第3章-温度场数学模型与数值求解

合集下载

材料数值模拟——温度场模拟

材料数值模拟——温度场模拟
• 时间步长:每个计算时间间隔的长短,
H
25
2-4不稳定导热的有限差分法 解题步骤
• 内节点和边界节点差分方程的建立
– 内节点一般采用直接法:即由导热微分方程直接用差 商代替微商,导出递推公式,也可采用热平衡法;
– 边界节点一般采用热平衡法,视具体边界建立相应的 能量方程
• 选择求解差分方程组矩阵的计算方法 • 编写计算程序 • 计算 • 计算结果的处理和分析讨论
解题步骤
• 分析和简化物理模型
– 判断问题属于稳态问题还是非稳态问题 – 有无内热源 – 适宜的坐标 – 判断边界条件的类型
• 数学模型的建立 一般模型: c T [ ( T ) ( T ) ( T ) ] Q .
x x y y z z
物性参数为常数: 1 T ( x 2T 2 y 2T 2 2 zT 2)Q
– 第三类边界条件:已知物体周围介质温度Tf\ 物体表面温度( Tw )以及物体表面与周围 介质间的放热系数。 qw= ( Tw - Tf\ )
H
20
2-3传热问题的数值计算方法
• 分析解法
– 定义:以数学分析为基础,求解导热微分方程的定 解问题。
– 特点:求得的结果为精确解 – 不足:只能求解比较简单的导热问题,而对于几何
3
• 铸件凝固过程数值参模拟考,书陈海目清等,重庆大学出
版社,1991(TG21-C4-2)
• 焊接热过程数值分析,武传松,哈工大出版社, 1990(TG402-N74)
• 计算机在铸造中的应用,程军,机械工业出版社 ,1993(TG248-C73)
• 计算传热学,郭宽良,中国科学技术大学出版社 ,1988(TK124-43-G91)
dTT(xx)T(x)

冻结法温度场ansys数值模拟及模型的优化设计

冻结法温度场ansys数值模拟及模型的优化设计

冻结法温度场ansys数值模拟及模型的优化设计一、引言在现代工业生产中,温度场的控制和优化设计是至关重要的。

其中,冻结法温度场数值模拟技术是一种常用的手段。

本文将从以下几个方面进行探讨:什么是冻结法温度场数值模拟?为什么需要进行冻结法温度场数值模拟?如何进行冻结法温度场数值模拟?以及如何对模型进行优化设计?二、什么是冻结法温度场数值模拟?冻结法温度场数值模拟是指通过计算机仿真技术,对物体表面或内部的温度分布进行预测和分析的过程。

该方法通常采用有限元分析方法(FEM)或有限差分法(FDM)等数值计算方法,通过建立物理模型和数学模型,求解各节点或单元上的温度分布,并最终得到整个物体的温度场分布图。

