小题训练有17
高中数学小题限时训练(适合基础薄弱学生)(20份附答案)

由题可得: , ,
所以 ,又 ,
所以利润与年号的回归方程为: ,
当 时, ,
故选C.
【点睛】
本题主要考查了线性回归方程及其应用,考查计算能力,属于基础题.
5.B
【解析】
【分析】
分成甲单独到 县和甲与另一人一同到 县两种情况进行分类讨论,由此求得甲被派遣到 县的分法数.
【详解】
如果甲单独到 县,则方法数有 种.
高二下学期数学小题限时训练1
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知 为虚数单位,复数 满足 ,则 的共轭复数为()
A. B. C. D.
2.曲线 在点 处的切线与 轴、 轴围成的封闭图形的面积为()
A.1B. C. D.
【解析】
【分析】
将
【详解】
解:因为 ,
所以 ,
所以其共轭复数为
故选:C
【点睛】
本题考查复数的除法运算,共轭复数的概念,是基础题.
2.B
【解析】
【分析】
【详解】
由 ,则直线方程为 ,当 时, ;当 时, . ,故选B.
3.C
【解析】
随机变量 服从正态分布 , .
4.C
【解】
【分析】
利用表中数据求出 , ,即可求得 ,从而求得 ,从而求得利润与年号的线性回归方程为 ,问题得解.
C.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”
5.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到 , , 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()
地理高考等级复习经典知识点微专题训练17 树叶+树木涂白 含详解

2023微专题训练17 树叶+树木涂白(一)树叶一、单选题1.某同学11月底到浙南某地秋游,攀爬红枫古道,在攀爬欣赏的过程中发现下图中同一树种A区域的树叶较B区域明显要“红、鲜艳”,B区域树叶枯黄暗淡,落叶较多,某同学对此进行原因分析,下列说法合理的是A.B区域地形较A平坦,土壤肥沃,植物生长茂盛,先变黄B.A区域位于山谷温差较小,水热条件较B区域好,生长期相对B区域长,树叶变红、变黄时间延后C.B区域有公路经过,人类干扰大,先变黄D.B区域海拔明显比A区域高,温度低,树叶先变黄【答案】B读图,地形平坦,土壤肥沃不是树叶先变黄的原因,A错。
图中A区域位于山谷,水热条件较B 区域好,生长期相对B区域长,树叶变红、变黄时间延后。
B对。
B区域有公路经过,不是树叶先变黄的原因,C错。
图中B区域与A区域有同一条等高线穿过,海拔高度基本相同,D错。
进入秋季,随着气温下降,北京和南京等地银杏树叶由绿转黄。
结合下图,完成下列问题。
2.下列说法正确的是A.银杏树为落叶阔叶树种 B.影响银杏树叶转黄的主要因素是水分C. 南京的银杏树叶先于北京转黄D. 图中城市道路两侧银杏树主要功能是保持水土3.北京和南京银杏树叶转黄的时间不同,这反映了A.从沿海向内陆的地域分异规律B.非地带性现象C.由赤道到两极的地域分异规律D.地理环境的整体性2.A 银杏树为落叶阔叶树种,A正确。
影响银杏树叶转黄的主要因素是叶黄素,B错。
南京纬度低,秋季南京的银杏树叶晚于北京转黄,C错。
图中城市道路两侧的银杏树主要功能是美化环境,D错。
3.C 北京和南京银杏树叶转黄的时间不同,是因为纬度不同,导致热量差异,这反映了由赤道到两极的地域分异规律,C对。
从沿海向内陆的地域分异规律是随经度变化的,A错。
非地带性现象是小范围差异,B错。
体现的地理环境的差异性,D错。
点睛:银杏树为落叶阔叶树种,银杏树叶转黄的主要因素是叶黄素。
北京和南京纬度不同, 南京纬度低,秋季南京的银杏树叶晚于北京转黄,是因为热量差异,这反映了由赤道到两极的地域分异规律。
初一数学整式的加减专题突破训练题(附答案)

初一数学整式的加减专题突破训练题(附答案)一.选择题(共17小题)1.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm 2.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b3.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm4.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣7a+45.如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA 的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x16.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.7.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则a+b的值为()A.﹣1B.1C.﹣2D.28.