大功率驱动电路

合集下载

大功率mos管驱动电路

大功率mos管驱动电路

大功率mos管驱动电路大功率MOS管驱动电路是一种常见的电路设计,它能够有效地驱动高功率的MOS管,以实现电路的高效工作。

本文将从电路原理、设计要点和常见问题等方面进行介绍。

一、电路原理大功率MOS管驱动电路主要由信号发生器、驱动电路和MOS管组成。

信号发生器产生所需的驱动信号,驱动电路将信号进行放大和整形,然后通过电流放大器将信号输出给MOS管。

MOS管根据驱动信号的变化,控制其通断状态,从而实现对电路的控制。

二、设计要点1.选择合适的MOS管:在大功率应用中,选择合适的MOS管至关重要。

一方面,要考虑其额定电流和功率,确保能够承受所需的负载;另一方面,还要考虑其开关特性和导通电阻等参数,以提高电路的效率和稳定性。

2.驱动电路的设计:驱动电路应能够提供足够的电流和电压来驱动MOS管。

一般采用放大器和电流放大器的组合来实现。

放大器负责放大信号的幅度,而电流放大器则负责提供足够的电流给MOS管。

同时,还要考虑到驱动电路的响应速度和抗干扰能力。

3.防止过热和电磁干扰:由于大功率MOS管在工作过程中会产生较大的功耗和电磁干扰,因此需要采取相应的措施来防止过热和干扰。

例如,可以在电路中加入散热器和滤波电路,以提高电路的稳定性和抗干扰能力。

4.保护电路的设计:在大功率应用中,由于电流和电压较大,一旦发生故障可能会对电路和设备造成严重损坏。

因此,需要在电路中加入过流、过压和过温等保护电路,以保证电路和设备的安全运行。

三、常见问题1.如何选择合适的MOS管?选择MOS管时,需要考虑所需的电流和功率,以及其开关特性和导通电阻等参数。

同时,还需要考虑其封装形式和散热性能等因素。

2.如何设计驱动电路?驱动电路应能够提供足够的电流和电压来驱动MOS管。

一般采用放大器和电流放大器的组合来实现。

同时,还要考虑到驱动电路的响应速度和抗干扰能力。

3.如何防止过热和电磁干扰?可以在电路中加入散热器和滤波电路,以提高电路的稳定性和抗干扰能力。

大功率led驱动电源原理

大功率led驱动电源原理

大功率led驱动电源原理大功率LED驱动电源是一种电子电源,用于提供高电流和高电压以驱动大功率LED。

其原理基本与普通LED驱动电源相似,但需要更高的功率和电压稳定性。

大功率LED驱动电源的基本原理是通过DC-DC变换器,将输入电压转换为适合LED的恒定电流和恒定电压。

下面将详细介绍大功率LED驱动电源的工作原理。

1. 输入电压稳定性:大功率LED驱动电源需要具备较高的输入电压稳定性,以保证驱动电路的正常工作。

常见的输入电压为AC 220V,需要经过整流、滤波和电压稳定器等处理过程,提供稳定的直流电压。

2. 开关电源转换:为了满足大功率LED的驱动需求,常采用开关电源转换器作为大功率LED驱动电源的核心。

开关电源通过快速开关元件(如MOS管)的开关动作,将输入电压转换为高频脉冲信号。

3. 变压器变换:高频脉冲信号经过变压器的变换,提供所需的高电压或高电流输出。

由于大功率LED通常需要较高的电流,所以常采用大电流变压器。

4. 恒流驱动:大功率LED驱动电源需要提供恒定的电流,以保证LED的亮度稳定性和寿命。

为了实现恒流驱动,常通过反馈控制电路对输出电流进行监测和调节,并与输入信号进行比较,实现恒定电流输出。

5. 输出电压调节:大功率LED的驱动电压需求通常在几十伏到几百伏之间,因此需要对输出电压进行调节。

常见的调节方式包括使用稳压二极管、电阻或开关稳压等。

总之,大功率LED驱动电源通过DC-DC变换器、开关电源转换器、变压器变换等关键部件实现对高电压和大电流的转换和稳定输出。

这样能够满足大功率LED的驱动需求,保证其正常工作和长寿命。

大功率LED驱动电路

大功率LED驱动电路

此外,通常 LED 的伏安特性具有负温度系数,大约为-2mV/℃。如果 LED 工作温度升
高,其正向导通电压下降,如图 4 所示。如果采用恒压源供电,LED 工作温度越高,其正向
导通电压越小从而导致其工作电流越大,这是个正反馈过程,如果 LED 散热面积不够则会导
致其工作温度迅速增大,LED 可能因为过热而加速老化甚至损坏。因此,基于大功率 LED 正 向电压的微小变化可引起正向电流的较大的变化和伏安特性具有负温度系数两方面因素,大 功率 LED 必须采用恒流源而不是恒压源供电。