三、为什么需要进行冻结法温度场数值模拟?1. 产品质量控制在生产过程中,产品质量往往受到工艺参数和环境条件等因素的影响。

通过对产品表面或内部的温度分布进行预测和分析,可以及时发现问题并采取相应的措施,从而保证产品质量的稳定性和一致性。

2. 工艺优化设计通过冻结法温度场数值模拟,可以对工艺参数进行优化设计。

例如,在热处理过程中,通过对加热时间、温度等参数进行模拟分析,可以确定最佳的工艺参数组合,以达到最佳的加工效果和经济效益。

3. 节约成本通过冻结法温度场数值模拟,可以减少试验次数和材料消耗量,从而降低生产成本。

同时,在产品设计阶段就能够预测和分析产品表面或内部的温度分布,从而避免在后期生产过程中出现不必要的问题。

四、如何进行冻结法温度场数值模拟?1. 建立物理模型首先需要建立物理模型,并确定所需的计算范围和边界条件。

例如,在热处理过程中需要确定加热器、加热时间、加热温度等参数,并将其转化为计算机可识别的数学模型。

2. 建立数学模型建立数学模型是冻结法温度场数值模拟的关键步骤。

数学模型通常采用有限元分析方法(FEM)或有限差分法(FDM)等数值计算方法。

在建立数学模型时,需要考虑物体的形状、材料特性、边界条件等因素。

11-2 传热学第三章-导热四学时-3非稳态导热

11-2 传热学第三章-导热四学时-3非稳态导热
度,最终达到热平衡。
物体的温度随时间的推移逐渐趋近于恒定的值。
下面用实例介绍这两类非稳态导热的特点。
§3-1 非稳态导热的基本概念
(1)周期性非稳态导热过程简介
室内墙 面温度
墙内各 处温度 最高值
★ 夏季室外空气温度以一天 24小时为周期变化;
★ 室外墙面温度也以24小时为 周期变化,但比室外空气温 度变化滞后一个相位、振幅 有所减小;
(
t n
)w
h(tw
t
f
)
★ 解的唯一性定理:
本章所介绍的各种分析法都被认为是满足特定问题的唯一解。
§3-1 非稳态导热的基本概念
5.第三类边界条件下Bi数对平板中温度分布的影响
在第三类边界条件下,确定非稳态导热物体中的温度变化特征 与边界条件参数的关系。
t
已知:平板厚2δ、平板导热系数λ、
初温t0,将其突然置于温度为
第三章 非稳态导热
2
§3-1 非稳态导热的基本概念
2.非稳态导热的分类及其特点
非稳态导热分为周期性和非周期性(瞬态导热)两大类。
周期性非稳态导热:物体温度按一定的周期发生变化;
非周期性非稳态导热(非稳态 稳态):
物体的温度随时间不断地升高(加热过程)或降低(冷却过 程);在经历相当长时间后,物体温度逐渐趋近于周围介质温
(3)求解方法:分析解法、近似分析法、数值解法。
分析解法: 分离变量法、积分变换、拉普拉斯变换; 近似分析法: 集中参数法、积分法; 数值解法: 有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟。
§3-1 非稳态导热的基本概念
4.导热微分方程解的唯一性定律
非稳态导热问题的求解实质:在规定的初始条件及边界条 件下求解导热微分方程式。

第三章 液态成形过程的传热

第三章 液态成形过程的传热

33
第三节 铸件凝固时间的确定
实验法
两种方法:测温法和残余液体倾出法
有限元法 : 有限元法是根据变分原理来求解热传导问题微分方程的一 种数值计算方法。有限元法的解题步骤是先将连续求解域分割为有限 个单元 组成的离散化模型,再用变分原理将各单元内的热传导方程转 化为等价的线性方程组,最后求解全域内的总体合成矩阵。
16
17
第二节 铸件凝固温度场
研究温度场的方法三
测温法
τ(2 ──凝固时间( min); - 17) V──铸件体积(cm3); S──铸件散热表面积(cm2),

K

R V1 1 2 K2 S K
(2 - 21)
R──铸件折算厚度(cm) K──凝固系数(cm/min1/2)
当铸件合金、铸型和浇注条件确定之后,铸件凝固时 间取决于铸件体积与散热表面积之比 ,即折算厚度 (模数)。由于考虑了铸件结构形状的影响,计算值 更接近实际,是对“平方根定律”的发展。
2.铸型性质的影响
铸型的吸热速度越大,则铸件的凝固速度越大,断面的温度场的梯度也 就越大。
(1)铸型的蓄热系数b2
b2越大,冷却能力强,铸件中的gradt越大
(2)铸型的预热温度:
铸型温度上升,冷却作用小 ,gradt下降 熔模铸造的型壳预热至600~800℃, 金属型加热至200~400℃,提高铸 件精度减少热裂。
6
2.铸件在金属型中冷却 (1)铸件的冷却和铸型的加热 都不十分激烈。 在这种系统中,大部分温 度降在中间层上,当金属型 的铸型工作表面涂有较厚的 涂料时,就属此种情况。 特点:铸件断面上的温 差和铸型断面上的温差与中 间层的温差相比,可忽略不 计。可以认为,铸件和铸型 断面上的温度分布实际上是 均匀的,传热过程主要取决 于涂料层的热物理参数。

