《简单的轴对称图形》典型例题
7.2(1)简单的轴对称图形 - 副本 - 副本

(3)过点C折OA边的垂线,
得到新的折痕CD,
O
A B
D
A A
其中点D是折痕与OA的交点,即垂足。 (4) 将纸打开, 新的折痕与OB 的交点为 E 。
想一想
B
E
C C B A B A A A
O
D
(2)在上述的操作过程中, 你发现了哪些相等的线段? 说说你的理由。
证明: CE OB CD OA CEO CDO 90
求BC多长? 解:因为 DE是AB的垂直平分线,
所 所以 DB=DA 因为 △ DBC的周长 =BC+BD+DC
=BC+DA+DC=BC+AC =BC+14 所以 BC+14=24 B BC=10
A E D
B
C
答:BC的长度为10 cm
课堂小结
角是轴对称图形,
角平分线所在的直线 是它的对称轴.
线段是轴对称图形
中 点 垂直
C C
线段是轴对称图形, 它的一条对称轴垂直于这条线段并且 平分它,这样的直线 叫做这条线段的 A A 垂直平分线(简称中垂线)
O
B B
(2)线段垂直平分线上的C点到这条线段两个端点 的距离CA与CB相等吗?
说说你的理由吗?在折痕上领取一点,再试一试
线段垂直平分线性质 线段垂直平分线上的点到这条 线段两个端点的距离相等.
C D
CA=CB
DA=DB
B
A
O
随堂练习:
1、如图,在Rt△ ABC中,BD 是B的平分线, DE AB, 垂足为E. DE与DC相等吗? 为什么?
D A E
解:DE=DC
B
典型的轴对称图形练习题(带答案)

典型的轴对称图形练习题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3C .2D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.AO PAECB D13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.OB22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案第一章轴对称图形1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。
七年级下数学《简单的轴对称图形》典型例题

5.有一个三角形的支架如图所示,
,小明过点 A 和 BC 边的中点
D 又架了一个细木条,经测量
,你在不用任何测量工具的前提下,能得
到
和
的度数吗?
6.请你在纸上画一个等腰三角形 ABC(如图),使得
.
(1)请你判断一下 与 有什么大小关系呢?你的依据是什么? (2)请你再深入地思考一个问题:若只知道 与 相等,请你判断一下 这个三角形是什么形状的呢?并说明你的探索思路. (3)由第(2)你会得到一个什么结论呢?请用一句话概括出来. (4)现在给出两个三角形(如图),请你把图(1)分割成两个等腰三角形, 把图(2)分割成三个等腰三角形.动动脑筋呀!
例 3 分析:由
可知三角形 ADE 是等边三角形,而
和
是等腰三角形,可根据等腰三角形等边对等角的性质求出相关的角的度
数.
解:∵
,(已知)
∴
是等边三角形. ∴
又∵
,∴
.
而
,∴
.
同理可得
,∴
说明:在一个图形中,有时出现不止一个等腰三角形,可以由每个等腰三角
形中的两个底角相等,找出相应的一些角的关系,利用三角形内角和定理,进一
用的,在数学的学习时这样的情况是会经常出现的。
例 2 分析:本题依据线段垂直平分线的性质可以得到.
