鼠笼异步风力发电机的控制技术研究开题报告

鼠笼异步风力发电机的控制技术研究开题报告
鼠笼异步风力发电机的控制技术研究开题报告

鼠笼异步风力发电机的控制技术研究开题报告

注:此件由学生本人填写,一式二份,院(部)、指导教师各存一份。

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真” 软件设计 摘要 关键词 1前言 1.1建模仿真的发展现状 20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1 图1 系统仿真三要素之间的关系 20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

东方电气风力发电机参数

一、介绍 东风电机于2006年从德国公司引进先进的风力发电机制造技术,高起点进军风力发电机领域,截止2010年10月,已经产出1.5MW风力发电机2300多台,成功为集团内外风电设备整机制造厂家配套供应风力发电机。 从2008年初起,公司风力发电机在吉林、新疆、内蒙古等地多个风场投入运行,运行时间最长的超过两年,质量保持稳定状态,无一台下架返修。公司1.5MW双馈异步风力发电机获2009年度四川省科技进步奖,兆瓦级双馈异步风力发电机产品被认定为四川省第九届名牌产品,还成功通过100次大电流冲击试验。 公司1.5MW和2.5MW风力发电机开发研制项目分别获得四川省专项资金资助,建立了兆瓦级风力发电机试验台,目前已经形成了完整的兆瓦级风力发电机系列产品,包括1MW、 1.5MW、2MW、 2.5MW的常温型、低温型、防盐雾型、高原型等各种规格型号的双馈异步风力发电机,能有效解决风速变化、上网频率不稳定的问题,可以保证风场在各种环境条件下稳定发电。 随着公司与东方电气集团有限公司共同投资组建的东方电气(乐山)新能源设备有限公司的投入使用,公司已形成年产2000台兆瓦级风力发电机的批量制造能力。 二、发电机基本参数 1. 1.5MW双馈异步风力发电机(包括常温型、防盐雾型、低温型) 型号:FG500M46-4RB+KK 额定功率:1560kW 额定电压:690V 额定效率:≥96.3%功率因数:从0.95(感性)到0.95(容性) 额定频率:50Hz 额定转速:1800r/min 转速范围:1000~2000r/min 相数: 3 工作制: S1 防护等级:IP54 结构型式: IM1001 冷却方式: IC616 绝缘等级:H/H 最高温升:105K 定子额定电压:690V 定子额定电流:1095A 转子开口电压:1955V 转子额定电流:420A 最大转子电流:550A 发电机重量: 6.35t 2. 2.0MW双馈异步风力发电机 型号:FG500M46-4RB+KS 额定功率:2150kW 额定电压:690V 额定效率:≥96.5%功率因数:从0.95(感性)到0.95(容性) 额定频率:50Hz 额定转速:1755r/min 转速范围:950~2050r/min 相数: 3

风力发电机的参数

2500-2.5MW风力发电机参数 FL-2500风力发电机是2.3~2.7兆瓦级风力发电机系列的一种,分为三个类型,即标准型、低风速型及强风速型风机。 该风力涡轮式发电机(WTG)的速度可以控制,为三叶片上风向设计。通过其双馈异步发电机可以使之变速。逆变器为电压低时设计。逆变器及中压变压器安放在机舱内。风轮叶片可调节,其电动变浆距系统由三相传动机驱动。 由于速度可以控制,所以在中、低风速时,可自动选择最佳风速,而与空气密度变化无关。超过额定功率时,风轮预先设定在最佳的速度,而传动系的扭矩保持恒定状态。为减少传动系的振动,设计了十分复杂的控制系统,用以保证风机运行平稳和极小的负荷。这种运行模式和传动系的声去耦合性,使风机运行时的噪声大大地降低。 低风速型风机的风轮直径设计为96米,额定输出为2.3MW,符合IEC 3a 标准。强风速型风机的风轮直径设计为86米,额定输出为2.7MW,符合IEC 1a 标准。三种类型的风机均为适合安装在内陆的兆瓦级风机。 用创新理念,可使更换所有的主部件,如发电机、齿轮箱、主轴承及风轮叶片,不再使用重型起重机。 下面将介绍标准型风力发电机,即FL2500 风机,其风轮直径为90米。 基本数据: 风轮:三叶片,上风向设计 风轮轴:水平倾斜5° 速度控制:电动三重变浆距系统 额定功率:2.5MW 切入风速:4m/s 额定风速:13m/s 切出风速:25m/s 设计寿命:20年 机舱和风轮认证标准: IEC 2a 运行环境温度:-20~+40oC 变浆距系统: 电机: 三相感应电机, 6极 最大变浆速度:12o/s 风轮速度控制:IGBT-逆变器 后备装置:电容器组 发电机: 类型:异步汇流环机 保护等级:IP 54

风力发电机组的技术特点及参数(精)