与传统的照明灯相比,LED 具有如下优点: (1)寿命长,可靠耐用,维护费用低廉。LED 可连续使用 10 万小时,大功率 LED 寿命 也可达 5 万小时以上,比普通白炽灯泡长 100 倍; (2)效率高、耗电小。现在商用大功率已经可以达到 1501m/w,最终可达到 200lm/W。 LED 的光谱几乎全部集中于可见光区域,其发光效率可达 80%~90%,比节能灯还要节能 1/4。 以 12 英寸的红色交通信号灯为例,若采用低光效的 140W 白炽灯作为光源,所产生的 2000lm 的白光经红色滤光片后损失 90%,只剩下 2001m 的红光,而采用 18 个红色 LED 即可产生同 样的光效,但其耗电仅为 14W(包括电路损失); (3)绿色环保:由于采用电致发光的原理,不像荧光灯含有汞成分,废物可以回收,并 且光谱中几乎没有紫外线和红外线,故没有辐射,是很好的绿色照明光源; (4)点亮速度快。汽车信号灯是 LED 光源应用的一个重要领域,由于 LED 响应速度快 (ns 级),在汽车上安装高位 LED 刹车灯,可以减少汽车追尾事故的发生; (5)适用性广泛:LED 元件的体积可以做得非常小,更加便于各种设备的布置和设计, 适合于各种场合; (6)控制管理:LED 可以集中控制,也易于分散控制或对点进行调节控制,通过控制电 路很容易调控亮度,实现多样的动态变化效果。 尽管 LED 具有许多优点,但目前仍存在下述缺点: (1)功率低。市面上的单个 LED 功率一般在 10W 以下,这是目前 LED 难以成为照明首 选的最大瓶颈; (2)需要严格控制工作温度。LED 是一种半导体材料,与普通二极管一样具有 PN 结, 由于大功率 LED 的工作电流比较大,所以与功率半导体器件相同,需要考虑散热问题,结温 过高会直接影响 LED 的寿命,并且会增大 LED 的光衰,情况严重的会将 LED 烧坏; (3)价格高。除了功率低,价格是 LED 难以大规模应用的主要因素。目前 1W 级白光 LED 大约 15 元/个,如果将几十个 LED 组合,其成本将大大增加; (4)驱动电路复杂、昂贵。大功率 LED 属于低电压、大电流功率器件(1W 级白光 LED 正向电压约为 3.5V,正向电流为 350mA),必须用直流恒流驱动,驱动电路还要解决从交流 电压(220V 或 110V)向直流低压(如 24V 或 48V)高效转换问题,因此驱动电路较复杂、 昂贵。 总体而言,LED 光源在很多领域有着其他光源无法替代的优势,具有广阔的发展前景。 虽然高昂的价格还限制着 LED 灯进入家庭照明,但从长远来看 LED 必将替代传统电光源。 功率 LED 最早由 HP 公司于 20 世纪 90 年代初推出“食人鱼”封装结构的 LED,并于 1994 年推出改进型的“Snap LED”,有两种工作电流,分别为 70mA 和 150mA,输入功率可达 0.3W。 单芯片瓦级功率 LED 最早由 Lumileds 公司于 1998 年推出的 Luxeon LED,该封装结构首次采 用热电通路分离的形式,将倒装芯片用硅载体直接焊接在热沉上,并采用反射杯、光学透镜

较大功率直流电机驱动电路的设计方案

较大功率直流电机驱动电路的设计方案

1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。

许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。

基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。

该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。

2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。

对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。

可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。

而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。

三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。

因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。

2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。

当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计随着工业自动化技术的不断发展,直流电机在现代工业中得到了广泛的应用。

