化工过程系统动态模拟与综合分析
第三章 化工过程系统动态模拟与分析CH31-profLi

数学模型化:模型的建立,性能模拟,参数估计, ★ 数学模型化:模型的建立,性能模拟,参数估计,
2010-6-21
6
3.1.2 化工过程系统的动态模型
◆ 确定性模型分类
表3-1 化工过程系统确定性动态模型的数学表达形式
模型表达形式 应用实例 代数—常微分方程组 代数 常微分方程组 代数—偏微分方程组 代数 偏微分方程组 代数—常微分方程组 代数 常微分方程组 上述二, 上述二,三类模型的 混合形式 理想搅拌罐反应器动态模型等 填料塔,管式反应器动态模型等 填料塔, 板式塔动态模型,串联 板式塔动态模型,串联CSTR动态 动态 模型等 多个单元过程组合而成的系统
★ 系统工程
以系统的优化为目标,以模型和模拟作为工具, 以系统的优化为目标,以模型和模拟作为工具, 研究系统组成,分解,综合, 研究系统组成,分解,综合,性能模拟与分析的工程 科学. 科学. 关键词:系统; 模拟; 关键词:系统; 模拟; 优化
2010-6-21 3
3.1 化工过程系统动态模型
★
化工过程系统
2010-6-21
19
�
数方程组的初,边值问题 数方程组的初,
2010-6-21
8
3.1.3 确定性模型的数学处理
逆问题—模型参数估计 ◆ 逆问题 模型参数估计
★
例1:已知一套管换热器,用120°C饱和水蒸 已知一套管换热器, 气加热水,水的流量,进,出口温度可测出, 气加热水,水的流量, 出口温度可测出, 求总传热系数K.
3.2.2 模型求解与应用
(2)定常态稳定性与相图(状态演化图) 定常态稳定性与相图(状态演化图)
求解3.2.1中动态模型(常微分方程组初值问题) 求解3.2.1中动态模型(常微分方程组初值问题)的 3.2.1中动态模型 数值解,结果为: 数值解,结果为:
分析与合成(学生参考)第三章

(5) 根据已算得的V, L, Y及X , M的初值,对给定的时间
步长求解常微分方程组的初值问题,求得稳定解为
止。
(6) 检验馏出液浓度和塔釜残液浓度是否都达到分离
要求,当两个设计值均满足要求,则输出M , X等随
时间变化的结果,计算终止;若不能同时满足,则
以所求得的当前值M , X去替换原始初值后,重新
第二节 连续搅拌罐应器的 动态特性
一.动态数学模型 连续搅拌罐反应器(均相反应器)是动态模型
中最简单、最基本的模型。
【例3-1】 敞口连续操作搅拌罐的流量计算。
设连续操作搅拌罐的进料量为Fi,罐中原有料
液高度为H0,试求取自开工后排料量的变化关系。
假设搅拌罐的横截面积为A,排液量FO与
罐中料液的高度成正比关系,即:FO = kH
分析可以较详细地考查开工条件对开工时间的影响,
以了解在开工过程中系统状态变化的规律与开工条 件的相互关系。从而,可以为化工过程的生产系统 最佳开工方案的制定提供依据。 目的: 是为了确定恰当的开工方案(开工条件以及所 对应的开工时间 ),以达到缩短过程系统开工时 间的目的。
2. 动态响应的数值仿真
定的初始状态出发,状态演变的过程。
(4)相轨线图(相图)
是指由众多轨线所构成的图。它表征了在所关心 的状态变量的变化范围内,系统所有动态学定性特 征的图形。
2. 状态空间分析 (相空间分析) 所谓状态空间分析也就是利用相图来分析系统
的动态特性。
【例3-3】假定发生在CSTR中的是一个均相一级不 可逆放热反应: A →B 反应速率为: r = k CA , k
每块板上的温度Tn是泡点温度,关于泡点温度的 计算需要反复迭代。
二.模型的数学处理与应用
化工过程控制系统动态模型建立与分析

化工过程控制系统动态模型建立与分析随着科技的进步和工业的飞速发展,化工行业对于过程控制技术的需求越来越高。
化工过程控制系统动态模型的建立与分析是实现优化控制和自动化的关键步骤,它能够帮助工程师们更好地理解和管理化工过程,提高生产效率和安全性。
本文将介绍化工过程控制系统动态模型的建立方法,以及分析该模型的重要性和应用前景。
一、化工过程控制系统动态模型的建立方法化工过程控制系统动态模型的建立是通过对化工过程的各个环节进行建模和参数估计来实现的。
主要的方法包括基于物理原理的建模方法和基于数据挖掘的建模方法。
1. 基于物理原理的建模方法基于物理原理的建模方法是通过对化工过程的质量守恒、能量守恒和动量守恒等基本原理的数学表示,得到控制系统的动态模型。