解: 是 AB 的垂直平分线
∴
∴
厘米
是等腰三角形
∴
厘米
∴
的周长是
厘米
例 3 分析:注意到题中所给的条件 AB=AC,得到三角形为等腰三角形。利
用等腰三角形的性质对问题(1)可得
;对问题(2)考虑到
所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为 可得
轴对称图形的练习题

轴对称图形的练习题轴对称图形的练习题轴对称图形是数学中一个有趣且常见的概念。
它们在几何形状的研究中起着重要的作用。
通过练习轴对称图形的题目,我们可以更好地理解轴对称性质以及如何判断一个图形是否具有轴对称性。
本文将给出一些有趣的练习题,帮助读者巩固对轴对称图形的理解。
练习题1:判断轴对称图形首先,让我们来判断一些常见的图形是否具有轴对称性。
请仔细观察下面的图形,并在心中判断它们是否具有轴对称性。
然后,将你的答案写下来。
1. 一个圆2. 一个正方形3. 一个长方形4. 一个等边三角形5. 一个五角星答案:1. 一个圆:具有轴对称性。
无论从哪个方向旋转180度,都可以得到与原图形完全相同的图形。
2. 一个正方形:具有轴对称性。
以正方形的中心为轴,将正方形旋转180度,可以得到与原图形完全相同的图形。
3. 一个长方形:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
4. 一个等边三角形:具有轴对称性。
以三角形的中线为轴,将三角形旋转180度,可以得到与原图形完全相同的图形。
5. 一个五角星:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
练习题2:找出轴对称图形的轴线现在,让我们来找出一些具有轴对称性的图形的轴线。
请仔细观察下面的图形,并在心中想象它们的轴线。
然后,将你的答案写下来。
1. 一个心形2. 一个蝴蝶形状3. 一个字母“X”4. 一个字母“H”5. 一个字母“O”答案:1. 一个心形:具有轴对称性。
心形的轴线位于心形的中心,将心形沿轴线旋转180度,可以得到与原图形完全相同的图形。
2. 一个蝴蝶形状:具有轴对称性。
蝴蝶形状的轴线位于蝴蝶的中心,将蝴蝶形状沿轴线旋转180度,可以得到与原图形完全相同的图形。
3. 一个字母“X”:具有轴对称性。
字母“X”的轴线位于字母“X”的中心,将字母“X”沿轴线旋转180度,可以得到与原图形完全相同的图形。
(完整版)七年级数学简单的轴对称图形练习题

1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。
八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。
例题1:下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 梯形。
D. 正方形。
解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。
2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。
3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。
4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。
答案为D。
例题2:正六边形的对称轴有()条。
A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。
2. 所以正六边形的对称轴有6条。
答案为B。
二、线段垂直平分线性质的例题。
例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。
2. 已知△BCE的周长为14,即BE + EC+BC = 14。
3. 又因为AE = BE,所以AC+BC=14。
4. 已知BC = 6,所以AC = 14 - 6=8。
5. 因为AB = AC,所以AB = 8。
答案为C。
例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。
B. l平分但不垂直AB。
C. l垂直且平分AB。
D. l与AB相交但不一定垂直平分。
解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。
2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。
轴对称典型题(最全)

轴对称填空选择一、填空题1..角是轴对称图形,其对称轴是.2..点M(-2,1 )关于x 轴对称点N 的坐标是.3..如图,在△ABC 中,AB=AC=14 cm,边AB 的中垂线交AC 于D,且△BCD 的周长为24cm,则BC= .4.下列数中,成轴对称图形的有个5..等腰△ABC 中,AB=AC=10 ,∠A=30 °,则腰AB 上的高等于.6 .一个等腰三角形的一个外角等于110 °,则这个三角形的三个内角分别是.7 .一辆汽车牌在水中的倒影为,则该车牌照号码为.8 .仔细观察下图的图案,并按规律在横线上画出合适的图形.9. (1 )等腰三角形的一个内角等于130 °,则其余两个角分别为;(2)等腰三角形的一个内角等于70 °,则其余两个角分别为.10. 如图14 -112 所示,△ABC 是等边三角形,∠ 1= ∠2= ∠3,则∠BEC 的度数为11 .如图所示,在△ABC 中,∠C=90 °,DE 垂直平分AB ,交AB 于E ,交BC 于D,∠1=B 1∠2,则∠B= 2E D A C12. 