(完整版)化工原理概念汇总
化工原理概述与基本概念

化工原理概述与基本概念化工原理是指在化学工程与化学技术领域中,通过对化学反应、传质、传热等基本过程的研究,总结出一系列基本规律和理论知识的学科。
化工原理的研究与应用,对于提高化工生产过程的效率和产品质量具有重要意义。
本文将从化工原理的定义、基本概念以及与化学工程实践的关系等方面展开论述。
一、化工原理的定义化工原理是化学工程学科中的基础学科,它主要研究化学反应、物质传质与传热等基本过程的规律和原理。
通过对这些基本过程的研究,可以揭示物质的转化规律并加以应用,进而实现化工生产的控制和优化。
化工原理既是化学工程学科的基础,也是其发展的核心。
二、化工原理的基本概念1. 化学反应:化学反应是指物质之间发生的化学变化过程。
在化学反应中,原子或分子之间的化学键发生断裂或形成新的化学键,从而导致物质的属性发生改变。
化学反应是化工原理研究的重要内容,其速率、平衡等方面的控制对于化工过程的运行至关重要。
2. 传质:传质是指物质在不同相之间的传递过程。
在化工过程中,传质现象普遍存在,例如气体的吸收、液体的萃取、固体的溶解等。
传质的速率和方式对于分离纯化和反应等化工过程的效果和效率有重要影响。
3. 传热:传热是指热量在空间中由高温物体传递到低温物体的过程。
在化工生产中,传热过程是难以避免的。
掌握传热规律对于提高化工反应效率、节能减排具有重要意义。
4. 化工流程:化工流程是指将原料经过合适的化学反应、传质传热等处理,最终得到所需产品的过程。
化工流程的设计和优化需要考虑多种因素,包括原料选取、反应条件控制、能耗和环保等。
三、化工原理与实际应用化工原理是化学工程实践的基础和指导,通过研究和应用化工原理的基本概念,可以实现对化工过程的控制和优化。
以下是化工原理在实际应用中的几个方面:1. 反应器设计:化工原理为反应器的设计提供了理论依据。
通过研究化学反应的动力学、热力学等理论,可以确定最适宜的反应器类型、尺寸和操作条件,提高反应过程的效率和产物质量。
(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理 概念

化工原理概念化工原理是指研究化学工程和过程中的基本原理和规律的学科。
它涉及到化学反应、传质、传热、流体力学、流动与混合、物料平衡和能量平衡等方面的知识。
化学反应是指化学物质经历化学变化的过程,包括物质的转化、生成新物质、化学平衡等。
通过研究反应动力学、反应速率、反应机理和反应平衡等,可以设计和优化化学反应过程,提高化学产物的产率和质量。
传质是指物质间的质量传递过程,包括传质速率、传质平衡和传质机理等。
通过研究传质现象,可以改进分离、浓缩、吸收、萃取等化工操作过程,提高物料的纯度和分离效率。
传热是指能量在物质中的传递过程,包括传热速率、传热方式和传热机理等。
通过研究传热现象,可以改善加热、冷却、干燥等热力操作过程,提高能源利用效率和产品质量。
流体力学是研究液体和气体的运动行为和力学性质的学科,包括流体的流动规律、动量守恒和能量守恒等。
通过研究流体力学现象,可以优化和改进流体输送、搅拌、喷射等流体操作过程,提高流体传输效率和混合效果。
流动与混合是研究流体在管道和设备中的流动行为及混合的学科,包括流体的速度分布、浓度分布和物理性质等。
通过研究流动与混合现象,可以设计和改进管道和设备的结构,提高流体的均匀性和混合效果。
物料平衡是根据质量守恒原理,用代数方程表达物质在化工过程中的流动、转化和积累关系的方法。
通过对物料平衡的分析,可以确定工艺装置的输入和输出,预测化学反应的产物和副产物,保证工艺过程的稳定和安全。
能量平衡是根据能量守恒原理,用代数方程表达能量在化工过程中的转移、转化和积累关系的方法。
通过能量平衡的计算,可以确定工艺装置的加热和冷却需求,优化能源利用,提高工艺的经济性和环境友好性。
综上所述,化工原理是化学工程和过程中的基本原理和规律的研究,涉及到化学反应、传质、传热、流体力学、流动与混合、物料平衡和能量平衡等方面的知识。
它为化工工程师提供了理论基础和指导,用于优化和改进化工过程,提高生产效率和产品质量。
化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
《化工原理》基本概念、主要公式

第四章
基本概念:
非球形颗粒的当量直径 形状系数 分布函数 频率函数 颗粒群平均直径的基准
床层比表面 床层空隙率 数学模型法的主要步骤 架桥现象 过滤速率基本方程 过滤常数及影响因素 洗涤速率 过滤机的生产能力 τopt
叶滤机 板框压滤机 回转真空过滤机 加快过滤速率的途径