这种方法需要对化工过程的基本原理有深入的了解,以及对各个环节的参数进行准确的估计。
常见的基于物理原理的建模方法包括质量平衡模型、热力学模型、动力学模型等。
这些模型可以通过微分方程、代数方程或差分方程等形式进行描述,并可以通过数值方法进行求解和仿真。
2. 基于数据挖掘的建模方法基于数据挖掘的建模方法是通过对化工过程的历史运行数据进行分析和处理,建立系统的动态模型。
这种方法不需要对化工过程的基本原理有深入的了解,而是通过对数据的挖掘和分析,找出变量之间的关联性和规律性,并利用这些关联性和规律性建立模型。
常见的基于数据挖掘的建模方法包括回归分析、神经网络、支持向量机等。
这些方法可以对大量的历史数据进行处理和分析,并可以预测未来的过程变量。
二、化工过程控制系统动态模型的分析化工过程控制系统动态模型的分析是通过对模型进行数学和统计方法的应用,得到有关系统行为和性能的信息。
主要的分析方法包括稳定性分析、动态响应分析和灵敏度分析等。
1. 稳定性分析稳定性分析是衡量控制系统是否稳定的重要指标。
通过对控制系统动态模型的特征值进行分析,判断系统的稳定性和稳定裕度。
常见的稳定性分析方法包括根轨迹分析、Nyquist稳定性判据和Bode稳定性判据等。
化学工程中的化工过程模拟与优化技术

化学工程中的化工过程模拟与优化技术化学工程是一门应用科学,旨在研究和应用化学原理和工程原理来设计、开发和改进化学过程。
在化学工程中,化工过程模拟与优化技术是一项重要的工具,它可以帮助工程师有效地预测和改进化学过程的性能和效率,从而提高生产效益和降低成本。
化工过程模拟是指使用数学模型和计算机仿真技术来模拟化学过程中的各种物理和化学现象。
通过建立适当的数学模型,可以揭示化学反应的动力学、传热传质的规律以及设备和流体流动的行为。
化工过程模拟能够帮助工程师理解和预测化学过程中的复杂现象,为工艺的设计和优化提供指导。
化工过程模拟技术通常分为静态模拟和动态模拟两种。
静态模拟主要关注化学过程中的平衡状态,通过求解质量守恒、能量守恒和物质平衡等方程,得到化学过程中各个组分的浓度和温度分布。
这对于工程师来说是十分重要的,因为它可以帮助他们选择合适的操作条件和设备参数,以实现既定的产品质量和产量目标。
动态模拟则更多地关注化学过程中的动态行为,如反应速率的变化、设备的响应时间等。
动态模拟可以帮助工程师分析和优化化学过程中的控制策略,以实现更好的过程控制性能。
此外,动态模拟还可以用于分析工艺的安全性和稳定性,有助于优化化学过程的操作和控制。
除了化工过程模拟技术,优化技术也是化学工程中的一个重要工具。
优化技术旨在找到化学过程的最佳操作条件,以达到最小的成本或最大的产量。
常见的优化方法包括数值优化、多目标优化和逻辑优化等。
这些方法可以帮助工程师确定最佳的操作参数、设备规格和生产策略,从而实现资源的最大化利用和生产效益的最大化。
化工过程模拟与优化技术的应用非常广泛。
例如,在石油化工领域,通过模拟和优化炼油过程,可以提高产品的质量和产量,并减少废物和能源消耗。
在制药工业中,化工过程模拟与优化技术可以用于设计和改进药物的合成过程,提高药物的纯度和产量。
在环境保护领域,化工过程模拟与优化技术可以帮助工程师设计高效的废水处理系统,减少对环境的污染。
第三章化工过程系统动态模拟与分析

Fi 1 dC dt Ci C ( Fi Fo )t V0
积分得到
Fi ln(Ci - C) lnFi - Fo t V0 B Fi Fo
• 其中,B为积分常数。 • 将初期条件:t=0时,C=0代入式,可以解出B,于是 可以化简为:
C Ci - Ci V
HINT
• 运用化学反应工程课程中关于化学反应计量学的 知识,还可以对上述模型进行简化。 • 仅对几个着眼组分写出质量守恒式(3-20),减 少模型涉及的常微分方程的个数。
• 其它非着眼组分的浓度,可以利用“在化学反应 过程中,所涉及的每一种元素的总原子数守恒” 这一化学计量学基本原理,通过相应的代数方程 (组)来推算。
dci V F (ci , f ci ) VRi , dt
i 1,2,...,M。 (3 - 20)
其中,V、F分别代表反应区容积和加料容积流量; Ci 、Ci,f分别代表反应器内和加料中第i组分的浓度; t表示时间;Ri表示因化学反应引起的第i个组分浓度 的变化速率
