧a -b =2,c +3=-2,∴⎩⎨⎧a -b =2,c =-5.由题意知:⎩⎨⎧x =2,y =-6是方程ax +by =2的解,∴2a -6b =2,即a -3b =1. 联立⎩⎨⎧a -b =2,a -3b =1,解得⎩⎨⎧a =52,b =12.故a =52,b =12,c =-5. 20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 解:(1)由题意,得⎩⎨⎧8p +8q =12,10p +12q =16. 解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元).答:总费用是17元.21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方 和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个. 某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种 魔方多少个时,两种活动费用相同?解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得⎩⎨⎧2x +6y =130,3x =4y , 解得⎩⎨⎧x =20,y =15.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个. (2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解得m =45. 答:购进A 种魔方45个时,两种活动费用相同. 22.(12分)某景点的门票价格如下表:购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付 1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱? 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎨⎧12x +10y =1 118,10(x +y )=816.解得⎩⎨⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎨⎧12x +10y =1 118,8(x +y )=816. 解得⎩⎨⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票及单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元. 23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.礼品表兑换礼品 积分 榨汁机一个 3 000分 电茶壶一个 2 000分 书包一个1 000分解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包,由题意,得⎩⎨⎧2 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =2,y =3.②设亮亮妈妈兑换了x 个榨汁机和y 个书包,由题意,得⎩⎨⎧3 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =1,y =4.③设亮亮妈妈兑换x 个榨汁机和y 个电茶壶,由题意,得⎩⎨⎧3 000x +2 000y =7 000,x +y =5,解得⎩⎨⎧x =-3,y =8.不合题意,舍去.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

二元一次方程组试题及答案

二元一次方程组试题及答案

第八章二元一次方程组单元知识检测题(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(• )A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是( )A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.a -b=2,a -c=12,则(b -c )3-3(b -c)+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y +---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值本小题5分) 20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y 的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)21.甲、乙两人同解方程组54ax y x by +=⎧⎨=-⎩ 时,甲看错了方程①中的a,解得31x y =-⎧⎨=-⎩,乙看错了②中的b,200620075()410x b a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,• 由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 原式=53×(-3)2+23×(-3)-3=15-2-3=10. 21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。