重要公式:
物料衡算: 三个去向: 滤液V ,滤饼中固体V饼(1 − ε),滤饼中液体V饼ε
mx 2 )
y2 − mx 2
吸收因数法
N OG
=
1 1 − mG
ln[(1 −
mG )
L
y1 y2
− mx 2 − mx 2
+
mG ]
L
L
最小液气比
L (G )min
=
y1 − y2 x1e − x2
物料衡算式 G( y1 − y2 ) = L( x1 − x2 )
第九章
基本概念:
蒸馏的目的及基本依据 主要操作费用 双组份汽液平衡自由度 泡点 露点 非理想物系
多组分精馏流程方案选择 关键组分 清晰分割法 全回流近似法 捷算法步骤 重要公式:
相平衡常数 相平衡方程
KA
=
yA xA
y = αx 1 + (α − 1)x
物料衡算
F = D+W
Fx f = DxD + WxW
4
轻组分回收率 默弗里板效率
q 线方程
ηA
=
Dx D Fx f
E mV
=
yn − yn+1 y *n − yn+1
重要公式: 斯托克斯沉降公式
ut
=
d
2 p
(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。
化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。
化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。
2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。
其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。
3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。
在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。
二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。
物质平衡的基本概念包括输入、输出、积累和转化等概念。
输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。
2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。
物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。
物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。
3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。
例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。
(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理知识绪论1、单元操作:(Unit Operations):用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。
单元操作特点:①所有的单元操作都是物理性操作,不改变化学性质。
②单元操作是化工生产过程中共有的操作。
③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。
单元操作理论基础:(11、12)质量守恒定律:输入=输出+积存能量守恒定律:对于稳定的过,程输入=输出动量守恒定律:动量的输入=动量的输出+动量的积存2、研究方法:实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。
数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。
(04)3、因次分析法与数学模型法的区别:(08B)数学模型法(半经验半理论)因次论指导下的实验研究法实验:寻找函数形式,决定参数第二章:流体输送机械一、概念题1、离心泵的压头(或扬程):离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。
以H 表示,单位为m 。
2、离心泵的理论压头:理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。