一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1B.5y3﹣3y2﹣2y﹣6C.5y3+3y2﹣2y﹣1D.5y3﹣3y2﹣2y﹣19.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣410.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A.200﹣60x B.140﹣15x C.200﹣15x D.140﹣60x11.完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m、n的大长方形,则图中阴影部分的周长是()A.4m B.4n C.2m+n D.m+2n12.已知关于x的多项式(2mx2+5x2+3x+1)﹣(6x2+3x)化简后不含x2项,则m的值是()A.0B.0.5C.3D.﹣2.513.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b14.七张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=2b C.a=3b D.a=4b15.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b16.如图1,将7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=2b D.a=4b17.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式二.填空题(共19小题)18.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.19.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.20.若m2+mn=﹣3,n2﹣3mn=18,则m2+4mn﹣n2的值为.21.已知a、b互为相反数,并且3a﹣2b=5,则a2+b2=.22.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.23.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.24.若关于a,b的多项式(a2+2ab﹣b2)﹣(a2+mab+2b2)中不含ab项,则m=.25.已知m2+2mn=13,3mn+2n2=21,则2m2+13mn+6n2﹣44的值为.26.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=.27.化简:4(a﹣b)﹣(2a﹣3b)=.28.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.29.若x+y=7,y+z=8,z+x=9,则x+y+z=.30.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.31.去括号合并:(3a﹣b)﹣3(a+3b)=.32.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.33.如图,将一个长方形ABCD分成4个长方形,其中②与③的大小形状都相同,已知大长方形ABCD的边BC=5,则①与④两个小长方形的周长之和为.34.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法(填“参加”或“不参加”).35.已知代数式x2+xy=2,y2+xy=5,则2x2+5xy+3y2=.36.若a﹣b=2,b﹣c=﹣5,则a﹣c=.三.解答题(共7小题)37.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.38.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.39.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1;(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.40.已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B”看成“2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中代数式的值.41.整式化简:(1)x﹣5y+(﹣3x+6y);(2)3a2b2+4(a2b2+ab2)﹣(4ab2+5a2b2).42.整式的化简:(1)a﹣(2a﹣3b)+2(3b﹣2a)(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b43.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.参考答案:一.选择题(共17小题)1.