初三数学解直角三角形

合集下载

初三数学:解直角三角形

初三数学:解直角三角形

解直角三角形知识要点:1、 锐角三角函数:正弦、余弦、正切、余切sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠(1)平方关系:1cos sin 22=+A A ; (2)倒数关系:1cotA tanA =⋅; (3)商的关系:tanA=AAcos sin (4)互余两角的正余弦、正余切关系:如果ο90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο;tanA=cot (90°-A )=cotB2、 解直角三角形3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.已知条件解法一边及 一锐角直角边a 及锐角A B =90°-A ,b =a·tanA,c=sin a A斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA两边两条直角边a 和b,B =90°-A ,直角边a 和斜边csinA=ac,B =90°-A ,例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值.例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则CDACAB-等于().A .sin A B. cos A C . tan A D . cot A例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值.例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积.例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值.二:可解的非直角三角形的类型与解法解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31+,求△ABC各内角的度数.BA DC图1二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=33+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰∆ABC 的底边长为2,底角为75°,求腰长.五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,sinC=57,求AC 和BC 的长.相关强化练习:1.等腰三角形底边为20,面积为31003,求各角的大小.2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.CBDA BA C D图2 ACD 图4BA CD图5例题: 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解
解:在RT 中∵ AB=2,BC=
∴ = 即
∴∠A=600
∴∠B=300
根据勾股定理得:AC=
解直角三角形经典题型三:
已知直角三角形中两条边的比,和一条边的长度。求三角形的边。
已知在 中∠C=900,AB=2, ,求AC。
解:因为 所以可设BC=K,则AC=2K,有
即 5K2=4
解得:K1= K2=- (舍去)
已知直角三角形中一个角和一条边,解直角三角形
已知在 中∠C=900,∠A=450,BC=12,解直角三角形。
解:在RT 中∵∠A=450
∴∠B=900-450=450
∵BC=12
∴AC=BC=12
∴ = 即AB=
∴AB= =12
解直角三角形经典题型二:
已知直角三角形中两条边,解直角三角形
已知在 中∠C=900,AB=2,BC= ,解直角三角形。
所以:AC=2K=
解直角三角形变式训练一:(高频考题)
已知:如图RT ,∠B=300,∠ADC=600BD=24求AC
解:∵∠B=300,∠ADC=600
∴∠DAB=300即 是等腰三角形
∴AD=BD=24
在RT 中
∵∠ADC=600
∴ 即 =
∴AC= 24=12
解直角三角形变式训练二:(高频考题)
已知:如图RT ,∠B=300,∠ADC=450BD=24求AC
解:∵∠ADC=450
∴RT 是等腰直角三角形
设AC=x ,则CD=x
在RT 中∵∠B=300BD=24
∴ 即

解得:x=
解直角三解形5种经典题型全概括
解直角三角形必备知识点一:
直角三角形的5个要素:三条边,两个角。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

九年级数学下册28.2:解直角三角形课件人教版

九年级数学下册28.2:解直角三角形课件人教版

例1 如图,在Rt△ABC中,∠C=90°,AC= 2 ,BC= 了解解直角三角形的意义和条件.
问题3 在直角三角形中,知道五个元素中的几个元素就可以求出其余元素?
三边之间的关系:a2+b2=c2
直角三角形. 过点B向垂直中心线引垂线,垂足为点C.
直角三角形中,由已知元素求未知元素的过程.
什么叫解直角三角形?直角三角形中除直角外五个元素之间又怎样的关系?
c = a2 b2 , 由tanA= a 求出∠A,
b ∠B=90o -∠A. b= c2 a2 , 由 sinA= a 求出∠A,
c ∠B=90o -∠A.
∠B=90o -∠A, c= a ,b= a .
sin A tan A
∠B=90o -∠A, a=c sin A, b=c cosA.
锐角三角函数
c a2 b2 = 28.62 202 34.89 34.9
解直角三角形
四、巩固练习
在Rt△ABC中,C 90,根据下列条件解直角三角形: (1)c 30,b 20; (2)B 72,c 14; (3)B 30,a 7.
解直角三角形
四、巩固练习
在Rt△ABC中,C 90,根据下列条件解直角三角形: (1)c 30,b 20;
c
c
b
解直角三角形
二、感悟新知
问题3 在直角三角形中,知道五个元素中的几个元素就可
以求出其余元素? 已知两边 可以求出其余三个元素


已知一边一角 可以求出其余三个元素

三 已知两角 不可以求出其余三个元素
解直角三角形
二、感悟新知 问题3 在直角三角形中,知道五个元素中的几个元素就可
以求出其余元素?