• 反应区能量守恒
•根据对过程系统中状态变量分布特征的不同描述方式:
集中参数模型 分布参数模型 多级集中参数模型
•根据建立模型的不同方法:
统计模型 确定性模型 介于两者之间的半经验模型
根据对过程系统中状态变量分布特征的不同 描述方式
• 集中参数模型
状态变量在系统中呈空间均匀分布 (强烈搅拌的反应罐)
• 分布参数模型
• 动态特性还可以用于辨识某些系统的结构、过程的机 理和估计描述系统性能的模型参数,甚至作为诊断过 程系统运行故障的手段
精细化学品生产中: 间歇蒸馏、间歇反应、半连续反应; 连续过程的开、停工阶段,系统的状态也随时间变化的。 非线性过程系统的操作、设计和控制等工程实际问题,定 态多重性、定态稳定性、参数敏感性等系统定性分析的内 容也只有通过其内在的、动态分析的角度才能解决。
化工过程系统动态模拟与分析技术讲义

化工过程系统动态模拟与分析技术讲义首先,动态模拟和分析技术是通过建立化工过程的动态模型,模拟其
在不同条件下的运行过程,实现对系统的动态行为进行预测和分析。
这种
模型通常由一系列的微分方程组成,通过对关键参数的输入和改变,可以
模拟出系统在不同操作条件下的响应和效果。
动态模拟和分析技术的基本
原理是基于物质平衡、能量平衡和动量平衡等基本原理建立的。
动态模拟和分析技术在化工领域具有广泛的应用。
首先,它可以用来
优化工艺设计,通过模拟不同的工艺方案,找到最佳的操作条件,以降低
生产成本和提高产量。
其次,它可以用来解决工艺运行中的问题,比如控
制系统设计和故障诊断等。
此外,动态模拟和分析技术还可以用来评估化
工过程对环境的影响,帮助工程师们设计和选择更加可持续和环保的工艺。
随着计算机技术的不断发展,动态模拟和分析技术也在不断进步和完善。
在模型的建立和求解方面,现代动态模拟软件已经具备了更高的计算
速度和更精确的数值求解算法。
另外,数据的采集和处理技术的进步,也
为动态模拟和分析技术的应用提供了更多的可能性。
比如,数据驱动建模
和机器学习等方法,可以通过对历史数据的分析和挖掘,帮助工程师们更
好地理解和优化化工过程系统的运行。
总之,动态模拟和分析技术是化工过程优化和分析的重要工具。
它能
够帮助工程师们更好地理解和优化化工过程系统的运行,提高生产效率和
降低成本。
随着计算机技术和数据处理技术的不断进步,动态模拟和分析
技术将会得到更广泛的应用和发展。
化工过程动态模拟研究综述

图3.17调节温度控制器后,反应温度、4-CBA、CO变化曲线
运行CTA加氯反应过程的动态模型至稳定后,加氧反应器内 温度、压力分布曲线如图3.3所示,加氢反应器内4-CBA、PT 酸、4-HMBA、BACID分布曲线则如图3.4所示。
CTA和饱和水的流量发生变化都会影响加氧反应的进行,从而导致4-CBA没有 完全反应,其浓度会超过25个ppm,对PTA质量产生较恶劣的影响。故本小 节将会讨论当CTA和饱和水流量增加和减少5%时,加氧反应受到的影响以及 4-CBA、产物4-HMBA、BACID、PT酸、CO浓度的动态特性。将模型动态运 行至稳定,1小时后改变CTA负荷和饱和水流量。
在石油石化炼油方面的应用
FCC 主分馏塔设计、优化; 3、气体装置设计与优化; 4、汽油稳定、石脑油分离和气提、反应精馏、变换和甲 烷化反应器、酸水分离器、硫和 HF 酸烷基化、脱异丁烷 塔等设计与优化; 5、在气体处理方面:可完成胺脱硫、多级冷冻、压缩机 组、脱乙烷塔和脱甲烷塔、膨胀装置、气体脱氢、水合物 生成/抑制、多级、平台操作、冷冻回路、透平膨胀机优 化。
BACID=1000000*STREAMS("24").Fmcn("BACID")/STREAMS("24").Fmcn('TA")
HMBA=1000000*STREAMS("24").Fmcn("HMBA")/STREAMS("24").Fmcn("TA"); PT=1000000*STREAMS("24").Fmcn("PT")/STREAMS("24").Fmcn("TA"); 其中“CBA4、BACID、HMBA、PT酸”表示加氧反应器底部出料中各产物质量流 量与TA质量流量比(变量CBA4即杂质4-CBA,变量HMBA为中间产物4-HMBA),且 量纲均为10_6。
动态模拟与分析2

5000
T ??xB,
xB ?0??