二维导热物体温度场的数值模拟

二维导热物体温度场的数值模拟

传热大作业二维导热物体温度场的数值模拟(等温边界条件)姓名:班级:学号:墙角稳态导热数值模拟(等温条件)一、物理问题有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。

在下列两种情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。

外矩形长为,宽为;内矩形长为,宽为。

第一种情况:内外壁分别均匀地维持在0℃及30℃;第二种情况:内外表面均为第三类边界条件,且已知:外壁:30℃ ,h1=10W/m2·℃,内壁:10℃ ,h2= 4 W/m2·℃砖墙的导热系数λ= W/m ·℃由于对称性,仅研究1/4部分即可。

二、数学描写对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程 02222=∂∂+∂∂y t x t这是描写实验情景的控制方程。

三、方程离散用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。

每一个节点都可以看成是以它为中心的一个小区域的代表。

由于对称性,仅研究1/4部分即可。

依照实验时得点划分网格:建立节点物理量的代数方程对于内部节点,由∆x=∆y ,有)(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。

设立迭代初场,求解代数方程组。

图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。

以C t 000=为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。

四、编程及结果1)源程序#include<>#include<>int main(){int k=0,n=0;double t[16][12]={0},s[16][12]={0};double epsilon=;double lambda=,error=0;double daore_in=0,daore_out=0,daore=0;FILE *fp;fp=fopen("data3","w");for(int i=0;i<=15;i++)for(int j=0;j<=11;j++){if((i==0) || (j==0)) s[i][j]=30;if(i==5)if(j>=5 && j<=11) s[i][j]=0;if(j==5)if(i>=5 && i<=15) s[i][j]=0;}for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)t[i][j]=s[i][j];n=1;while(n>0){n=0;for(int j=1;j<=4;j++)t[15][j]=*(2*t[14][j]+t[15][j-1]+t[15][j+1]);for(int i=1;i<=4;i++)t[i][11]=*(2*t[i][10]+t[i-1][11]+t[i+1][11]);for(int i=1;i<=14;i++)for(int j=1;j<=4;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=1;i<=4;i++)for(int j=5;j<=10;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)if(fabs(t[i][j]-s[i][j])>epsilon)n++;for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)s[i][j]=t[i][j];k++;实验结果可知:等温边界下,数值解法计算结果与“二维导热物体温度场的电模拟实验“结果相似,虽然存在一定的偏差,但由于点模拟实验存在误差,而且数值解法也不可能得出温度真实值,同样存在偏差,但这并不是说数值解法没有可行性,相反,由于计算结果与电模拟实验结果极为相似,恰恰说明数值解法分析问题的可行性。

温度场的快速计算.

温度场的快速计算.

上海师范大学硕士学位论文温度场的快速计算姓名:李建璞申请学位级别:硕士专业:计算机软件与理论指导教师:陈操宇20100401摘要2 1世纪以来,伴随着科学技术的突飞猛进,数值计算和虚拟仿真已成为国际学科前沿和热点,而温度场的计算在现代工业中的应用范围更是十分广泛。