目前我国生产的小型风力发电机按额定功率分为10种,分别为100W、150W、200W、300W、500W、1kW、2kW、3kW、5kW、10kW。其技术特点是:2~3个叶片、侧偏调速、上风向,配套高效永磁低速发电机,再配以尾翼、立杆、底座、地锚和拉线。机组运行平稳、质量可靠,设计使用寿命为15年。风轮的最大功率系数已从初期的0.30左右提高到0.38~0.42,而且启动风速低,叶片材料已多样化:木质、铁质、铝合金、玻璃钢复合型和全尼龙型等。风轮采用定桨距和变桨距两种,以定桨距居多。发电机选配的是具有低速特性的永磁发电机,永磁材料使用的是稀土材料,使发电机的效率从普通电机的0.50提高到现在的0.75以上,有些可以达到0.82。小型风力发电机组的调向装置大部分是上风向尾翼调向。调速装置采用风轮偏置和尾翼铰接轴倾斜式调速、变桨距调速机构或风轮上仰式调速。功率较大的机组还装有手动刹车机构,以确保风力机在大风或台风情况下的安全。风力发电机组配套的逆变控制器,除可以将蓄电池的直流电转换成交流电的功能外,还具有保护蓄电池的过充、过放、交流卸荷、超载和短路保护等功能,以延长蓄电池的使用寿命。机组的价格较低,且适合于我国的低速地区应用。几种机组型号及技术参数见表3-4。 表3-4几种小型风力发电机组型号及技术参数 风电并网三大前沿问题有突破 新能源开发和能源危机是当前能源领域两大热点问题。 从能源的源头来说,人们把传统化石能源比作“昨天的阳光”,而新能源则是“今天的阳光”,可见人们对新能源的热衷程度。目前来看,由于太阳能发电成本较高,生物质能源有局限性,地热能、潮汐能又很有限,相比之下风电最受宠。

风力发电相关技术参数

风力发电相关技术参数 链接:https://www.360docs.net/doc/062469823.html,/tech/9080.html 风力发电相关技术参数 1、变速恒频系统 可用于风力发电的变速恒频系统有多种:如交一直一交变频系统,交流励磁发电机系统,无刷双馈电机系统,开关磁阻发电机系统,磁场调制发电机系统,同步异步变速恒频发电机系统等。这种变速恒频系统有的是通过改造发电机本身结构而实现变速恒频的;有的则是发电机与电力电子装置、微机控制系统相结合而实现变速恒频的。它们各有其特点,适用场合也不一样。为了充分利用不同风速时的风能,应该对各种变速恒频技术做深入的研究,尽快开发出实用的,适合于风力发电的变速恒频技术。 2、四级变速风力发电机原理 多级变速风力发电机主要由2台发电机(发电机1和发电机2)、控制系统和变速机3部分组成,其技术原理如图所示。大功率的发电机2的定子绕组与电网连接,向电网输送频率为ft的工频电流,转子绕组经控制系统与小功率的发电机1的定子绕组相连。 大功率的发电机2只有在风速较大(风机输入功率较大)时才和变速机联接运行。发电机2输出的电流频率不仅和转子的机械转速有关,还和输入转子绕组的电流频率有关,具有将转子的机械旋转频率和转子绕组电路的电流频率“相加”的功能,其定子绕组输出“频率相加”后的电流,这一特点简称为“合频”特性。 四级变速风力发电技术利用改变发电机极对数及大小2个发电机的相互配合,达到在4个风速点都能实现风能最大利用,根据统计如果变速恒频风力发电在整个工作风速范围内风能利用量为1个单位,则四级变速风力发电风能利用量能达到80%左右,恒速恒频风力发电风能利用量约为40%。 3、双馈电机的控制 双馈电机的结构类似于绕线式感应电机,定子绕组也由具有固定频率的对称三相电源激励,所不同的是转子绕组具有可调节频率的三相电源激励,一般采用交-交变频器或交-直-交变频器供以低频电流。 任何一个风力发电机组都包括作为原动机的风力机和将机械能转变为电能的发电机。其中,作为原动机的风力机,其效率在很大程度上决定了整个风力发电机组的效率,而风力机的效率又在很大程度上取决于其负荷是否处于最佳状态。不管一个风力机是如何精细地设计和施工建造,若它处于过载或久载的状态下,都会损失其效率。从风力机的气动曲线可以看出,存在一个最佳周速比λ,对应一个最佳的效率。所以风力发电机的最佳控制是维持最佳周速比λ。另外,由于要考虑电网对有功功率和无功功率的要求,所以风力机最佳工况时的转速应由其气动曲线及电网的功率指令综合得出。也就是说,风力发电机的转速随风速及负荷的变化应及时作出相应的调整,依靠转子动能的变化,吸收或释放功率,减少对电网的扰动。通过变频器控制器对逆变电路中功率器件的控制。可以改变双馈发电机转子励磁电流的幅值、频率及相位角,达到调节其转速、有功功率和无功功率的目的,既提高了机组的效率,又对电网起到稳频、稳压的作用。 原文地址:https://www.360docs.net/doc/062469823.html,/tech/9080.html 页面 1 / 1

相关文档
最新文档