其高效率、高控制精度、低噪声等特点,使得直流电机成为了各种工业设备中的重要部件。

然而,直流电机的驱动电路一直以来都是一个难以解决的问题。

基于场效应管的大功率直流电机驱动电路是解决这一问题的一个有效方法,本文将对其进行详细的介绍和分析。

一、基本原理场效应管是一种基于场效应的半导体器件,其主要特点是输入电阻高、带宽宽、阈值电压低、驱动电压低、体积小等。

这种器件可以在很小的控制电压下,实现大功率的开关控制。

因此,利用场效应管来设计大功率直流电机驱动电路,可以有效地提高电机的效率和控制精度。

二、电路设计基于场效应管的大功率直流电机驱动电路的设计需要根据具体的需求而定。

下面我们以一个C速率驱动电路为例来进行介绍。

1、整体设计整个电路由驱动电源、控制信号处理、驱动电路和电机负载等部分组成。

其中,驱动电路主要由N沟道场效应管和P沟道场效应管组成。

控制信号处理主要是通过单片机控制信号,以控制场效应管的通断和时间控制等。

电机负载部分则由直流电机和机械负载器件组成,直接产生动力。

2、驱动电路部分设计驱动电路是基于场效应管大功率直流电机驱动电路的核心部分。

其设计需要做到以下几个方面:①选择适当的场效应管在设计驱动电路时,需要根据具体的电机负载特点和驱动电路所需的电压电流等参数,选择适当的场效应管。

通常情况下,能承受大电流的MOSFET管具有更好的驱动特性和开关速度,这对于电机的控制非常重要。

②优化电路结构在设计过程中,还需要优化电路的结构,保证电路的稳定性和可靠性。

在本设计中,采用了H桥结构和电流采样电路等。

③加入保护电路在实际应用过程中,直流电机会承受很大的负载,如果没有保护电路,就可能会导致电机的损坏。

因此,在电路设计过程中,需要加入过压保护、过流保护等保护电路,保证电路的安全运行。

3、控制信号处理部分设计控制信号处理部分主要负责将控制信号进行放大和变形,以满足不同的驱动器控制要求。

大功率IGBT驱动电路的设计与实现

大功率IGBT驱动电路的设计与实现

电雜术Electronic Technology电子技术与软件工程Electronic Technology & Software Engineering 大功率IG BT驱动电路的设计与实现孙伟(罗克韦尔自动化控制集成(上海)有限公司上海市201201 )摘要:本文基于当前IGBT驱动电路的繁杂的现象,采用光电隔离,隔离电源和离散元件,研究大功率IGBT驱动电路的设计和实现 方法,同时也简要的与小功率的IGBT驱动电路的差异做了对比。

最后以600A的大功率IGBT功率模块FF600R12IP4作为例子对所设计的 电路进行了验证,结果证明此电路可以很好的驱动大功率IGBT,此驱动电路也在公司的产品使用中得到了验证。

关键词:绝缘栅双极晶体管;电路设计;光耦;驱动电路I G B T也称为绝缘栅双极晶体管,集场效应管和电力晶体管的优点于一身,既具有输入阻抗高、工作速度快、热稳定性好和驱动 电路简单的优点,又具有通态电压低、耐压高和承受电流大等优点,产品的用途越来越广泛,驱动方法也是各式各样,可靠的驱动方法尤其重要。

由于I G B T的广泛使用,其产品也越来越多小到几安培,大到几千安培都有。

而且厂家也多,除了国际大厂,越来越多的国 产厂商也在开发I G B T或者I G B T模块。

在工业领域,I G B T主要用做变频器里面的开关器件,而IGBT又是现场损坏最为严重的器件之一,对于大功率的变频产品尤其如 此。

对与变频器应用来说,核心是驱动电路。

驱动电路就是把中央控制器发来的命令,转变成I G B T开关的信号。

因此,驱动电路设 计的好坏直接决定整个设备的稳定性、可靠性和使用寿命。

又因为 I G B T种类繁多,驱动电路也是各式各样,这也增加了 I G B T驱动 电路设计的复杂度。

1IGBT驱动的研究与分析对于I G B T的驱动电路,如果仅仅是对一个I G B T的驱动,那么其驱动电路很简单,只需根据I G B T的特性,提供一个门极驱动电压就行,通常为15V。