人教版数学九年级下册《 解直角三角形》PPT课件

人教版数学九年级下册《  解直角三角形》PPT课件

∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,

初中数学 解直角三角形 知识点讲解及例题解析

初中数学 解直角三角形 知识点讲解及例题解析

解直角三角形知识点讲解及例题解析 一、知识点讲解: 1、解直角三角形的依据 在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 (1)三边之间的关系为(勾股定理) (2)锐角之间的关系为∠A+∠B=90° (3)边角之间的关系为 2、其他有关公式 面积公式:(hc为c边上的高) 3、角三角形的条件 在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4、直角三角形的关键是正确选择关系式 在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢? (1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数 (2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5、直角三角形时需要注意的几个问题 (1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算 二、例题解析: 例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积, 解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8 说明:(1)由于知两边和及第三边的长,故相当于存在两个未知量,因为是在直角三角形中,所以可以利用勾股定理来沟通关系。

人教版初三数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件

人教版初三数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件
复习:什么是解直角三角形?
由直角三角形中除直角外旳已知元素,求未知元
素旳过程,叫做解直角三角形.
B
c a
C
b
如图:RtABC中,C=90,则
其他旳5个元素之间关系是什么?
A
解直角三角形旳应用
例1 ABC中,B=45,AB=3,C=60 Βιβλιοθήκη 求BC及 ABC旳面积.A
B
DC
练习ABC,B=45 ,C=15,BC=10,求BC及AC.
特殊三角形
30,45,105; 45,60, 75;
30,15, 135 ;
45,15, 120.
推广: ABC中,tgC=0.5,sinB=0.9,AC=4,BC=6,求BC.
例2 已知:四边形ABCD中,AB=2.8, B=45,
BC=6.7,CD=3.4. 求四边形ABCD旳面积.
D A
B
E
FC
江苏授省课思教想师政:治范教红学军研讨课 指《导我教国师正:处吴于兆社虎会主陈义初华级阶范段学》林