温度场的计算主要涉及到两个方面的研究,一方面是科学计算,主要是为了尽量达到精确计算的目的;另一方面则是实时性计算,主要目的是为了对被控制对象进行实时监控。

针对不同的温度场有不同的计算要求,这是和实际生产生活中的应用息息相关的。

两种计算从某种角度来看是相互对立的,因为在具体的应用研究中,考虑计算精度势必影响到计算速度,反之,若要力求实时性计算肯定会以牺牲一部分精度为代价。

综观当今国内外温度场计算方面的研究现状,在科学计算方面取得了卓越的成就,即不考虑计算时间可以达到接近真实值的计算效果。

例如陶瓷的烧制、锅炉炉膛、各类焊接甚至弹道导弹弹头表面都涉及到对温度场的分析,需要对温度场进行数值计算及仿真。

这一系列的应用研究均达到良好的计算精度,满足了生产生活的部分需要,但是涉及到实时仿真方面其计算速度就遭遇了很大的瓶颈。

所以本文就是要解决温度场快速数值计算’的问题,这也是虚拟仿真中最为关键的问题之一,具备良好的研究前景。

目前,一般温度场的计算都是针对具体问题借助传热学原理来建立相应的温度场模型,然后利用合适的数值分析算法处理温度场模型,从而实现对温度场的模拟仿真,取得了较高的计算精度。

但是,误差大、实时性差依然是目前对温度场计算的最大问题。

所以对温度场的准确快速计算,具有十分重要的科学价值和现实意义。

本文针对温度场计算量大、实时性差的普遍问题,提出了动态网格划分思想,通过比较当前数值计算方法的优劣,分析了有限元特征以及温度场计算的特性,结合有限元方法的特性,利用动态网格划分技术,提出了一种新的算法,牺牲一定的计算精度来降低计算规模,从而提高计算速度。

温度场数值模拟与分析

温度场数值模拟与分析

温度场数值模拟与分析一、引言温度场是工业制造、自然环境等领域中经常涉及到的现象,通过数值模拟和分析可以深入了解温度场的变化规律,并为后续的研究工作提供有效的参考。

本文将介绍温度场的数值模拟方法和分析技术,并结合实际案例进行分析和讨论。

二、数值模拟方法1.有限元方法有限元方法是数值模拟的一种常用方法,其核心思想是将复杂的物理问题抽象为有限个单元,通过单元之间的相对运动以及单元内部的运动来计算物理量的变化。

在温度场的数值模拟中,有限元方法可以通过建立合适的有限元模型、选择适当的数值方法和求解器来计算温度场的分布和变化规律。

2.计算流体力学方法计算流体力学方法是将物理问题建模为一系列守恒方程和运动方程的数学问题,通过求解这些方程来计算物理量的分布和变化。

在温度场的数值模拟中,计算流体力学方法可以通过建立流体系统的数值模型、指定流体系统的初始和边界条件以及选择适当的求解算法来计算温度场。

3.反向传播神经网络方法反向传播神经网络方法是在深度学习技术的支持下,将物理问题转化为神经网络的训练问题,通过优化网络的结构和参数,实现对物理问题的数值模拟。

在温度场的数值模拟中,反向传播神经网络方法可以通过建立网络模型、选择适当的损失函数和优化算法,来计算温度场的分布和变化规律。

三、分析技术1.可视化分析可视化分析是通过图表、图像和动画等可视化方式来展示温度场的分布和变化规律,通过可视化分析可以直观地了解温度场的变化情况,并且可以更好地理解温度场的复杂性。