大功率mos管驱动保护电路

大功率mos管驱动保护电路

一、引言随着电子技术的飞速发展,大功率MOS管在工业、军事、民用等领域得到了广泛应用。

然而,由于MOS管的特性,使用不当很容易导致其损坏,甚至危及设备和人员安全。

因此,设计一种可靠的保护电路,对于确保MOS管的正常工作和延长其寿命具有重要意义。

本文将介绍一种基于大功率MOS管的驱动保护电路,主要包括电流保护、过压保护、过温保护和ESD保护四个方面。

二、电流保护电流保护是防止MOS管过电流损坏的主要手段。

一般来说,电流过大会导致MOS管发热严重,从而对其内部结构产生不可逆的损伤。

因此,需要通过设置合理的电流限制值和保护电路来保护MOS 管。

具体实现方式如下:1.1 电流检测在MOS管的源极和负载之间增加一个小电阻,通过检测该电阻两端的电压来实现对MOS管的电流监测。

为了减小误差,可以采用差分放大器、精密电阻等器件进行检测。

1.2 电流限制当检测到MOS管电流超过设定值时,可以通过控制信号,直接将MOS管的驱动电压降低或关闭MOS管,以保护其不受过电流损伤。

三、过压保护过压保护是保护MOS管免受过高电压损害的重要手段。

在实际应用中,由于干扰、电源波动等因素,系统中可能会出现过压情况,如果MOS管无法承受这样的压力,就会导致其损坏。

具体实现方式如下:2.1 过压检测通过设置一个合适的过压检测电路,来监测系统中的电压变化情况。

一旦检测到过压情况,则需要立即采取相应的保护措施。

2.2 过压保护当检测到过压情况时,可以通过控制信号,直接将MOS管的驱动电压降低或关闭MOS管,以避免其受到过高的电压影响。

四、过温保护过温保护是保护MOS管免受高温损害的重要手段。

由于工作环境的限制,MOS管在高温环境下长时间工作会导致其内部结构损坏或退化,影响其寿命和性能。

具体实现方式如下:3.1 温度检测通过设置一个合适的温度检测电路,来监测MOS管周围的温度变化情况。

可以采用热敏电阻、热敏电偶等器件进行检测,并将其转换为电信号。

推荐两种大功率LED室内照明驱动电路

推荐两种大功率LED室内照明驱动电路
L D光源作 为第 四代新 型 节 能 光 源 , 来 做 各 E 用
类灯 具 发光光 源 。
L M。 目前 白色 L D灯 具 发光 效 率 已经 达 到普 通 节 E 能 灯 的两倍 多. 如果 用 5 w 大 功率 L D 日光 J 代替 E 上 ] ‘ 普 通 2 日光 灯 , 天 工 作 8小 时 , 年 订 节 电 5W 每 一 ' 『
第2 9卷 , 第 10期 总 7 2 1 年 1 月 , 6期 01 1 第
《节 能 技 术 》
ENERGY C0NS ERVAT 0N 1 TECHN0L0GY
Vo . 9, um.No 7 12 S .1 0 No . 0l No 6 v2 1. .
推 荐 两 种 大 功 率 L D室 内照 明驱 动 电路 E
徐 坚 哈 尔滨 10 0 ) 5 0 1 ( 黑龙 江科技 学院 , 黑龙 江
摘 要 :E 日光灯 最 大优 点是 节 能省 电 , 次是 使 用寿命 长 , 目前 L D照 明灯 具在 家庭 中 LD 其 但 E
并 未得 到 广泛应 用 , 格 高是 其主 要 原 因。本 文 介 绍 两种 家庭 照 明用 L D驱动 电路 , 价 E 可动 手 自己
5 W h。 8k
节 能 省 电是 L D 日光 灯 的最 大 特 点 , L D E 将 E 日光灯 和荧 光 日光灯 进 行 对 比 , 称 3 的荧 光 标 6w 日光灯 , 附加 镇 流 器 耗 电 8 W , 其 工作 时 实 际 耗 电 4 , 4 W 光通量 为 4 0 L 流 明 ) 同样 规 格 的 L D 2 m( 而 E
使 用寿命 长是 L D 日光 灯 的另一 大 特点 , L E 以
述 两 种灯 具 为 例 , 通荧 光 日光 灯 的使 用 寿命 为 3 普
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管
图4-6 小功率三极管输出电路
2. 达林顿驱动电路
当驱动电流需要达到几百毫安时,如驱 动中功率继电器、电磁开关等装置,输出电 路必须采取多级放大或提高三极管增益的办 法。达林顿阵列驱动器是由多对两个三极管 组成的达林顿复合管构成,它具有高输入阻 抗、高增益、输出功率大及保护措施完善的 特点,同时多对复合管也非常适用于计算机 控制系统中的多路负荷。
固态继电器SSR是一个四端组件,有两个输入 端、两个输出端,其内部结构类似于图3-7-7中的 晶闸管输出驱动电路。图3-7-8所示为其结构原理 图,共由五部分组成。光耦隔离电路的作用是在输 入与输出之间起信号传递作用,同时使两端在电气 上完全隔离;控制触发电路是为后级提供一个触发 信号,使电子开关(三极管或晶闸管)能可靠地导 通;电子开关电路用来接通或关断直流或交流负载 电源;吸收保护电路的功能是为了防止电源的尖峰 和浪涌对开关电路产生干扰造成开关的误动作或损 害,一般由RC串联网络和压敏电阻组成;零压检 测电路是为交流型SSR过零触发而设置的。
3.7.1 三极管驱动电路
对于低压情况下的小电流开关量,用功 率三极管就可作开关驱动组件,其输出电流 就是输入电流与三极管增益的乘积。
1 .普通三极管驱动电路
当驱动电流只有十几 mA或几十 mA时,只要采用一 个普通的功率三极管就能构成驱动电路,如图 3-7-1所示。
+5V
330
LED 3.3K Di 7406
A
T2
G
G K
T1
双向晶闸管也叫三端双向可控硅,在结构上相 当于两个单向晶闸管的反向并联,但共享一个控制 极,结构如图(b)所示。当两个电极T1、T2之间 的电压大于1.5V时,不论极性如何,便可利用控制 极G触发电流控制其导通。双向晶闸管具有双向导 通功能,因此特别适用于交流大电流场合。
+5V