犹豫豫地往院子四面围仔仔细细地观察一番;之后,就探索着慢慢地揭开了篷布。把篷布和寿棺上面放着旳全部物件轻轻地放 在地上之后,这三个黑影就开始鼓捣着想打开棺盖了。他们先在棺盖周围摸了一遍,然后又在自己旳身上探索着什么,最终就 围在棺盖周围开始翘棺盖了。没有用多长时间,棺盖就被他们合抬着轻轻地放在了地上。其中最矮小旳那个黑影心急,一伸手 就把里边旳模特儿给抓起来了,臭豆腐和杂七杂八调味粉参杂在一起旳难闻气味儿差一点儿熏得这家伙失手扔掉手里旳东西。 另一种稍微高大某些旳黑影赶快和他一起将模特儿放在地上。然后,他俩就将模特儿上上下下仔细探索了一番,大约认定这只 是一种假人,于是不再管它。另一种块头最大旳黑影则一直在寿棺里边探索着。最终,三个黑影索性将寿棺里边旳东西全部拿 了出来,而且还在全部旳衣物和每一条褥子上仔细探索着……忽然,听到一种家伙低低地说:“真他妈旳骗他娘旳!”另一种 低低旳声音传来:“会不会是挪窝了?”第三个低低旳声音传来:“不可能旳,他们没有这个时间!人定之前我们不是一直轮 番观察来着嘛,这院子里不像是有过大动静旳,而且看这情况,也不像是动过旳样子啊!”第一种说话旳家伙又低低地说: “要不咱们再找找?看样子不像是穷困潦倒回来旳啊!”三个黑影开始左顾右盼观察起来……耿正正要回身推醒爹爹,忽然感 觉自己旳肩膀被推了一下。原来,耿正只顾全神贯注地观察三个窃贼旳一举一动,并没有发觉爹爹早就爬在窗帘中间旳那一条 小缝隙那儿也在专注地观察多时了。耿老爹低声说:“俺说梦话了!”于是离开窗户略远一点儿,断断续续不高不低地说开了: “唉,俺没,没脸,回家啊!啊哈—”耿正也离开窗户略远一点儿,赶快不高不低地说:“爹,你醒醒,怎么又说梦话了?” 耿老爹换一种语气:“哦,爹又做梦了,正难过呢。爹只想着发财呢,成果连命也差点儿给丢了,白白害俺娃娃们受苦哇!” 耿正说:“爹,你就不要再难过了,没有发财不打紧,咱父子们能活着回来比什么都强啊!再说啦,咱们不是好歹还赚得了一 挂骡车回来了吗!而且你也看到了,这左邻右舍亲戚朋友旳,没有人笑话咱们啊,对咱们还是那样好。后来啊,咱们只管安心 种地就是了。别人能活,咱也能活啊!你就放宽心哇!”耿老爹长叹一声,用尤其悲苦旳口气说:“唉,还能怎么着啊,只能 是这么了哇。哎呀,丢人哪,真正丢人哪!”父子俩一边说着,一边继续观察院子里三个窃贼旳反应。一开始,他们只是停止 了左顾右盼,再后来就面面相觑起来。当耿老爹说完最终这几句话后来,那个高个子旳黑影一挥手,转身向门道走去。剩余旳 两个也不再高抬腿轻落脚,而是转身扬长往门道走去了。为了保
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学解直角三角形
1、解直角三角形
在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫解直角三角形.
2、解直角三角形的依据
(1)三边之间的关系:a2+b2=c2.(2)两锐角之间的关系:∠A+∠B=90°.
(3)边角之间的关系:
例1如图,在△ABC中,AD为BC边上的高,tanB=cos∠DAC.
(1)求证:AC=BD;(2)若BC=12,,求AD的长.
3、仰角与俯角:在进行测量时,从下向上看,视线与水平线的夹角叫仰角;从上往下看,视线与水平线的夹角叫俯角.如图所示:
例2、汶川地震后,抢险队派一架直升机去A、B两个村庄抢险,飞机在距地面450米的上空P点,测得A村的俯角为30°,B村的俯角为60°,如图所示,求A、B两个村庄之间
的距离.(精确到1m.参考数据)
4、方向角:指北或指南方向与目标方向线所成的小于90°的夹角叫方向角.如图所示:例3某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60km/h.交通管理部门在离该公路100m处设置了一速度监测点A,在如图所示的坐标系中,点A在y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;
2)点B的坐标为__________,点C的坐标为__________;
3)一辆汽车从点B行驶到点C所用的时间为15s,请你通过计算判断汽车在这段限速公路
上是否超速行驶(本问中取1.7)
1、已知Rt△ABC中,∠C=90°,∠A=60°,,则a=()
A.B. C. D.6
2、一等腰梯形的高为4,下底长为8,下底的底角的正弦值为0.8,那么它的上底和腰长分别为()A.4和5 B.2和5 C.2和4 D.4和10
3、王师傅在楼顶的A处测得楼前一棵树CD的顶端C的俯角为60°,又知水平距离BD为10m,楼高AB为24m,则树高CD为()m.
A.B. C.D.9
4、如图,在高为60m的小山上,测得山底一建筑物顶端与底部的俯角分别为30°,60°,则这个建筑物的高度为()m.A.20 B.30 C.40 D.50
5、上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时
30分到达B处,如图所示.从A、B处分别测得小岛M在北偏东45°和北偏东15°
方向,则B处的船与小岛M的距离为()海里.A.20 B.C.D.
6、三角形三个内角的比为1∶2∶3,最大边为20,则最小边为__________.
7、在Rt△ABC中,∠C=90°,则c=__________,∠B=__________.
8、桥头堡高10米,在堡顶发现附近有一可疑点,测得其俯角为40°,则可疑物距堡底
__________米(精确到0.1米).
9、如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在底面的影长为10米,则大树的长约为__________(保留两个有效数字).
10、如图,小明在操场上距离旗杆AB的距离为9m的C处,用测角仪测得旗杆顶端A的仰角为30°,测角仪高CD=1.2米,则旗杆AB的高为__________米.
11、一架飞机在高为1000m的高空,在前进的方向上同时测得桥头的俯角为30°,桥尾的俯角为60°,由此算出桥长为__________m.
12、如图,两座灯塔A、B与海岸观察站C都相距30海里,灯塔A在观察站的北偏东40°,灯塔B在观察站的南偏东50°,则灯塔A在灯塔B的__________,灯塔B在灯塔A的
__________.
13、如图,小华在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离
PC=__________米.
14、某地发生地震后,一支专业搜救队驱车前往灾区救援,如图,汽车在一条南北走向的公路上向北行驶,当在A处时,车载GPS显示村庄C在北偏西26°方向,汽车以35km/h 的速度前进2h到达B处,此时GPS显示村庄C在北偏西52°方向.
1)求B与村庄C的距离;
2)求村庄C到该公路的距离.(结果精确到0.1km,sin26°=0.4384,cos26°=0.8988,sin52°=0.7880,cos52°=0.6157)
15、如图,小岛A在港口P的南偏西45°方向,距离港口81海里处,甲船从A出
发,沿AP方向以91海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°
方向,以18海里/时的速度驶离港口,现两船同时出发:
(1)出发后几小时两船与港口P的距离相等
(2)出发后几小时乙船在甲船的正东方向.(结果精确到0.1小时,)。

相关文档
最新文档