0
xA0 = 1; xB0 = 0; % 初始值 t = 0:0.1:1; % 时间划分 h = 0.1; % 步长 A = zeros(1,11); A(1) = xA0; B = zeros(1,11); B(1) = xB0; for i = 1:10
[dA,dB] = fs(A(i),B(i)); A_ = A(i) + h*dA; B_ = B(i) + h*dB; [dA_,dB_] = fs(A_, B_); A(i+1) = A(i) + 0.5*h*(dA + dA_); B(i+1) = B(i) + 0.5*h*(dB + dB_); end
第六章 化工过程动态模拟与分析
主要内容 一、化工过程的动态模型 二、CSTR的动态模型 三、状态空间分析法 四、常微分方程(组)求解
6.1 化工过程的动态模型
1、动态特性是化工过程系统最基本的特性之一 间歇过程、开(停)工过程、系统的老化 …
2、化工过程动态模型分类模型Biblioteka 型数学形式应用实例
集中参数模型
二、一阶常微分方程组初值问题
一阶常微分方程初值问题的改进欧拉法:
~yi?1 ? yi ? h f ( xi , yi )
yi?1 ?
yi ?
h 2
[
f
(
xi
,
yi
)
?
f (xi?1, ~yi?1)]
(i ? 0, ... , n ? 1)
一阶常微分方程组:??
?
y' z'
? ?
f ?x, y, z?, y?x0 ?? g?x, y, z?, z?x0 ??
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工过程系统动态模拟和综合分析
3.1 化工过程系统的动态模型 3.1.1 化工过程系统的动态特性 3.1.2 化工过程系统的动态模型 3.1.3 确定性动态模型的数学处理
3.2 连续搅拌罐反应器的动态特性 3.2.1 动态数学模型 3.2.2 模型的数学处理与应用(Ⅰ) 3.2.3 模型的数学处理与应用(Ⅱ)
化工过程系统动态模拟和综合分析
例:对CSTR的开工过程
du f (u,)
dt t 0时,u u(0) u0
其中u、u0 分别代表任一时刻和起始时刻的状态向量, μ代表未知而且待估计的参数向量。
• 模型参数估计就是为了确定参数向量µ的最优值,使限制 下的解最大限度地逼近已采集到的状态变量在不同时刻的 离散数据。
混合模型
上述二~三类模型的混合形式 多个单元过程组合而成的系统
化工过程系统动态模拟和综合分析
人工智能技术
• 人工智能技术推动了过程系统模型描述和性能模拟方 法的进步。
• 突出反映在人工神经网络技术在过程系统性能模拟方 面的应用。
• 对信息的处理响应速度快,自适应性强,具有自学习 能力等,在过程系统动态模拟与控制方面有独特的优 势
• 状态变量在不同时刻的采集值是已知的,因而F的值取决 于求解时待定参数向量µ的取值,F是µ的函数。
• 参数估计就是寻找µ的最优值,使F达到全局最小值。
化工过程系统动态模拟和综合分析
过程系统的定性分析
• 由于化工过程系统通常具有很强的非线性性质, 因而有可能出现定常态多重性、定常态稳定性、 参数敏感性、自激振荡,甚至更复杂的时间序 列结构。
3.3 精馏塔的动态特性 3.3.1 动态数学模型 3.3.2 模型的数学处理与应用
3.4 变压吸附过程的模拟与分析 化工过程系统动态模拟和综合分析
3.1 化工过程系统的动态模型
过程系统的动态特征
★动态特性是化工过程系统最基本的性之一
间歇过程、连续过程的开停工、 连续过程本征参数依时变化、 控制系统的合成、过程系统局部与全局特性分析 利用人为非定常态操作强化过程系统性能和实现技术目标
化工过程系统动态模拟和综合分析
NM
MF i n
i
(uid,j uic,j)2f( )
j
