第3章-温度场数学模型与数值求解
第三讲 温度场的有限元分析

传热基本原理
• 上述偏微分方程式是传热学理论中的最 基本公式,适合于包括铸造、焊接、热 处理过程在内的所有热传导问题的数学 描述,但在对具体热场进行求解时,除 了上述偏微分方程外,还要根据具体问 题给出导热体的初始条件与边界条件。
传热基本原理
对具体热场用上述微分方程进行求解时,需要根据具体问 题给出导热体的初始条件与边界条件。
• 初始条件: 初始条件是指物体开始导热时(即 t
= 0 时)的瞬时温度分布。
• 边界条件: 边界条件是指导热体表面与周围介质
间的热交换情况。
传热基本原理
• 常见的边界条件有以下三类: 第一类边界条件: 给定物体表面温度随时间的变 Tw f (t ) 化关系 第二类边界条件: 给出通过物体表面的比热流随 时间的变化关系 T q x , y , z , t
• 2、二维稳态热传导方程及边界条件
T T (k x ) (k y ) Q 0 在 内 x x y y 在 1上 在 2上 T (T a T ) n
T ( x, y , t ) T (1 , t ) k
平面稳态温度场的有限元法
• • • 1、泛函与变分 函数 y=f(x) 求y 的极值,即求微分,由dy=0 可得。 泛函J=J [y(x)] 函数y(x)为自变量,J为函数y的函数,称J为y的 泛函,求泛函的极值,即求变分, 由 J 0 可得。 • 例:平面上AB两点,连接AB的曲线很多,要求一条曲线使重物 靠自重由A沿此曲线滑到B所需的时间最短,即求最速下降曲线。 • 显然,AB间直线路径最短,但重物运动的速度增长并不是最大, 即下滑的时间并非最短。 A x n 设AB间有n条曲线 yi ( x) i 1, 2,... , 每条曲线对应一个时间 Ti i 1, 2,...n , 即T是y(x)函数,即泛函,求变分的极值 则可得最速下降曲线 p B v y
第三章非稳态导热

第三章⾮稳态导热第三章⾮稳态导热的分析计算 3-1 ⾮稳态导热过程分析⼀、⾮稳态导热过程及其特点导热系统(物体)内温度场随时间变化的导热过程为⾮稳态导热过程。
在过程的进⾏中系统内各处的温度是随时间变化的,热流量也是变化的。
这反映了传热过程中系统内的能量随时间的改变。
我们研究⾮稳态导热过程的意义在于,⼯程上和⾃然界存在着⼤量的⾮稳态导热过程,如房屋墙壁内的温度变化、炉墙在加热(冷却)过程中的温度变化、物体在炉内的加热或在环境中冷却等。
归纳起来,⾮稳态导热过程可分为两⼤类型,其⼀是周期性的⾮稳态导热过程,其⼆是⾮周期性的⾮稳态导热过程,通常指物体(或系统)的加热或冷却过程。
这⾥主要介绍⾮周期性的⾮稳态导热过程。
下⾯以⼀维⾮稳态导热为例来分析其过程的主要特征。
今有⼀⽆限⼤平板,突然放⼊加热炉中加热,平板受炉内烟⽓环境的加热作⽤,其温度就会从平板表⾯向平板中⼼随时间逐渐升⾼,其内能也逐渐增加,同时伴随着热流向平板中⼼的传递。
图3-1显⽰了⼤平板加热过程的温度变化的情况。
从图中可见,当0=τ时平板处于均匀的温度0t t =下,随着时间τ的增加平板温度开始变化,并向板中⼼发展,⽽后中⼼温度也逐步升⾼。
当∞→τ时平板温度将与环境温度拉平,⾮稳态导热过程结束。
图中温度分布曲线是⽤相同的?τ来描绘的。
总之,在⾮稳态导热过程中物体内的温度和热流都是在不断的变化,⽽且都是⼀个不断地从⾮稳态到稳态的导热过程,也是⼀个能量从不平衡到平衡的过程。
⼆、加热或冷却过程的两个重要阶段从图3-1中也可以看出,在平板加热过程的初期,初始温度分布0t t =仍然在影响物体整个的温度分布。
只有物体中⼼的温度开始变化之后(如图中τ>τ2之后),初始温度分布0t t =的影响才会消失,其后的温度分布就是⼀条光滑连续的曲线。
据此,我们可以把⾮稳态导热过程分为两个不同的阶段,即:初始状况阶段――环境的热影响不断向物体内部扩展的过程,也就是物体(或系统)仍然有部分区域受初始温度分布控制的阶段;正规状况阶段――环境对物体的热影响已经扩展到整个物体内部,且仍然继续作⽤于物体的过程,也就是物体(或系统)的温度分布不再受初始温度分布影响的阶段。
第三讲 温度场的有限元分析