2.数据挖掘分析数据挖掘分析是通过分析温度场数据中的模式和关联规则,来发现与温度场相关的重要信息和规律。

通过数据挖掘分析可以发现温度场的非线性规律、异常状态和趋势等信息,为后续的研究工作提供有效的参考。

3.时间序列分析时间序列分析是通过分析温度场数据的时间波动和趋势变化,来了解温度场的周期性和逐渐变化趋势。

通过时间序列分析可以发现温度场中的周期性波动规律和变化趋势,为后续的预测和控制工作提供有效的参考。

材料研究的温度场模拟资料

材料研究的温度场模拟资料

温度场变化
枝晶生长过程中不同时刻固相形貌
(a)
(b)
(c)
(d)
(e)
(f)
钢卷冷却过程的温度场模拟
热轧钢卷示意图
钢卷的热损失主要 是由钢卷表面的热 辐射与钢卷周围空 气的对流造成的, 而孔内的辐射得到 自持,计算时可以 忽略。
卷取温度控制数学模型
层流冷却设备: 12组主冷、3组精冷 和侧喷组成。
定解问题的方程组。
Ti1, j
2Ti, j Ti1, j (x)2
Ti,
j
1
2Ti, j (y)2
Ti,
j 1
0
Ti1, j
Ti,
j
x
k (Ti, j
Tf )
如果选择步长x=y。则
Ti,
j
1 y
Ti
,
j
qw
Ti, j Ti1, j 0
差分方程变为:
Ti, j
1 4
(Ti
1,
j
T x
k (T
Tf
)
L2
2)热流边界条件
Tf,k
y
0, 0
x
L1,
T y
qw
0
3)绝热边界条件
T x L1, 0 y L2 , x 0 4)给定温度边界条件
y L2 , 0 x L1,T Tw
Tw
绝热
x L1 qw
设x, y为步长,Ti, j表示结点(i, j)处的温度,以差商代替微商, 并舍去截断误差,则差分方程式与边界的差分形式一起组成
第三章
材料科学研究中 温度场的数值模拟
材料科学与工程技术与加热、冷却等传 热过程密切相关。各种材料的加工、成 型过程都会遇到与温度场有关的问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q 0Ts4
式中,q为热流密度; Ts为表面的绝对温度;
为辐射黑度;
0为Stefen-Boltsman常数。
6
第二节 传热分析的常用数值分析方法 (1/3)
数值方法是进行数值模拟的重要方面,前面提到目前 比较常用的数值方法有:有限差分法、有限元法、直接差 分法、边界元法。对于铸造凝固过程CAE技术来说,主要 是采用有限差分法、有限元法,前面的章节已对这两种方 面进行了较为详细地介绍,下面对采用这两种方法如何进 行传热分析做一个简要说明。
T f 为流体的特征温度; Tw 为固体边界温度。
对流换热按引起流动运动的不同原因可分为自然对流和强制对流两大类。 自然对流是由于流体冷、热部分的密度不同而引起的,如暖气片表面附近热 空气向上流动就是自然对流。如果流体的流动是由于水泵或其他压差所造成
的,则称为强制对流。
5
第一节 传热的基本方式(4/4)- 热辐射
4
第一节 传热的基本方式(3/4)- 热对流
热对流是指流体中温度不同的各部分相互混合的宏观运动引起热量传递 的现象。热对流总与流体的导热同时发生,可以看作是流体流动时的导热。 对流换热的情况比只有热传导的情况复杂。对流换热可以用Newton冷,q为热流密度; 为对流换热系数;
物体通过电磁波传递能量的方式称为辐射。物体会因各种原因发出辐射 能,其中因热的原因发出辐射能的现象称为热辐射。自然界中各个物体都不停 地向空间发出热辐射,同时又不断地吸收其它物体发出的热辐射。发出与吸收 过程的综合效果造成了物体间以辐射方式进行了热量传递。辐射换热可以用 Stefen-Boltsman定律来描述,即
2
第一节 传热的基本方式(1/4)
1. 热传导 2. 热对流 3. 热辐射
3
第一节 传热的基本方式(2/4)-热传导
物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒 子的热运动进行的热量传递称为热传导,简称导热。在紧密地不透明的物体内 部,热量只能依靠导热方式传递。