实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。
3、气缚现象及其防止:气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。
像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。
防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。
4、轴功率、有效功率、效率有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。
效率:轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。
二、简述题1、离心泵的工作点的确定及流量调节工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。
流量调节:1)改变出口阀开度——改变管路特性曲线;2)改变泵的转速——改变泵的特性曲线。
2、离心泵的工作原理、过程:开泵前,先在泵内灌满要输送的液体。
开泵后,泵轴带动叶轮一起高速旋转产生离心力。
液体在此作用下,从叶轮中心被抛向gQH N e ρ=η/e N N =ηρ/g QH N =叶轮外周,压力增高,并以很高的速度(15-25 m/s)流入泵壳。
在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使大部分动能转化为压力能。
最后液体以较高的静压强从排出口流入排出管道。
泵内的液体被抛出后,叶轮的中心形成了真空,在液面压强(大气压)与泵内压力(负压)的压差作用下,液体便经吸入管路进入泵内,填补了被排除液体的位置。
3、离心泵的汽蚀现象、以及安装高度的确定方法、及其防止办法:汽蚀现象:提高泵的安装高度,将导致泵内压力降低,其最低值为叶片间通道入口附近,当这个最低值降至被输送液体的饱和蒸汽压时,将发生沸腾,所产生的蒸汽泡在随液体从入口向外周流动中,又因压力迅速加大而积聚冷凝。
使液体以很大速度从周围冲向汽泡中心,产生频率很高,瞬时压力很大的冲击,这种现象称为“汽蚀”;安装高度的确定方法:泵的允许安装高度受最小汽蚀余量或允许吸上真空度的限制,以免发生汽蚀现象(例如:管路压头减去汽蚀余量等于允许安装高度)。
防止方法(预防措施):离心泵的安装高度只要低于允许安装高度,就不会发生汽蚀。
离心泵入口处压力不能过低,而应有一最低允许值——允许汽蚀余量。
第三章:机械分离与固体流态化一、概念题1、均相混合物与非均相混合物均相混合物:物系内部各处物料性质均匀而且不存在相界面的混合物。
例如:互溶溶液及混合气体。
非均相混合物:物系内部有隔开两相的界面存在且界面两侧的物料性质截然不同混合物。
2、表征颗粒的基本概念球形度:目的涵义:3、自由沉降和干扰沉降自由沉降:单个颗粒在无限大流体中的降落过程,颗粒彼此相距很远,不产生干扰的沉降称为自由沉降;干扰沉降:若颗粒之间的距离很小,即使没有互相接触,一个颗粒沉降时也会受到其它颗粒的影响,这种沉降称为干扰沉降4、过滤、过滤介质、助滤剂:过滤:利用多孔介质使液体通过而截留固体颗粒,使悬浮液中固液分离的过程。
过滤介质:多孔性介质、耐腐蚀、耐热并具有足够的机械强度。
过滤介质特点:助滤剂:是颗粒细小、粒度分布范围较窄、坚硬而悬浮性好的颗粒状或纤维固体,如硅藻土、纤维粉末、活性炭、石棉。
、5、深层过滤与滤饼过滤深层过滤:颗粒尺寸比介质的孔道的直径小得多,但孔道弯曲细长,颗粒进入之后,很容易被截留,更由于流体流过时所引起的挤压与冲撞作用,颗粒紧附在孔道的壁面上。
这种过滤时在介质内部进行的,介质表面无滤饼形成。
滤饼过滤:颗粒的尺寸大多数都比过滤介质的孔道大,固体物积聚于介质表面,形成滤饼。
过滤开始时,很小的颗粒也会进入介质的孔道内,部分特别小的颗粒还会通过介质的孔道而不被截留,使滤液仍是混浊的。
在滤饼形成之后,他便成为对其后的颗粒其主要截留作用的介质,滤液因此变清。
过滤阻力将随滤饼的加厚而渐增,滤液滤出的速率也渐减,故滤饼积聚到一定厚度后,要将其从介质表面上移去。
这种方法适用于处理固体物含量比较大的悬浮液。
5、过滤常数、比阻:压缩性指数s :压缩指数0<s<1(可压缩滤饼)s=0(不可压缩滤饼) 过滤常数K :与滤饼性质(s 、ε、a )、滤浆性质(c 、μ)、推动力(∆p )有关; 比阻ε:表征滤饼过滤阻力大小的数值,6、可压缩滤饼与不可压缩滤饼不可压缩滤饼:某些悬浮液所形成的滤饼,其空隙结构因颗粒坚硬不会因受压而变形,这种滤饼成为不可压缩的。