SSR的输入端与晶体管、TTL、CMOS电路兼
容,输出端利用器件内的电子开关来接通和断开负 载。工作时只要在输入端施加一定的弱电信号,就 可以控制输出端大电流负载的通断。 SSR的输出端可以是直流也可以是交流,分别 称为直流型SSR和交流型SSR。直流型SSR内部的开 关组件为功率三极管,交流型SSR内部的开关组件 为双向晶闸管。而交流型SSR按控制触发方式不同 又可分为过零型和移相型两种,其中应用最广泛的 是过零型。
图 3-7-3为达林顿阵列驱动中的一路驱
动电路,当CPU数据线Di 输出数字“0”即
低电平时,经7406反相锁存器变为高电平,
使达林顿复合管导通,产生的几百毫安集
电极电流足以驱动负载线圈,而且利用复
合管内的保护二极管构成了负荷线圈断电 时产生的反向电动势的泄流回路。
+24V 负荷线圈 1C 达林顿复合管 7406 GND
Di
1B
图 4-8 达林顿阵列驱动电路
3.7.2 继电器驱动电路
电磁继电器主要由线圈、铁心、衔铁和触 点等部件组成,简称为继电器,它分为电压继 电器、电流继电器、中间继电器等几种类型。 继电器方式的开关量输出是一种最常用的输出 方式,通过弱电控制外界交流或直流的高电压、 大电流设备。
衔铁
控制电流
为低电平,光耦二极管导通,使光敏晶闸管导通, 导通电流再触发双向晶闸管导通,从而驱动大型 交流负荷设备RL。
3.7.4 固态继电器驱动电路
固态继电器SSRSolid State Relay是一种新型的 无触点开关的电子继电器,它利用电子技术实现了 控制回路与负载回路之间的电隔离和信号耦合,而 且没有任何可动部件或触点,却能实现电磁继电器 的功能,故称为固态继电器。它具有体积小、开关 速度快、无机械噪声、无抖动和回跳、寿命长等传 统继电器无法比拟的优点,在计算机控制系统中得 到广泛的应用,大有取代电磁继电器之势。