解:设小长方形卡片的长为a,宽为b,∴L上面的阴影=2(n﹣a+m﹣a),L下面的阴影=2(m﹣2b+n﹣2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n﹣a+m﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),又∵a+2b=m,∴4m+4n﹣4(a+2b),=4n.故选:B.2.解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.3.解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.4.解:(6a2﹣5a+3 )﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4.故选:D.5.解:依题意,有x1=50+x3﹣55=x3﹣5,推出x1<x3,同理,x2=30+x1﹣20=x1+10,推出x1<x2,同理,x3=30+x2﹣35=x2﹣5,推出x3<x2.故选:C.6.解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选:B.7.解:x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)=x2+ax﹣2y+7﹣bx2+2x﹣9y+1,=(1﹣b)x2+(2+a)x﹣11y+8,∴1﹣b=0,2+a=0,解得b=1,a=﹣2,a+b=﹣1.故选:A.8.解:(5y3﹣4y﹣6)﹣(3y2﹣2y﹣5)=5y3﹣3y2﹣2y﹣1.故选D.9.解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,∴2x3﹣8x2+x﹣1﹣(3x3+2mx2﹣5x+3)=﹣x3﹣(8+2m)x2+6x﹣4,∴8+2m=0,解得:m=﹣4.故选:D.10.解:∵学校租用45座的客车x辆,则余下20人无座位,∴师生的总人数为45x+20,又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20﹣60(x﹣3)=45x+20﹣60x+180=200﹣15x.故选:C.11.解:设小矩形的长为a,宽为b,可得a+2b=m,可得左边阴影部分的长为2b,宽为n﹣a,右边阴影部分的长为m﹣2b,宽为n﹣2b,图中阴影部分的周长为2(2b+n﹣a)+2(m﹣2b+n﹣2b)=4b+2n﹣2a+2m+2n﹣8b=2m+4n﹣2a﹣4b=2m+4n﹣2(a+2b)=2m+4n﹣2m=4n,12.解:原式=2mx2+5x2+3x+1﹣6x2﹣3x=(2m﹣6)x2+5x2+1=(2m﹣1)x2+1令2m﹣1=0,∴m=,故选:B.13.解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.14.解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故选:C.15.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.16.解:如图,左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故选:B.方法二:∵S左上﹣S右下=定值,S右上为定值,S左下为定值,∴S上﹣S下=定值设BC=x,则S上﹣S下=3bx﹣ax=(3b﹣a)x为定值,∴a=3b.故选B.17.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.二.填空题(共19小题)18.解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.19.解:﹣(3x3y m﹣1)+3(x n y+1)=﹣3x3y m+1+3x n y+3,=﹣3x3y m+3x n y+4,∵经过化简后的结果等于4,∴﹣3x3y m与3x n y是同类项,∴m=1,n=3,则m﹣n=1﹣3=﹣2,故答案为:﹣2.20.解:m2+mn=﹣3①,n2﹣3mn=18②,①﹣②得:m2+mn﹣n2+3mn=m2+4mn﹣n2=﹣3﹣18=﹣21.故答案为:﹣2121.解:a、b互为相反数∴a=﹣b∵3a﹣2b=5∴a=1,b=﹣1∴a2+b2=2.22.解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.23.解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.24.解:原式=a2+2ab﹣b2﹣a2﹣mab﹣2b2=(2﹣m)ab﹣3b2,由结果不含ab项,得到2﹣m=0,解得:m=2.故答案为2.25.解:∵m2+2mn=13,3mn+2n2=21,∴2m2+13mn+6n2﹣44=2m2+4mn+9mn+6n2﹣44=2(m2+2mn)+3(3mn+2n2)﹣44=2×13+3×21﹣44=45.故答案为:45.26.解:∵由图可知,a<c<0<b,∴a﹣c<0,b﹣c>0,∴原式=c﹣a﹣(b﹣c)=c﹣a﹣b+c=2c﹣a﹣b.