2
...
二维单元
Ni ( x)ui
1
n
注:Ni可为Lagrange、 Hamiton多项式或形函 数,在+1~-1间变化
u ( x, y ) N i ui
1
n
v( x, y ) N i vi
1
n
第三讲 温度场的有限元分析
参考: 《有限单元法在传热学中的应用》,孔祥谦 编著, 北京:科学出版社,第三版,1998.9 (TK124/7)
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
平面稳态温度场的有限元法
• 1、泛函与变分
温度场基本方程推导
• 整理得:
c T T T T (k x ) (k y ) (k z ) Q 0 t x x y y z z
• 满足上述热传导方程的解有无限多个,为了确定真 实的温度场,必须知道物体初始瞬态的温度分布, 即初始条件,称为第一类边界条件 T ( x, y, z, t )t 0 T ( x, y, z ) • 同时,还需知道物体表面与周围介质间进行热交换 的规律,即边界条件,有三类边界条件。
边界面上的热流密度q[w/m2]为已知
2T 2T 2 0 2 x y
T k n
q 0
1
平面稳态温度场的有限元法
• 2、平面稳态温度场的泛函 第三类边界条件平面稳态温度场
温度场分析理论总结

温度场分析理论总结温度场分析理论是研究温度分布和传热的一种方法,广泛应用于工程领域,对于设计和优化热传导设备和系统具有重要意义。
本文将对温度场分析理论进行总结,包括温度场分析的基本原理、常见的温度场分析方法以及其应用领域和发展趋势。
温度场分析的基本原理是通过对传热方程的求解,得到系统内不同位置上的温度分布。
传热方程一般为热传导方程,描述了热量在系统中的传递过程。
根据热传导方程,可以得到温度场的分布情况,并通过对温度场进行求解,得到系统内不同位置上的温度值。
常见的温度场分析方法包括解析解法和数值解法。
解析解法是通过解析求解热传导方程,得到温度场的解析表达式。
这种方法通常适用于简单的几何形状和边界条件的情况,可以快速得到温度场分布。
但对于复杂的几何形状和边界条件的情况,解析解法往往无法得到解析表达式,需要使用数值解法进行求解。
数值解法是通过将区域离散化为有限的网格,将热传导方程离散化为一组代数方程,并通过迭代方法求解这些方程,得到温度场分布。
常见的数值解法包括有限差分法、有限元法和边界元法等。
有限差分法是将区域划分为有限个节点,并在每个节点上近似热传导方程的导数,从而得到一组代数方程。
有限元法和边界元法则是将区域划分为有限个单元,通过对单元内部的温度进行逼近,得到温度场的数值解。
温度场分析理论广泛应用于工程领域,对于设计和优化热传导设备和系统具有重要意义。
比如,在电子器件的散热设计中,通过对温度场的分析,可以评估器件的散热性能,优化散热结构,提高器件的工作效率和寿命。
在热处理过程的温度控制中,通过对温度场的分析,可以控制加热行程和时间,保证材料达到所需的热处理效果。
在建筑空调系统的设计中,通过对温度场的分析,可以确定合理的风流设计,提高空调系统的能效。
温度场分析理论的发展趋势主要体现在以下几个方面。
首先,随着计算机技术的快速发展,数值解法在温度场分析中的应用越来越广泛。
计算机能够快速进行大量数据的计算和处理,大大提高了温度场分析的效率和精度。
热处理过程中温度场的数值模拟及分析