二元一次方程组练习题及答案

二元一次方程组练习题及答案

第八章 二元一次方程组单元测试题一、选择题:(每题3分,共36分)1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6D .4x=24y -2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(y+3)2=0,则 x+y 的值是( ) A .-1 B .-2 C .-3 D .326.方程组43235x y kx y -=⎧⎨+=⎩的解,x 与y 的值相等,则k 等于( )A .-1B .-2C .-3D .17.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ;⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.七年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 9.方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个10.若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对⎨⎧=2xA 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x12.若方程组 ⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101二、填空题(每题3分,共18分)13.已知方程2x+3y -4=0,用含x 的代数式表示y 为:______________;用含y 的代数式表示x 为_____ ________.14.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=___ ___. 15.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____. 16.二元一次方程x+y=5的正整数解有______________. 17.以57x y =⎧⎨=⎩为解的一个二元一次方程组是_________. 18.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______. 三、解答题(共46分)19.用适当的方法解下列方程组(12分)(1)、⎩⎨⎧=-=+-6430524m n n m ( 2)、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x (3)、⎩⎨⎧=-=+110117.03.04.0y x y x20.(6分)二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.21.(6分)七年级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷学校:___________姓名:___________班级:___________一、选择题(本大题共12小题,共36.0分)1. 方程ax −4y =x −1是二元一次方程,则a 的取值为( )A. a ≠0B. a ≠−1C. a ≠1D. a ≠2 2. 下列方程组不是二元一次方程组的是( )A. {x −y =41x+y=4B. {4x +3y =62x +y =2 C. {x −y =4x +y =2D. {12(y −1)=212(x−1)=13. 方程组{3x +2y =7, ①4x −y =13, ②下列变形正确的是( )A. ①×2−②消去xB. ①−②×2消去yC. ①×2+②消去xD. ①+②×2消去y 4. 方程组{ax −y =12x +by =2的解为{x =1y =1,则a ,b 的值为( )A. a =2,b =0B. a =−2,b =0C. a =−2,b =2D. a =2,b =25. 二元一次方程2x +y =5的正整数解对数为( )A. 1对B. 2对C. 3对D. 4对 6. 已知|3x +2y −4|与9(5x +7y −3)2互为相反数,则x 、y 的值是( )A. {x =1y =1B. {x =2y =−1C. {x =−1y =2D. 无法确定7. 小明用17元买了1支笔和某种笔记本3个,已知笔记本的单价比笔的单价的2倍还多1元,设笔每支x 元,笔记本每本y 元,则所列方程组为( )A. {x +3y =17x =2y +1B. {x +3y =17y =2x +1C. {y +3x =17x =2y +1D. {y +3x =17y =2x +18. 用“●”“■”“●”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A. 5个B. 4个C. 3个D. 2个9. 用四个完全一样的长方形和一个小正方形拼成如图所示的大长方形的长和宽,已知大正方形的面积是121,小正方形的面积是9,若用x ,y(x >y)表示长方形的长和宽,则下列关系中不正确的是( ) A. x +y =11 B. x 2+y 2=180 C. x −y =3 D. x ⋅y =2810. 如果二元一次方程ax +by +2=0有两个解{x =2y =2与{x =1y =−1,那么下列各组中仍是这个方程的解的是( )A. {x =3y =5 B. {x =6y =2 C. {x =5y =3 D. {x =2y =6 11. 已知x =2m +1,y =2m −1,用含x 的式子表示y 的结果是( ) A. y =x +2B. y =x −2C. y =−x +2D. y =−x −212. 已知{x =1y =2z =3是方程组{ax +by =2by +cz =3cx +az =7的解,则a +b +c 的值是( )A. 3B. 2C. 1D. 无法确定二、填空题(本大题共6小题,共18.0分)13. 已知二元一次方程x +2y =2,用含x 的代数式表示y ,则y = ______ . 14. 已知{x =1y =−1是方程3mx −y =m 的一个解,则m =______.15. 已知{x =2y =3是方程4x +ky =2的解,则k =______.16. 甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了______张. 17. 在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =♦,其中y 的值被墨渍盖住了,不过,我们可解得出p = ______ .18. 