驱动电路的设计要根据所用继电器线圈的吸合 电压和电流而定,一定要大于继电器的吸合电流才
能使继电器可靠地工作。
图3-7-5为经光耦隔离器的继电器输出驱动电 路,当CPU数据线Di输出数字“1”即高电平时,经 7406反相驱动器变为低电平,光耦隔离器的发光二 极管导通且发光,使光敏三极管导通,继电器线圈 KA得电,动合触点闭合,从而驱动大型负荷设备。 由于继电器线圈是电感性负载,当电路突然关 断时,会出现较高的电感性浪涌电压,为了保护驱 动器件,应在继电器线圈两端并联一个阻尼二极管, 为电感线圈提供一个电流泄放回路。
图3-7-2给出达林顿阵列驱动器MC1416 的结构图与每对复合管的内部结构, MC1416内含7对达林顿复合管,每个复合管 的集电极电流可达500mA,截止时能承受 100V电压,其输入输出端均有箝位二极管, 输出箝位二极管D2抑制高电位上发生的正 向过冲,D1、D3可抑制低电平上的负向过 冲。
荷设备RL。
所示,(a)为单向晶闸管,有阳极A、阴极K、控 制极(门极)G三个极。当阳、阴极之间加正压时, 控制极与阴极两端也施加正压使控制极电流增大到 触发电流值时,晶闸管由截止转为导通;只有在阳、 阴极间施加反向电压或阳极电流减小到维持电流以 下,晶闸管才由导通变为截止。单向晶闸管具有单 向导电功能,在控制系统中多用于直流大电流场合, 也可在交流系统中用于大功率整流回路。
1C 16
2C 15
3C 14
4C 13
5C 12
6C 11
7C 10
COM 9
D2 B 10.5kΩ T1 R0 7.2kΩ 3kΩ R1 R2 T2 D3
COM C
E
1 1B
2 2B
3 3B
4 4B
5 5B
6 6B
7 7B
8 GND
D1
(b)复合管内部结构
(a)MC14716结构图
图4-7 MC1416达林顿阵列驱动器
D
L
K 外部设备
线圈
铁芯
触点
继电器驱动电路的设计要根据所用继电 器线圈的吸合电压和电流而定,控制电流一 定要大于继电器的吸合电流才能使继电器可 靠地工作。
常用的继电器有电压继电器、电流继电器、中 间继电器等几种类型。由于继电器线圈需要一定的 电流才能动作,所以必须采取措施加以驱动。
继电器的驱动电路
Vp
Vc
KA
220V
光耦 Di
7406
图 4-9 继电器输出驱动电路
3.7.3 晶闸管驱动电路

晶闸管又称可控硅(SCR),是一 种大功率的半导体器件,具有用小功率 控制大功率、开关无触点等特点,在交 直流电机调速系统、调功系统、随动系 统中应用广泛。
晶闸管是一个三端器件,其符号表示如图3-7-6
交流型SSR主要用于交流大功率控制。 一般取输入电压为4.32V,输入电流小 于500mA。它的输出端为双向晶闸管,一般 额定电流在1A 到几百A范围内,电压多为 380V或 220 V。图3-7-9为一种常用的固态继电 器驱动电路,当数据线Di输出数字“0”时, 经7406反相变为高电平,使NPN型三极管导 通, SSR输入端得电则输出端接通大型交流负
3.7 功率驱动电路
3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6
三极管驱动电路 继电器驱动电路 晶闸管驱动电路 固态继电器驱动电路 直流电动机驱动接口电路 步进电动机及驱动电路
引言
数字量输出通道简称 DO 通道,它的任务是把 计算机输出的微弱数字信号转换成能对生产过程进 行控制的数字驱动信号。根据现场负荷的不同,如 指示灯、继电器、接触器、电机、阀门等,可以选 用不同的功率放大器件构成不同的开关量驱动输出 通道。常用的有三极管输出驱动电路、继电器输出 驱动电路、晶闸管输出驱动电路、固态继电器输出 驱动电路等。
180Ω MOC 3041 400Ω RL
KS G
T2 T1
47Ω 0.01μF
~ 220V
Di
7 406
图 4-11 双向晶闸管ቤተ መጻሕፍቲ ባይዱ出驱动电路
晶闸管常用于高电压大电流的负载,不适宜
与CPU直接相连,在实际使用时要采用隔离措施。
图3-7-7为经光耦隔离的双向晶闸管输出驱动电路,
当CPU数据线Di输出数字“1”时,经7406反相变
过零型交流SSR是指当输入端加入控制信号后, 需等待负载电源电压过零时,SSR才为导通状态; 而断开控制信号后,也要等待交流电压过零时, SSR才为断开状态。移相型交流SSR的断开条件同过 零型交流SSR,但其导通条件简单,只要加入控制 信号,不管负载电流相位如何,立即导通。 直流型SSR的输入控制信号与输出完全同步。 直流型SSR主要用于直流大功率控制。一般取输入 电压为4~32V,输入电流5~10mA。它的输出端为晶 体管输出,输出工作电压为30~180 V。
相关文档
最新文档