可压缩滤饼:若滤饼受压后变形,致使滤饼的空隙率减小,使过滤阻力增大,这种滤饼称为可压缩的。
7、重力收尘与旋风收尘重力收尘:气体进入降尘室后,因流通截面扩大而速度减慢。
尘粒一方面随气流沿水平方向运动,其速度与气流速度u 相同。
另一方面在重力作用下以沉降速度u 0垂直向下运动。
只要气体通过降尘室经历的时间大于或等于其中的尘粒沉降到室底所需的时间,尘粒便可分离出来。
旋风收尘:(旋风除尘器)从气流中分离颗粒。
含尘气体从圆筒上侧的进气管以切线方向进入,按螺旋形路线相器底旋转,接近底部后转而向上,气流中所夹带的尘粒在随气流s p K -∆∝1旋转的过程中逐渐趋向器壁,碰到而落下。
颗粒到达器壁所需要的沉降时间只要不大于停留时间,它便可以从气流中分离出来。
8、沉降终速及其计算公式初始时,颗粒的降落速度和所受阻力都为零,颗粒因受力加速下降。
随降落速度的增加,阻力也相应增大,直到与沉降作用力相等,颗粒受力达到平衡,加速度也减小到零。
此后,颗粒以等速下降,这一最终达到的速度称为沉降速度。
直径为d 的球形颗粒,(重力-浮力)=阻力推导得:9、横穿洗涤与置换洗涤:横穿洗法:洗涤液所穿过的滤饼厚度2倍于最终过滤时滤饼通过的厚度;置换洗法:洗涤液所走的路线与最终过滤是滤液的路线一样。
10、流态化、固体流态化、聚式流态化、散式流态化流态化:一种使固体颗粒层通过与运动的流体接触而具有流体某些表观特性的过程。
固体流态化:将固体颗粒对在容器内的多孔板上,形成一个床层。
若令流体自下而上通过床层,流速低时,颗粒不动;流速加大到一定程度后颗粒便活动,而床层膨胀;流速进一步加大则颗粒彼此离开而在流体中浮动,流速愈大,浮动愈剧,床层愈高,称这种情况为固体流态化;聚式流态化:发生在气固系统。
床层内的颗粒很少分散开来各自运动,而多是聚结成团的运动,成团地被气泡推起或挤开。
这种形式的流态化称为聚式;散式流态化:发生在液固系统。
若固体颗粒层用液体来进行流态化,流速增大时,床层从开始膨胀直到水力输送的过程中,床层颗粒的扰动程度是平缓地加大的。
颗粒持续地增大其分散状态,这种形式的流态化称为散式。
11、起始(最小、临界)流态化速度、颗粒带出速度起始流化速度:固体颗粒刚刚能流化起来,床层开始流态化时的流体表观速度称为起始流化速度,是固定床与流化床的转折点;带出速度(夹带速度):当某指定颗粒开始被带出时的流体表观速度称为带出速度; 流化床的操作流速应大于起始流化速度,又要小于带出速度。
二、简述题1、简述离心分离与旋风分离的差别2u4d g )6(-g )6(2233ρπςρπρπ⋅=颗粒颗粒d d ρςρρ3)(4gd u -=颗粒2、重力收尘与旋风收尘的工作条件重力收尘:只要气体通过降尘室经历的时间大于或等于其中的尘粒沉降到室底所需的时间,尘粒便可分离出来。
旋风收尘:颗粒到达器壁所需要的沉降时间只要不大于停留时间,它便可以从气流中分离出来。
3、简述重力沉降速度与离心沉降速度区别和联系(设颗粒与流体介质相对运动属于层流) 初始时,颗粒的降落速度和所受阻力都为零,颗粒因受力加速下降。
随降落速度的增加,阻力也相应增大,直到与沉降作用力相等,颗粒受力达到平衡,加速度也减小到零。
此后,颗粒以等速下降,这一最终达到的速度称为沉降速度。
重力沉降速度:离心力沉降速度:4、聚式流态化的特点、腾涌、沟流5、画图并说明流化床的压力损失与气速的关系在流态化阶段,流体通过床层的压力损失等于流化床中全部颗粒的净重力。
r u 18)(22t μρρ-=颗粒d u μρρ18)(2g d u -=颗粒log u流化床压力损失与气速关系AB 段为固定床阶段,由于流体在此阶段流速较低,颗粒较细时常处于层流状态,压力损失逾表观速度的一次放成正比,因此该段为斜率为1的直线。
A ’B ’段表示从流化床恢复到固定床时的压力损失变化关系;由于颗粒从逐渐减慢的上升气流中落下所形成的床层比随机装填的要疏松一些,导致压力损失也小一些, BC 段略向上倾斜是由于流体流过器壁及分布板时的阻力损失随气速增大而造成的。
CD 段向下倾斜,表示此时由于某些颗粒开始为上升气流所带走,床内颗粒量减少,平衡颗粒重力所需的压力自然不断下降,直至颗粒全部被带走。
P流化床压降与流速的关系图-流化床;③-夹带开始 ④- 沟-节涌(腾涌)现象6、举例说明数学模型法简化与等效的原理过滤时,滤液在滤饼与过滤介质的微小通道中流动,由于通道形状很不规则且相互交联,难以对流体流动规律进行理论分析,故常将真实流动简化成长度均为Le 的一组平行细管中的流动,并规定:(1)细管的内表面积之和等于滤饼内颗粒的全部表面积;(2)细管的全部流动空间等于滤饼内的全部空隙体积。