如图14-111 所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69 °,则∠A 等于13 、如图,在△ABC 中,∠C=90 °,AB 的垂直平分线交BC 于D,若∠B=20 °,则∠DAC=14 、等腰三角形的周长是25 cm, 一腰上的中线将周长分为3∶2 两部分,则此三角形的底边长为_.15 .点(2,5)关于直线x=1 的对称点的坐标为.16 .已知点A(x,-4 )与点B(3 ,y)关于y 轴对称,那么x+y 的值为.17. 如图14 -116 所示,∠A=15 °,AB=BC=CD=DE=EF ,则∠DEF= .18. 如图14 -117 所示,在△ABC 中,∠C=90 °,A D 平分∠BAC ,交BC 于点D ,CD=3 ,BD=5 ,则点D 到AB 的距离为.19. 如图14 -118 所示,在△ABC 中,AB=AC ,∠A=60 °,BE ⊥AC 于E ,延长BC 到D ,使CD=CE ,连接DE,若△ABC的周长是24 ,BE= a,则△BDE 的周长是.20 .已知:点P 为∠AOB 内一点,分别作出P 点关于OA、OB 的对称点P1,P2,连接P1P2 交OA 于M,交OB 于N,P1P2=15 ,则△PMN 的周长为.P1BMPO N AP221 .如图,Rt △ABC ,∠C =90 °,∠B=30 °,BC =8 ,D 为AB 中点,P 为BC 上一动点,连接AP 、DP, 则AP +DP 的最小值是22 .如图,点B、D、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF, ∠A =20 o,则∠FEB =度.二、选择题1. 等腰三角形的一边等于5,一边等于12 ,则它的周长为( )A.22B.29C.22 或29D.172. 如图14-110 所示,图中不是轴对称图形的是( )3. 已知点 A (-2 ,1)与点 B 关于直线x=1 成轴对称,则点 B 的坐标为()A.(4 ,1)B.(4 ,-1)C. (-4,1)D. (-4 ,-1)4 .如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是().5..下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.正方形C.等边三角形D.长方形6..已知点P(-2,1),那么点P 关于x 轴对称的点P 的坐标是()A.(-2 ,1) B .(-2,-1)C.(-1 ,2) D .(2 , 1 )7..桌面上有A 、B 两球,若要将 B 球射向桌面任意一边,使一次反弹后击中 A 球,则如图所示8 个点中,可以瞄准的点有()个.A. 1 B. 2C.4 D .6P8 、.下列几何图形中,是轴对称图形且对称轴的条数大于 1 的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线 .A. 3 个B. 4 个C. 5 个D. 6 个9 .下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的A轴对称图形 . 正确的说法有( )个A . 1 个B . 2 个C . 3 个D . 4 个EBCD10 .如图:等边三角形 ABC 中, BD = CE , AD 与 BE 相交于点 P ,则∠APE 的度数是 () A .45 °B . 55 °C . 60 °D . 75°11. 等腰梯形两底长为 4cm 和 10cm ,面积为 21cm 2 ,则 这个梯形较小的底角是( )度.A . 45°B . 30°C . 60°D . 90 °12 .下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有()A 、2 个B 、3 个C 、4 个D 、 5 个︰13 .小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A 、21: 10B 、10:21C 、10 : 51D 、 12: 0114 .如图所示,共有等腰三角形()A 、5 个B 、4 个C 、3 个D 、2 个A D 72E723636BC15 .先将正方形纸片对折 ,折痕为 MN ,再把 B 点折叠在折痕 MN 上,折痕为 AE ,点 B 在 MN 上的DMA对应点为 H ,沿 AH 和 DH 剪下 ,这样剪得的三角形中( )A.AH DH AD B .AH DH ADC.AH AD DH D .AH DH AD16 .平面内点A(-1,2) 和点B(-1,6) 的对称轴是()CA、x 轴B、y 轴C、直线y=4D、直线x=-1A A D E B17.如图,在△ABC 中,∠ACB= 100 °,AC=AE ,BC=BD ,则∠DCE 的度数为()A.20 ° B .25 °C.30 °D.40 °EDB C18.如图,△ABC 中,AB AC , A 30 ,DE 垂直平分AC ,则BCD 的度数为()CD A.80 B.75 C.65 D.45A E B19 、如图,△ABC 中,∠C = 90 °,AC = BC,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cm B.8cm C .6cm D .9cm20 、已知等腰三角形的两边a,b,满足2a 3b 5 +(2 a+3b-13) 2=0 ,则此等腰三角形的周长为( )A.7 或8B.6 或10C.6 或7D.7 或1021 、小宇同学在一次手工制作活动中,先把一张矩形纸片按图 1 的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图 2 的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是cm .22 .