热处理过程中温度场的数值模拟及分析热处理是一种常用的金属加工工艺,通过控制金属材料的加热与冷却过程,可以改变金属材料的组织结构和性能。
温度场是热处理过程中重要的参数之一,直接影响着金属材料的组织和性能的形成与变化。
因此,准确地模拟和分析热处理过程中的温度场对于优化工艺、改善产品质量具有重要意义。
数值模拟是研究温度场的有效方法之一。
它基于数学模型和计算方法,通过计算机的数值计算来获得温度场的分布情况。
在热处理过程中,温度场的分布受到多个因素的影响,如加热功率、材料热导率、热辐射、对流散热等。
数值模拟通过建立数学模型,考虑这些因素,并进行相应的计算,可以得到较为准确的温度场分布。
首先,进行数值模拟需要选择适当的数学模型。
在热处理过程中,常用的模型有热传导方程、能量方程等。
热传导方程是研究物体内部温度分布的基本方程,它考虑了热传导过程中的温度梯度对热流的影响。
能量方程则是考虑了热源与物体之间的热交换过程,可以更全面地描述温度场的变化。
其次,进行数值模拟需要确定边界条件。
边界条件是指在模拟过程中与外界接触的部分,它对于温度场的分布起着重要的影响。
常见的边界条件有热流、热辐射和对流散热等。
热流边界条件是指物体表面受到的外部热量输入或输出,热辐射边界条件是指物体表面受到的辐射热量,而对流散热边界条件则是指物体与周围介质间的热交换。
然后,进行数值模拟需要进行网格剖分。
网格剖分是将模拟区域分成小的单元,用于离散方程和计算。
在温度场的数值模拟中,常用的网格剖分方法有结构化网格和非结构化网格。
结构化网格是指将模拟区域划分为规则的矩形或立方体单元,易于计算和分析。
非结构化网格则是将模拟区域划分为任意形状的单元,适用于复杂几何形状和不均匀材料性质的模拟。
最后,进行数值模拟需要选择合适的求解方法。
在热处理过程中,常用的求解方法有有限差分法、有限元法和边界元法等。
有限差分法是基于差分逼近的一种方法,将参与方程离散化成代数方程,并通过迭代计算得到数值解。
第3章-温度场数学模型与数值求解

整理得:
Ti
t t
4 T jt Ti t t Ti i C pi x j 1 x x 2 i 2 j t
变形得:
Ti t t
4 t 1 1 x x i C pi x j 1 2 i 2 j
4 T jt t Ti t i C pi x j 1 x x 2 i 2 j
qs
T 0, x x s x
T1 T2 R
(4) 完全接触边界条件 (5) 绝热边界条件 (6) 温度为定值的边界条件
1
T1 T 2 2 x x
T 0 x
T=定值
(7) 比热流量为定值的边界条件
q s 定值
20
第六节 潜热处理(1/5)
1 、定义 液相的内能EL大于固相的内能ES,因此,当合金凝固由液相变为 固相时,必须产生的内能变化。这个内能变化(通常用L表示)称为凝 固潜热,或称为熔化潜热(Latent Heat of Fusion)。
0 Tcast f c ( x, y, z,0)
0 Tmold f m ( x, y, z,0)
19
第五节 初始条件与边界条件(2/2)-边界条件 (1) 热传达边界条件 (2) 热辐射边界条件 (3) 热触热阻边界条件
x x s ; h(Ta Ts ) T 0 x
T 4
x x (T jt Ti t )t x 2 x 2
i
j
16
第四节 基于有限差分方法的离散(7/8)- 三维场合 根据能量守恒定定律得:
i C pi (x) 3 (Ti t t
x x (T jt Ti t )t Ti t ) x x j 1 2 i 2 j
材料数值模拟——温度场模拟