故答案为:2c﹣a﹣b.27.解:原式=4a﹣4b﹣2a+3b=2a﹣b,故答案为:2a﹣b28.解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.29.解:∵x+y=7①,y+z=8②,z+x=9③,∴①+②+③得:x+y+y+z+z+x=7+8+9,即2x+2y+2z=24,∴x+y+z=12,故答案为:1230.解:根据题中的新定义得:原式=3x+2(x﹣y)=3x+2x﹣2y=5x﹣2y,故答案为:5x﹣2y31.解:(3a﹣b)﹣3(a+3b)=3a﹣b﹣3a﹣9b=﹣10b.故答案为:﹣10b.32.解:设第一步时,每堆牌的数量都是x(x≥2);第二步时:左边x﹣2,中间x+2,右边x;第三步时:左边x﹣2,中级x+3,右边x﹣1;第四步开始时,左边有(x﹣2)张牌,则从中间拿走(x﹣2)张,则中间所剩牌数为(x+3)﹣(x﹣2)=x+3﹣x+2=5.故答案为:5.33.解:设②和③宽为x,长为y,根据题意得,①的周长为:2x+2(5﹣y),④的周长为:2y+2(5﹣x),所以,①与④两个小长方形的周长之和为:2x+2(5﹣y)+2y+2(5﹣x)=2x+10﹣2y+2y+10﹣2x=20.故答案为:20.34.解:设举手同学有x名(x为整数),则没有举手的有(50﹣x)名,∴举手的人数和没有举手的人数之差是x﹣(50﹣x)=2x﹣50=2(x﹣25),∵x为整数,∴x﹣25是整数,∴2(x﹣25)是偶数,∴老师的真实想法是让全班同学都参加,故答案为:参加.35.解:∵x2+xy=2①,y2+xy=5②,∴由①÷②得:x:y=2:5,设x=2λ,则y=5λ,将x、y代入①得:14λ2=2,解得:,∴2x2+5xy+3y2=8λ2+50λ2+75λ2=133λ2==19.36.解:∵a﹣b=2,b﹣c=﹣5,∴a﹣c=(a﹣b)+(b﹣c)=2﹣5=﹣3,故答案为:﹣3三.解答题(共7小题)37.解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.38.解:(1)2A﹣B=2(x2+xy﹣2y)﹣(2x2﹣2xy+x﹣1)=2x2+2xy﹣4y﹣2x2+2xy﹣x+1=4xy﹣x﹣4y+1;(2)∵2A﹣B=4xy﹣x﹣4y+1=(4y﹣1)x﹣4y+1,且其值与x无关,∴4y﹣1=0,解得y=.39.解:(1)原式=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9(2)原式=(15y﹣6)x﹣9由题意可知:15y﹣6=0y=40.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(3)对,与c无关,将a=,b=代入,得:8a2b﹣5ab2=8×()2×﹣5××()2=0.41.解:(1)原式=x﹣5y﹣3x+6y=﹣2x+y;(2)原式=3a2b2+4a2b2+ab2﹣4ab2﹣5a2b2=2a2b2﹣ab2.42.解:(1)a﹣(2a﹣3b)+2(3b﹣2a)=a﹣2a+3b+6b﹣4a=﹣5a+9b;(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b =3a2b﹣4ab2+3(ab2+a2b)+ab2﹣6a2b=3a2b﹣4ab2+3ab2+a2b+ab2﹣6a2b=﹣2a2b.43.解:由图可得,a<0<b<c,则|b+c|﹣|a﹣b|﹣|c﹣b|=b+c+a﹣b﹣c+b=a+b。
高考生物专题训练:第17练 现代生物进化理论

高考生物专题训练第17练现代生物进化理论高考题专项汇编1.(2022·浙江6月选考,17)由欧洲传入北美的耧斗菜已进化出数十个物种。
分布于低海拔潮湿地区的甲物种和高海拔干燥地区的乙物种的花结构和开花期均有显著差异。
下列叙述错误的是()A.甲、乙两种耧斗菜的全部基因构成了一个基因库B.生长环境的不同有利于耧斗菜进化出不同的物种C.甲、乙两种耧斗菜花结构的显著差异是自然选择的结果D.若将甲、乙两种耧斗菜种植在一起,也不易发生基因交流2.(2021·河北,6)雄性缝蝇的求偶方式有:①向雌蝇提供食物;②用丝缕简单缠绕食物后送给雌蝇;③把食物裹成丝球送给雌蝇;④仅送一个空丝球给雌蝇。
以上四种方式都能求偶成功。
下列叙述错误的是()A.求偶时提供食物给雌蝇有利于其繁殖,是一种适应性行为B.④是一种仪式化行为,对缝蝇繁殖失去进化意义C.③是雌蝇对雄蝇长期选择的结果D.④可能由③进化而来3.(2021·湖南,8)金鱼系野生鲫鱼经长期人工选育而成,是中国古代劳动人民智慧的结晶。
现有形态多样、品种繁多的金鱼品系。
自然状态下,金鱼能与野生鲫鱼杂交产生可育后代。
下列叙述错误的是()A.金鱼与野生鲫鱼属于同一物种B.人工选择使鲫鱼发生变异,产生多种形态C.鲫鱼进化成金鱼的过程中,有基因频率的改变D.人类的喜好影响了金鱼的进化方向4.(2021·广东,10)孔雀鱼雄鱼的鱼身具有艳丽的斑点,斑点数量多的雄鱼有更多机会繁殖后代,但也容易受到天敌的捕食。