只有在物体处于不同温度时,热量才能从一个物体传递到另一个物体,或从 物体的某一部分传递到物体的另一部分。热总是从温度高的地方流向温度低的 地方,铸件凝固冷却时,铸件内部的温度高于外界,因此铸件内部向其外侧以 及铸型传递热量。
《材料成形模拟技术》讲义
第3章 温度场数学模型与数值求解
华中科技大学 周建新 Tel: 027-87541922
Email: zhoujianxin1975@
主要内容
1、传热的基本方式 2、传热分析的常用数值分析方法 3、温度场数学模型 4、基于有限差分方法的离散 5、初始条件与边界条件 6、潜热处理 7、温度场数值模拟流程图
Cp——比热 λ——导热系数
L——潜热
10
第四节 基于有限差分方法的离散(1/8)- 二维场合
在二维情况下, 对傅立叶热传导 微分方程进行基 于有限差分法的 离散。如右图所 示,单元i是一 边长为△x的正 四边形单元,它 与相邻的四个单 元进行热量交换。
二维差分单元i的的热平衡关系图
11
第四节 基于有限差分方法的离散(2/8)- 二维场合
9
第三节 温度场数学模型
Fourier equation:
三维场合:
Cp T t
2T ( x2
2T y 2
2T z 2
)
L t
二维场合:
Cp T ( 2T 2T ) L
t
x2 y2 t
一维场合:
Cp T t
2T x 2
L t
其中:T ——温度 t ——时间 x,y,z ——空间坐标 ρ——密度
在微小的时间△t内,单元i吸收的的热量Q为:
Q iCpi (x)2 (Titt Tit )
从相邻的单元1、2、3、4单元i的热量总和QSUM为:
Qsum
4 j 1
x
x 2 x
2
(T
t j
Tit )t
i
j
12
第四节 基于有限差分方法的离散(3/8)- 二维场合
根据能量守恒定定律得:
iC pi (x)2 (Titt
Tit )
4
x
(T
t j
Tit
)t
j1 x x
2i 2 j
整理得:
T tt i
Tit
t iC pi x
4 j 1
T
t j
Tit
x x
2i 2 j
变形得:
T tt i
1
t iC pi x
4 j 1
x 2i
1 x
2 j
Tit
t iC pi x
4 j 1
T
t j
x x 2i 2 j
8
第二节 传热分析的常用数值分析方法 (3/3)
2 有限元法 有限元法求解导热问题是利用微分方程边
值问题等价于相应变分问题这一特点的。用有限 元法求解不稳定导热过程可归纳为如下的步骤: 将不稳定导热过程所涉及的区域在空间和时间上 进行离散化处理;物性条件、初始条件和边界条 件的设定;写出单元泛函数表达式;构造每个单 元的插值函数;求得泛函数极值条件的代数方程 表达式;构造代数方程组;将求解的过程编成计 算程序,由计算机算出结果,得到温度场相关结 果。
13
第四节 基于有限差分方法的离散(4/8)- 二维场合
由上式知,单元i在t+Δt时刻的温度等于t时刻自身温度以及相邻4个单元温度 的线性组合。显而易见,如果相邻单元温度高或低,单元i的温度也相应地 大或小;另外从物理含义来说,单元i在t时刻温度高,则其在t+Δt时刻的温 度也应该高,即等式右边第一项系数必须不小于零,即
在三维迪卡尔坐标系统,连续介质各点在同一时刻的温度分布叫做温度场, 温度场的一般可表达为T=ƒ(x,y,z,t)。若温度场不随时间变化,则称做稳定温度 场,由此产生的导热为稳定导热;若温度场随时间改变,则称做不稳定温度场, 不稳定温度场的导热为不稳定导热。
导热的基本定律是Fourier定律,Fourier定律的具体内容我们在后面再阐述。
7
第二节 传热分析的常用数值分析方法 (2/3)
1 有限差分法 有限差分法,又称泰勒展开差分法,是最早用于传
热的计算方法。该方法具有差分公式导出简单和计算成本 低等优点,目前已成为应用最为广泛的一种数值分析方法。 有限差分方法,其实质就是将求解区域划分为有限个网格 单元,将微分问题化为差分问题,离散化得到差分格式, 利用差分格式来求解相应问题。用有限差分来求解不稳定 导热过程可按如下的步骤进行:将不稳定导热过程所涉及 的区域在空间和时间上进行离散化处理;物性条件、初始 条件和边界条件的设定;写出单元差分格式;将求解的过 程编成计算程序,由计算机算出结果,得到温度场相关结 果。
相关文档
最新文档