对于X 、Y 定义一种新运算“∗”:X ∗Y =aX +bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3∗5=15,4∗7=28,那么2∗3=_____. 三、解答题(本大题共6小题,共46.0分) 19. (8分)解方程组(1){y =2x 3y +2x =8(2){x +y =2x+15−y−12=−1.20. (6分)在等式y =ax 2+bx +c 中,当x =O 时y =0;当x =1时,y =−1;当x =−1时,y =2,求a ,b ,c 的值. 21. (8分)若关于x 、y 的二元一次方程组的解x ,y 互为相反数,求m 的值.22. (8分)已知方程组{ax +5y =15①4x −by =−2②,由于甲看错了方程①中的a 得到方程组的解为{x =−13y =−1,乙看错了方程②中的b 得到方程组的解为{x =5y =4,(1)求a 、b 的值. (2)求原方程组的解.23. (8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A 、B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A 、B 两种饮料各多少瓶?24. (8分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润A 型B 型 进价(元/件) 60 100 标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?二元一次方程组单元测试卷【答案】 1. C 2. A 3. D4. A5. B6. B7. B8. A 9. B10. A 11. B12. A13.2−x 214. −12 15. −2 16. 20 17.3 18. 219. 解:(1){y =2x ①3y +2x =8 ②,把①代入②得:6x +2x =8,即x =1, 把x =1代入①得:y =2,则方程组的解为{x =1y =2;(2)方程组整理得:{2x −5y =−17 ①x +y =2 ②,①+②×5得:7x =−7,即x =−1, 把x =−1代入②得:y =3, 则方程组的解为{x =−1y =3.20. 解:根据题意得{c =0①a +b +c =−1②a −b +c =2③ ,②+③得2a +2c =1④, 把①代入④得2a =1, 解得a =12,把a =12,c =0代入②得12+b +0=−1, 解得b =−32,所以方程组的解为{a =12b =−32c =0.21. 解:将x =−y 代入二元一次方程租{3x +5y =22x +7y =m −18可得关于y ,m 的二元一次方程组{−3y +5y =2−2y +7y =m −18,解得m =23.22. 解:(1)将{x =−13y =−1,代入方程组中的第二个方程得:−52+b =−2, 解得:b =50,将{x =5y =4代入方程组中的第一个方程得:5a +20=15, 解得:a =−1.故a 的值是−1,b 的值是50. (2)把a =−1,b =50代入方程组得{−x +5y =15①4x −50y =−2②,①×10+②得:−6x =148, 解得:x =−743,将x =−743代入①得:y =−2915. 则原方程组的解为{x =−743y =−2915.23. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得:{x +y =1002x +3y =270,解得:{x =30y =70,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.24. 解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得 {60x +100y =600040x +60y =3800, 解得:{x =50y =30.答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得3800−50(100×0.8−60)−30(160×0.7−100)=3800−1000−360 =2440(元). 答:服装店比按标价售出少收入2440元.1. 【解答】解:方程ax −4y =x −1变形得(a −1)x −4y =−1, 根据二元一次方程的概念,方程中必须含有两个未知数, 所以a −1≠0,即a ≠1. 故选C .2. 解:A 、第一个方程不是整式方程,则方程组不是二元一次方程组; B 、C 、D 、正确. 故选A .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.3. 解:方程组{3x +2y =7, ①4x −y =13, ②,变形得:①+②×2消去y . 故选D方程组中第二个方程两边乘以2,与第一个方程相加消去y 即可.4. 解:把{x =1y =1代入{ax −y =12x +by =2得{a −1=1 ①2+b =2 ②解得{a =2b =0,故选:A .根据方程组的解满足方程,把解代入方程组,可得关于a 、b 的方程组,解方程组,可得答案.5. 解:2x +y =5, 解得:y =−2x +5,当x =1时,y =3;当x =2时,y =1, 则方程的正整数解为2对. 故选B将x 看做已知数求出y ,即可确定出方程的正整数解.6. 【解答】解:根据题意得:|3x +2y −4|+9(5x +7y −3)2=0, 可得{3x +2y =4①5x +7y =3②,②×3−①×5得:11y =−11,即y =−1, 将y =−1代入①得:x =2, 则方程组的解为{x =2y =−1,故选B7. 解:设笔每支x 元,笔记本每本y 元,由题意得,{x +3y =17y =2x +1.故选B .设笔每支x 元,笔记本每本y 元,根据用17元买了1支笔和某种笔记本3个,笔记本的单价比笔的单价的2倍还多1元,列方程组即可.8. 解:设“●”“■”“●”分别为x 、y 、z ,由图可知, {2x =y +z z =x +y,解得x =2y ,z =3y , 所以x +z =2y +3y =5y ,即“■”的个数为5, 故选A .设“●”“■”“●”分别为x 、y 、z ,由图列出方程组解答即可解决问题. 解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决. 9. 解:由题意得,大正方形的边长为14,小正方形的边长为2 ∴x +y =11,x −y =3, 则{x +y =11x −y =3, 解得:{x =7y =4.故可得B 选项的关系式不正确. 故选:B .根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.10. 