关于种群中雄鱼的平均斑点数量,下列推测错误的是() A.缺少天敌,斑点数量可能会增多B.引入天敌,斑点数量可能会减少C.天敌存在与否决定斑点数量相关基因的变异方向D.自然环境中,斑点数量增减对雄鱼既有利也有弊5.(2021·广东,8)兔的脂肪白色(F)对淡黄色(f)为显性,由常染色体上一对等位基因控制。
某兔群由500只纯合白色脂肪兔和1 500只淡黄色脂肪兔组成,F、f的基因频率分别是() A.15%、85% B.25%、75%C.35%、65% D.45%、55%6.(2018·全国Ⅰ,29)回答下列问题:(1)大自然中,猎物可通过快速奔跑来逃脱被捕食,而捕食者则通过更快速地奔跑来获得捕食猎物的机会,猎物和捕食者的每一点进步都会促进对方发生改变,这种现象在生态学上称为________。
高考数学小题专项训练(共40套)

高考数学小题专项训练(共40套)高考小题训练集 三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. △ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556B.-6556C.-6516D. 65162. 函数y =2x +1的图象是 ( )3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21 三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种EF DOC BA9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
1-3章计算题小训练

1-3章计算题小训练一.计算题(共19小题)1.飞机沿直线,快慢不变地飞行了15min,通过的路程是270km,则它的飞行速度是多少km/h,合多少m/s?2.小刚从家中出发到学校后,原路返回家中,其中一半路程步行,一半路程骑自行车。
路程与时间图象如图所示。
求:(1)小刚在OA和AB两个阶段的平均速度分别是多少?哪个阶段是步行的?(2)小刚在整个过程中的平均速度是多少?3.“频闪照相”是研究物体运动时常用的实验方法,用照相机每隔0.1s拍摄一次,记录小球运动情况如图所示是小球从A点运动到F点过程。
求:(1)读出小球从A到F的路程。
(2)小球从A到F的时间(3)求出小球从A到F的平均速度。
4.小明同学在体育考试50m跑项目中,取得7s的成绩,则:(1)小明的平均速度是多少?(2)如果终点计时员听到发令枪声才计时,则小明的实际成绩是多少?(已知声速为340m/s,结果保留两位小数)5.一辆轿车正在沪宁高速公路上行驶。
轿车经过某地时,发现路边有如图所示的标志牌(1)“南京40km”的含义是。
(2)“120”的含义是。
(3)如果要求这辆轿车从标志牌处匀速行驶到南京的时间为24min,则该轿车的速度应是多少km/h?6.国庆长假,小萌的爸爸开车带一家人到东山岛游玩,他们选择走高速公路,上午10时整小萌看到车旁出现如图甲所示的标志牌,到了10时30分小萌看到路边出现如图乙所示的标志牌。
问:(1)小车从甲标志牌到乙标志牌的平均速度是多少?(2)在遵守交通规则的前提下,小萌一家从乙标志牌到东山岛最快还要多少时间?7.小明绕学校足球场以正常速度步行一周,利用秒表测量出用时6min,足球场一周长度为400m.某天,他以正常速度步行从家去学校,测出从家门到校门要走15min。
(1)小明正常步行的速度是多少?(结果保留一位小数)(2)小明家门口到学校门口的路程大约是多少?8.某江面上方建了一座大桥,整个铁路桥全长5700米,其中正对江面上的桥(江面正桥)长2100米。
专题17一元二次方程的应用专项训练-重难点题型

专题2.9 一元二次方程的应用专项训练一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020秋•潮安区校级月考)一个研究小组有若干人,互送研究成果,若全组共送研究成果72个,这个小组共有()人.A.8B.9C.10D.722.(3分)(2020•安徽一模)如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=303.(3分)(2020•海珠区校级模拟)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地.设原正方形空地的边长为xm,则下面所列方程正确的是()A.(x﹣3)(x﹣2)=20B.(x+3)(x+2)=20C.x2﹣3x﹣2x=20D.x2﹣3×2=204.(3分)(2021•越秀区校级模拟)目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户,设全市5G用户数年平均增长率为x,根据题意可列方程是()A.2(1+x)3=8.72B.2(1+x)2=8.72C.2(1+x)+2(1+x)2=8.72D.2+2(1+x)+2(1+x)2=8.725.(3分)(2020秋•洪江市期末)一个两位数等于其各数位上数字的积的3倍,且个位上数字比十位上数字大2,则这个两位数是()A.24B.35C.42D.536.