其中 F称为最优化的目标函数,或评价函数。 udi,j代表第i个状态变量在j时刻的采集数据。 uci,j代表第i个状态变量在j时刻的模型计算值,即在j
时刻的解。
• 最优化的目标函数被定义为在M个离散时刻状态变量的采 集值与模型计算值偏差的平方和。
非线性过程系统的操作、设计和控制等工程实际问题, 定态多重性、定态稳定性、参数敏感性等系统定性分 析的内容;
诸如间歇过程的优化、变压吸附、变温吸附、化学反 应器强制周期操作化等工过人程系为统动非态模定拟和态综合操分析作技术的发展;
过程系统的动态模型
解决上述问题,最核心、最本质的知识,是如何科学地 描述过程系统动态特性的规律,这意味着必需选择或者建立 一种既能反映过程系统本质特性,又相对简单明了的数学模 型。
处理的是更一般的情况,模型普遍适用性更强。
化工过程系统动态模拟和综合分析
化工过程系统确定性动态模型的数学表达形式
模型类型 模型表达形式
应用例
集中参数模型 代数—常微分方程组
理想搅拌罐反应器动态模型,等
分布参数模型 代数—偏微分方程组
填料塔、管式反应器动态模型等
多级集中参数模型 代数-常微分方程组
板式塔动态模型,串连CSTR动 态模型,等
化工过程系统动态模拟和综合分析
确定性动态模型的数学处理
• 正问题—模型方程组的求解 • 逆问题—模型参数的估计 • 过程系统的定性分析
化工过程系统动态模拟和综合分析
正问题—模型方程组的求解
• 所有的参数(包括设计、物性、传递和操作参数等)都已 给定,利用模型来预测系统的状态分布及其在时间域的运 动(变化)情况。
★动态特性还可以用于辨识某些系统的结构、过程的机 理和估计描述系统性能的模型参数,甚至作为诊断过程 系统运行故障的手段化工过程系统动态模拟和综合分析
精细化学品生产中: 间歇蒸馏、间歇反应、半连续 反应;
连续过程的开、停工阶段;
某些连续过程,由于催化剂迅速失活或者催化剂在系 统内循环的过程中次第经过处于不同操作条件的区域, 如循环流化床催化反应器中的过程和催化剂迅速失活 的固定床催化反应器中的过程;
模型化(Modeling)是现代化学工程方法论的重要组成部分, 尤其是过程动态学的核心。
化工过程系统动态模拟和综合分析
模型的分类
•根据对过程系统中状态变量分布特征的不同描述方式:
集中参数模型 分布参数模型 多级集中参数模型
•根据建立模型的不同方法:
统计模型(经验模型) 确定性模型 (机理模型) 介于两者之间的半经验模型
预测给定操作条件下系统的性能,对系统的操作性能 进行模拟;
考察某些模型参数的变化对系统性能的影响,系统的 参变性能分析;
在控制系统设计中利用模型来帮助“发生”系统的输 入—输出关系
化工过程系统动态模拟和综合分析
逆问题—模型参数的估计
• 已经从实验装置或生产装置上采集到在非定常条 件下系统状态变量随时间变化的信息,要求从中 估计出描述这一非定常态过程的模型中某些未知 参数的数值------已知状态在时间域的运动情况, 要求估计模型参数。
化工过程系统动态模拟和综合分析
根据建立模型的不同方法
• 统计模型(经验模型)
由统计、关联输入输出数据而得,表达方式简单, 只需少量计算就能得到结果
弱点:不能或者可以略作小范围的外推
• 确定性模型(机理模型)
通过对系统或者系统内某个微元,列出质量、能 量和动量守恒关系式,系统(或微元)内外质量、能 量和动量交换速率系数计算式,相关的相平衡关系, 化学反应速率表达式和化学反应平衡常数计算式。
化工过程系统动态模拟和综合分析
根据对过程系统中状态变量分布特征的不同描述方式
• 集中参数模型
状态变量在系统中呈空间均匀分布 (强烈搅拌的反应罐)
• 分布参数模型
状态变量在系统内呈非均匀,但一般是连续的空间分布 (管式反应器、变压吸附塔)
• 多级集中参数模型
• 一般用于描述多级串连、级内状态变量均匀分布的过程 (板式塔内的传质分离过程)