材料数值模拟——温度场模拟材料数值模拟是利用计算机技术对材料的性质进行模拟和预测的方法之一、在材料科学领域,温度场模拟是一种非常重要的数值模拟方法,可以通过对材料的热传导过程进行数值计算,来预测材料的温度分布和温度变化情况。
本文将对温度场模拟进行详细介绍。
首先,温度场模拟是基于热传导方程进行计算的。
热传导方程描述了热量在材料中的传递过程,其一般形式可以写作:∂T/∂t=∇(k∇T)+Q,其中T表示温度,t表示时间,∇表示温度梯度,k表示热导率,Q表示体积热源项。
这个方程可以用来计算材料内部不同位置的温度分布,以及随着时间推移的温度变化。
在进行温度场模拟之前,首先需要确定模型的边界条件。
边界条件包括材料的初始温度分布和外部环境对材料的热辐射和对流散热等影响。
通过对边界条件的设定,可以更准确地模拟实际情况下的温度场。
其次,进行温度场模拟时,需要确定材料的热物理参数。
热物理参数包括热导率、比热容和密度等物性参数。
这些参数是计算热传导方程中的关键参数,对于模拟结果的准确性和可靠性有着重要的影响。
进行温度场模拟的关键步骤是将热传导方程离散化,并通过数值解法求解离散化后的方程。
提供了一种常用的数值求解方法,有限差分法。
有限差分法将连续的热传导方程离散化为差分方程,然后通过迭代计算得到温度场的数值解。
有限差分法不仅适用于简单的几何形状和边界条件,还可以通过适当的扩展和修正来处理复杂的几何形状和边界条件。
此外,为了提高温度场模拟的精度和效率,还可以采用一些优化方法和近似技术。
例如,可以使用自适应网格技术来调整网格的密度,使得在温度变化明显的区域网格更加细化,在温度变化缓慢的区域网格更加稀疏。
还可以使用多重网格方法和并行计算技术来加速计算过程,提高模拟效率。
最后,进行温度场模拟后,可以通过可视化技术将模拟结果以图像或动画的形式展示出来。
这样可以直观地观察温度分布和变化情况,揭示材料内部的热传导过程,并对实际系统的性能进行预测和优化。
目前应用的温度场的数学模型综述

目前应用的温度场的数学模型:1、冶金过程温度场建模,采用瞬态温度场有限单元法。
通过曲线拟合方法, 获得了温度与各物性间的关系, 建立了变物性熔渣冷却温度场数学模型, 分析了各种工艺参数对富硼渣温度场分布的影响。
有限元法的应用范例:1)动态分析:计算结构的固有属性,以及动态载荷下的结构的各种响应和动应力,动应变等;2)热分析:计算在热环境下,结构或区域内部的温度分布和热流,以及由热引起的热应力和热变形;3)其他离散:数学上,有限元法的基本思想是通过离散化的手段把微分方程或者变分方程变成袋鼠方程进行求解。
适合处理形状复杂的结构。
复杂的边界条件2、高炉炉衬砌体结构温度场的数学模型:根据几何对称性,基于三维结构图,数学模型主体为描述控制体内三维变物性稳态热传导方程3、沥青路面温度场模型应用的是统计回归法。
以镇漓试验路连续2a实测的气候数据和路面温度场数据为基础,建立了精度更高的路面温度场模型,尤其提高了较深处路面温度的预测效果。
1)测试方案2)影响因素分析:采用分布回归法分析不同环境因素对路面温度影响的显著程度。
本文温度沿深度的衰减因子采用乘幂函数采用分段函数建立了温度场模型,预测值与实测温度数据相关系数R2达到0.92,能预测0~38cm任何深度的路面温度,改善了以往模型在较深处预测精度差的问题;( 2) 气温太阳辐射等环境因素对路面温度影响有明显的延后性,层位越深则延后时间越长,就此提出了不同路面层位气温和太阳辐射影响的延后时长;( 3) 路面温度受气温太阳辐射的影响而产生波动,波动的幅度随深度增加而衰减,采用乘幂函数H-i作为温度衰减因子,表征不同深度路面温度波动幅度的差异更为合适。
3、GA和BP 网络模型的建立:基于GA (遗传算法)结合BP网络的智能算法建立了钢坯表面温度模型, 并且提出了利用BP 算法进行在线补偿的机制, 使模型预报精度进一步提高。
本文在BP 网络的基础上把输出端信号通过延时环节反馈到输入端, 从而形成动态BP 网络。