(3分)(2020秋•仙居县期末)某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A.10B.15C.20D.257.(3分)(2021春•拱墅区校级月考)某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个枝干,每个枝干上再长出x个小分支.若在1个主干上的主干、枝干和小分支的数量之和是43个,则x 等于()A.4B.5C.6D.78.(3分)(2020秋•孝义市期中)日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e是()A.17B.18C.19D.209.(3分)(2020秋•海陵区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是()A.AC的长B.CD的长C.AD的长D.BC的长10.(3分)(2020秋•唐山期中)《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.”小聪按此方法解关于x的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为()A.6B.5√3−32C.5√3−2D.5√3−5二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2020•南岗区校级模拟)近期,某商店某商品原价为每件800元,连续两次降价a%后售价为648元,则a的值是.12.(3分)(2020秋•南海区期末)在研究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”时,小明发现:当已知矩形A的长和宽分别为6和1时,存在一个矩形B的周长和面积分别是矩形A周长和面积的一半,那么矩形B的长为.13.(3分)(2020春•南岗区校级月考)一个小区用篱笆围成一个直角三角形花坛,花坛的斜边利用足够长的墙,两条直角边所用的篱笆之和恰好为21米,围成的花坛如图所示,其中∠ACB=90°,若所修的直角三角形花坛面积是54平方米,则直角三角形的斜边AB长为米.14.(3分)(2020秋•天宁区校级月考)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P从点A出发沿AB 以2cm/s的速度向点B运动;同时,点Q从点B出发沿BC以1cm/s的速度向点C运动,点P运动到点B时,点Q也停止运动;当△PQC的面积等于16cm2时,运动时间为s.15.(3分)如图是某年某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,这9个数的和为.16.(3分)(2020•汇川区模拟)《九章算术》中有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是.三.解答题(共6小题,满分52分)17.(8分)(2021春•泰兴市校级期末)某种肺炎病毒在M国爆发,经世卫组织研究发现:病毒有极强的传染性.在调查某工厂的疫情时,发现最初只有1位出差回来的病毒携带者,在召开工厂车间组长会议时发生了第一轮传染,开完会后所有人都回到各自车间工作又发生了第二轮传染,这时全厂一共有196人检测出携带病毒.假如每个病毒携带者每次传染人数都相同,求每个病毒携带者每次传染多少人18.(8分)(2020秋•山西月考)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果,已知A、B两区初始显示的分别是25和﹣16.如图.如:第一次按键后,A,B两区分别显示.(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,得A,B两区代数式的和为1,求a的值.19.(8分)(2021台安县一模)某商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的零售单价分别为元和元.(直接写出答案)(2)该商店平均每天卖出甲商品500件和乙商品1200件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润共1700元?20.(8分)(2020•谷城县校级模拟)如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.21.(10分)(2018秋•京口区校级月考)如图,已知正方形ABCD 的边长为4cm ,动点P 从点B 出发,以2cm /s 的速度沿B →C →D 方向向点D 运动,动点Q 从点A 出发,以1cm /s 的速度沿A →B 方向向点B 运动,若P 、Q 两点同时出发运动时间为ts .(1)连接PD 、PQ 、DQ ,求当t 为何值时,△PQD 的面积为7cm 2?(2)当点P 在BC 上运动时,是否存在这样的t 使得△PQD 是以PD 为一腰的等腰三角形?若存在,请求出符合条件的t 的值;若不存在,请说明理由.22.(10分)(2021•江北区校级模拟)全面奔小康,关键在农村,经济林是振兴农村经济,实现小康目标的重要途径.