解:把{x =2y =2与{x =1y =−1代入方程ax +by +2=0有{2a +2b +2=0a −b +2=0,解得{a =−32b =12,所以二元一次方程为−32x +12y +2=0,把A {x =3y =5代入方程得,左边=−32×3+12×5+2=0,右边=0,左边=右边,则是该方程的解. 故选A .把二元一次方程ax +by +2=0的两个解{x =2y =2与{x =1y =−1分别代入方程得到{2a +2b +2=0a −b +2=0,解方程组得到{a =−32b =12,所以二元一次方程为−32x +12y +2=0;然后把四个选项代入方程检验,能使方程的左右两边相等的x ,y 的值即是方程的解. 注意掌握二元一次方程的求解及二元一次方程组的求解方法.11. 【解答】解:由x =2m +1,y =2m −1, 得到x −y =2, 解得:y =x −2, 故选B .12. 解:由题意将{x =1y =2z =3代入方程组得:{a +2b =2①2b +3c =3②c +3a =7③,①+②+③得:a +2b +2b +3c +c +3a =2+3+7, 即4a +4b +4c =4(a +b +c)=12, 则a +b +c =3. 故选A .由题意,可将x ,y 及z 的值代入方程组得到关于a ,b ,c 的方程组,将方程组中三个方程左右两边相加,变形后即可求出a +b +c 的值.此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中每一个方程左右两边相等的未知数的值,本题的技巧性比较强,求a +b +c 不要求出a ,b 及c 的值,而是整体求出. 13. 解:方程x +2y =2, 解得:y =2−x 2, 故答案为:2−x 2.把x 看做已知数求出y 即可.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14. 解:把{x =1y =−1代入方程得:3m +1=m ,解得:m =−12. 故答案是:−12.把{x =1y =−1代入方程,即可得到一个关于m 的方程,解方程即可求解. 本题考查二元一次方程的解的定义,要求理解把x ,y 的值代入原方程后,方程左右两边一定相等.15. 解:把{x =2y =3代入方程4x +ky =2,得4×2+3k =2, 解得k =−2. 故答案为−2.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k 的一元一次方程,从而可以求出k 的值.本题考查二元一次方程的解的定义,解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.16. 解:设购买甲电影票x 张,乙电影票y 张, 由题意得,{x +y =4020x +15y =700,解得:{x =20y =20,即甲电影票买了20张.故答案为:20.设购买甲电影票x 张,乙电影票y 张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.此题考查了二元一次方程组的应用,属于基础题,解答本题的关键是根据题意等量关系得出方程组.17. 解:将x =0.5代入x +y =1,得0.5+y =1, 则y =0.5,将x =0.5,y =0.5代入x +py =2,有0.5+0.5p =2, 解得p =3.根据方程组解的定义,把x =0.5代入x +y =1求出y 的值,再将x 、y 的值代入x +py =2即可求出p 的值.此题考查了对方程解的理解,直接代入方程求值即可. 18. 解:∵X ∗Y =aX +bY ,3∗5=15,4∗7=28, ∴3a +5b =15 ①,4a +7b =28 ②, ∴②−①得:a +2b =13 ③, ①−③得:2a +3b =2, 而2∗3=2a +3b =2.本题是一种新定义运算题目.首先要根据运算的新规律,得出3a +5b =15①,4a +7b =28②,2∗3=2a +3b .本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力.认真审题,准确的列出式子是解题的关键. 19. (1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20. 先根据题意得到三元一次方程组{c =0①a +b +c =−1②a −b +c =2③ ,再把②与③相加可计算出a ,然后把a 与c 的值代入②可计算出b .本题考查了解三元一次方程组:利用代入法或加减法,把三元一次方程组的问题转化为解二元一次方程组的问题.21. 考查了解二元一次方程的能力和对方程解的概念的理解.利用x ,y 的关系代入方程组消元,从而求得m 的值.22. 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a的值,从而求解;(2)先确定出正确的方程组,求出方程组的解即可得到原方程组的解.23. 设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.24. (1)设A种服装购进x件,B种服装购进y件,由总价=单价×数量,利润=售价−进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据总利润=A种服装的利润+B中服装的利润,求出其解即可.本题考查了销售问题的数量关系的运用,列二元一次方程组解实际问题的运用,解答时由销售问题的数量关系建立二元一次方程组是关键.。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组解法练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+(4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:计算题.专题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.点评:4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.二元一次方程组单元测试题及答案(一)一、选择题(每题3分,共24分)1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11x y x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y xB 、⎩⎨⎧-==;1,3y xC 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-C 、12-D 、.121 4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时, =y ( )。

相关文档
最新文档