在读农林经济学的大学生林可利用知识优势,鼓励家人大力发展经济作物,其中果树种植已初具规模,主打种植大樱桃和小樱桃,今年风调雨顺,大樱桃和小樱桃双双增产.(1)林可家今年大樱桃和小樱桃共2400千克,其中大樱桃的产量不超过小樱桃产量的5倍,求今年林可家收获小樱桃至少多少千克?(2)林可家把今年收获的两种樱桃的一部分运往市场销售,已知他家去年大樱桃的市场销售量为1000千克,销售均价为30元/千克,今年大樱桃的市场销售量比去年减少了23m %(m ≠0),销售均价与去年相同,他家去年小樱桃的市场销售量为200千克,销售均价为20元/千克,今年小樱桃的市场销售量比去年增加了2m %,销售均价也比去年提高了2m %,结果林可家今年运往市场销售的这两种樱桃的销售总金额与他家去年销售这两种樱桃的市场销售总金额相同,求m 的值.。
小学语文阅读题专题训练 (17)200809(含答案解析)

小学语文阅读题专题训练 (17)1.植物供血①据统计,我国年需供血400余万人次,约800吨,并且以每年7%~10%的速度递增。
为了缓解血液需求的压力,在鼓励社会献血的同时,有人异想天开地提出让植物为人类献血。
②现在,科学家已经弄清了一些植物的固有血型:桃叶等为A型血;扶芳藤、大黄杨等为B 型血;山茶、芜菁等为O型血;荞麦、李子等为AB型血。
人和一些动物的血液是红色的,这是因为血液里含有大量的红色细胞。
植物没有红色细胞,但它却有类似于人体内在细胞表面的血型物质的血型糖。
不同的血型糖决定了不同的血型。
③最近,对植物血型的研究又有了新的突破。
法国科学家发现,在玉米、烟草等植物体中含有类似于人体的血红蛋白的基因。
这表明植物也有造血功能,如果加入铁原子,就可以制造出人体需要的血红蛋白。
由于血红蛋白是血球的重要组成部分,它易与氧结合和分离,所以具有输氧功能。
因此,如果这项试验成功,将会出现一个惊人的奇迹——利用植物来制造人体的血液。
这样一来,自然界繁茂的植物将成为人类取之不尽的血源。
更令人感到欣慰的是,植物给人类供血不仅不会因血型的不同而出现免疫系统的排异性问题,而且不会使输血者染上血液传染病,真是一举多得。
让植物给人类供血,有哪三方面的好处?________________________________________________________________________________________________________________________________________________________________________________________________答案:人类有取之不尽的血源。
不会因血型的不同而出现免疫系统的排异性问题。
不会使输血者染上血液传染病。
解析:此题主要考查把握文章内容能力。
解答此类题,首先通读文章,整体上把握文章的内容和主题,在此基础上根据题目要求回归文章,找到答题区域仔细阅读,提取相关信息答题即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小题训练有17
24分训练选修3-4模块( ) 1.以下关于波的表达中正确的选项是〔 〕 A .光的偏振现象讲明光是一种横波B .超声波能够在真空中传播 C .白光经光密三棱镜折射发生色散时,红光的偏折角最大
D .当日光灯启动时,旁边的收音机会发出〝咯咯〞声,这是由于电磁波的干扰造成的 2. 如下图,在折射率大于玻璃折射率的透亮液体中,水平放置着一个长方体玻璃砖.在竖直平面内有两束光线,相互平行且相距为d,斜射到长方体的上表面上,折射后直截了当射到下表面,然后射出.图中a 为红光、b 为紫光,那么〔 〕
A .两出射光线仍平行,距离大于d
B .两出射光线仍平行,距离等于d
C .两出射光线仍平行,距离小于d
D .两出射光线将不再平行
3. 在研究材料A 的热膨胀特性时,可采纳如下图的干涉实验法,A 的上表面是一光滑平面,在A 的上方放一个透亮的平行板B,B 与A 上表面平行,在它们间形成一个厚度平均的空气膜,现在用波长为λ的单色光垂直照耀,同时对A 缓慢加热,在B 上方观看到B 板的亮度发生周期性地变化,当温度为t 1时最亮,然后亮度逐步减弱至最暗;当温度升到t 2时,亮度再一次回到最亮,那么〔 〕
A .显现最亮时,
B 上表面反射光与A 上表面反射光叠加后加强 B.显现最亮时,B 下表面反射光与A 上表面反射光叠加后相抵消 C.温度从t 1升至t 2过程中,A 的高度增加
4λ D.温度从t 1升至t 2过程中,A 的高度增加2
λ
3-5模块1. 1961年用电子束进行衍射和干涉实验.双缝干涉实验,与托马斯·杨用可见光做的双缝干涉实验所得的图样差不多相同.依照德布罗意理论,电子也具有波泣二象性,其德布罗意波长λ=h/p ,其中h 为普朗克常量,p 为电子的动量.实验时用50 kV 电压加速电子束,然后垂直射到间距为毫米级的双缝上,在与双缝距离约为35 cm 的衍射屏上得到了干涉条纹,但条纹间距专门小.下面所讲的4组方法中,哪些方法一定能使条纹间距变大?〔 〕
A .降低加速电子的电压,同时加大双缝间的距离
B .降低加速电子的电压,同时减小双缝间的距离
C .加大双缝间的距离,同时使衍射屏靠近双缝
D .减小双缝间的距离,同时使衍射屏靠近双缝 2.德布罗意提出物质波的概念,任何一个运动着的物体,都有一种波与之对应,波长为λ=h/p, p 为物体运动的动量,h 是普朗克常量.光子的动量为p=h/λ.依照上述观点能够证明一个静止的自由电子假如完全吸取一个γ光子,会发生以下情形:设光子频率为ν,那么E=h ν, p=h/λ=h ν/c ,被电子吸取后有h ν=m e v 2/2,h ν/c=m e v .由以上两式可解得:v =2c ,电子的速度为两倍光速,明显这是不可能的.关于上述过程以下讲法正确的选项是〔 〕
A .因为在微观世界动量守恒定律不适用,上述论证错误,因此电子可能完全吸取一个γ光子
B .因为在微观世界能量守恒定律不适用,上述论证错误,因此电子可能完全吸取一个γ光子
C .动量守恒定律、能量守恒定律是自然界中普遍适用规律,因此唯独结论是电子不可能完全吸取一个γ光子
D .假设γ光子与一个静止的自由电子发生作用,那么γ光子被电子散射后频率不变 3. 由图可得出结论〔 〕
A .质子和中子的质量之和小于氘核的质量B.质子和中子的质量之和等于氘核的质量 C .氘核分解为质子和中子时要吸取能量D .质子和中子结合成氘核时要吸取能量
4. 汞原子可能的能级为E 1=-10. 4 eV, E 2=-
5.5 eV, E 3=-2.7 eV, E 4=-1. 6 e V 。
一个自由电子的总能量为9 eV ,与处于基态的汞原子发生碰撞,碰撞过程中不计汞原子动量的变化,那么电子可能剩余的能量为〔 〕
A. 0. 2 eV
B. 1. 4 eV
C. 2. 3 eV
D. 5. 5 eV
二实验
1. 〔1〕利用电压表和电流表测一节干电池的电动势E 和内电阻r ,电路如下图,图中R 1为粗调滑动变阻
器,
R 2为微调滑动变阻器,实验得到的四组数据,如表中所示.① 表中数
据经处理后,能够确定电动势E = V ,内电阻r = Ω.② 现有滑动变阻器:A 〔10Ω 1A 〕,B 〔50Ω 0.5A 〕,C 〔500Ω 0.5A 〕.那么在本次实验中,滑动变阻器R 1应选用 ,R 2应
选用 ,〔选填〝A 〞、〝B 〞或〝C 〞〕. 三、运算
1.如下图,ABC 和DEF 是在同一竖直平面内的两条光滑轨道,其中ABC 的末端水平,DEF 是半径为r=0.4m
的半圆形轨道,其直径DF 沿竖直方向,C 、D 可看作重合。
现有一可视为质点的小球从轨道ABC 上距C 点高为H 的地点由静止开释,
〔1〕假设要使小球经C 处水平进入轨道DEF 且能沿轨道运动,H 至少要有多高?
〔2〕假设小球静止开释处离C 点的高度h 小于〔1〕中H 的最小值,小球可击中与圆心等高的E 点,求h 。
〔取g=10m/s 2
〕
.
2.如下图,在光滑水平桌面上放有长木板C ,在C 上左端和距左端x 处各放有小物块A 和B ,A 、B 的体积大小可忽略不计,A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 的质量均为m ,开始时,B 、C 静止,A 以某一初速度v 0向右做匀减速运动,设物体B 与板C 之间的最大静摩擦力等于滑动摩擦力.求:
〔1〕物体A 运动过程中,物块B 受到的摩擦力.
〔2〕要使物块A 、B 相碰,物块A 的初速度v 0应满足的条件.
I/mA
U/V 50.0
1.35 75.0
1.35 100.0 1.20 150.0
1.05
答案:3-4模块1 AD 2 A 3.D3-5模块1:BD2:C 3.C4. A
实验1〕①1.5V 〔3分〕 3Ω〔3分〕 ② B A 〔2分〕三、运算1.〔1〕小球从ABC 轨道下滑,
机械能守恒,设到达C 点时的速度大小为υ。
那么: 22
1
υm mgH =
… 小球能在竖直平面内做圆周运动,在圆周最高点必须满足:
r
m mg 2
υ≤
联立并代入数据得:m H 2.0≥
〔2〕假设H h <,小球过C 点后做平抛运动,设球经C 点时的速度大小为x υ,那么击中E 点时:
竖直方向:22
1gt r =
水平方向:t r
x υ=
由机械能守恒有:22
1x m mgh υ= 联立并代入数据得m h 1.0=
2,解:〔1〕设A 在C 板上滑动时,B 相关于C 板不动,那么对B 、C 有
μmg =2ma 〔1分〕
2
g
a μ=
〔1分〕
又B 依靠摩擦力能获得的最大加速度为 a m =
m
mg
μ=g μ〔1分〕 ∵a m >a ∴ B 未相对C 滑动而随木板C 向右做加速运动 〔1分〕
B 受到的摩擦力f b = ma =2
1μmg 〔1分〕
方向向右
〔1分〕
〔2〕要使物块A 刚好与物块B 发生碰撞,物块A 运动到物块B 处时,A 、B 的速度相等,即v 1= v 0-μgt
=
2
1
μgt 〔2分〕 得v 1= v 0/3 〔1分〕
设木板C 在此过程中的位移为x 1,那么物块A 的位移为x 1+x ,由动能定理
-μmg (x 1+x ) = 2
1mv 12-
2
1mv 02 〔1分〕
μmgx 1 =
2
1
(2m )v 12 〔1分〕 联立上述各式解得v 0 =
gx μ3 〔1分〕
要使物块A 、B 发生相碰的条件是v 0>
gx μ3 〔1分〕。