在下列说法中,正确的是()A、如果两个三角形全等,则它们必是关于直线成轴对称的图形B、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C、等腰三角形是关于底边中线成轴对称的图形D、一条线段是关于经过该线段中点的直线成轴对称的图形23 .若一个图形上所有点的纵坐标不变,横坐标乘以- 1 ,则所得图形与原图形的关系为()A、关于x 轴成轴对称图形B、关于y 轴成轴对称图形C、关于原点成中心对称图形D、无法确定24 如图,已知线段AB 的端点 B 在直线l 上(AB 与l 不垂A直)请在直线l 上另找一点C,使△ABC 是等腰三角形,这l样的点能找( )BA 2 个B 3 个C 4 个D 5 个B25 .如图 B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形,若CE =15cm ,CPCD =6cm ,则AC =,∠ECD =.O AD26 .如图:已知∠AOP= ∠BOP=15 °,PC ∥OA ,PD ⊥OA ,若PC=4 ,PD= ()A .4 B.3 C.2 D.127 .∠AOB 的平分线上一点P 到OA 的距离为5 ,Q 是OB 上任一点,则()A .PQ >5B .PQ≥5C .PQ <5 D.PQ ≤528 .等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为()A .3cm 或5cm B.3cm 或7cm C .3cm D.5cm29 .如图,在Rt △ABC 中,∠ACB =90 °,∠BAC 的平分线交BC 于D. 过C 点作CG ⊥AB 于G ,交AD 于E. 过D 点作DF ⊥AB 于F. 下列结论:①∠CED =∠CDE ;②SAEC ︰SAEGAC ︰AG ;③∠ADF =2∠ECD ;④SCEDS DFB ;⑤CE =DF. 其中正确结论的序号是【】A.①③④B.①②⑤C.③④⑤D.①③⑤30 .如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ .以下六个结论:① AD =BE; ②PQ ∥AE; ③AP =BQ; ④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE. 其中不正确的有【】个A.0 B.1 C .2 D .3三、解答题1 、在网格中作出关于直线m 的相应对称图作出△PNM 关于直线n 的对称图形2 、如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题:(1 )画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B1C1;(2) 在DE 上画出点P,使PB1PC 最小;(3 )在DE 上画出点Q,使QA QC 最小。
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单的轴对称图形》典型例题
例1 想一想等边三角形的三个内角各是多少度,它有几条对称轴。
例2 如图,已知ABC ∆是等腰三角形,AC AB 、都是腰,DE 是AB 的垂直平分线,12=+CE BE 厘米,8=BC 厘米,求ABC ∆的周长.
例3 AC AB ABC =,:中在已知∆
_____
,100)3(____,30)2(___
__,,70)1(00为则它的另外两内角分别若一角为为则它的另外两内角分别若一个角为则若=∠=∠=∠C B A
例 4 如图,已知:在ABC ∆中,AC AB =,︒=∠110ACD ,求ABC ∆各内角的度数.
例5 如下图,△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,用轴对称的性质证明:BE =CE .
例6如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数.
参考答案
例1 分析:由等腰三角形的性质易知等边三角形三个内角相等都是60°,它有三条对称轴。
解:三个内角都是60°,它有三条对称轴。
说明:等边三角形是等腰三角形的特例,所以等腰三角形的性质对其都是适用的,在数学的学习时这样的情况是会经常出现的。
例2 分析:本题依据线段垂直平分线的性质可以得到.
解:DE 是AB 的垂直平分线
∴BE AE =
∴12=+CE AE 厘米AC =
ABC ∆ 是等腰三角形
∴12==AC AB 厘米
∴ABC ∆的周长是3281212=++=++BC AC AB 厘米
例3 分析:注意到题中所给的条件AB =AC ,得到三角形为等腰三角形。
利用等腰三角形的性质对问题(1)可得 55,55=∠=∠C B ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为 180可得此等腰三角形的顶角只能为 100这一种情况。
略解:(1) 55,55=∠=∠C B (2)另外两内角分别为: 120,30;75,75(3) 40,40
说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。
例4 分析:因为ABC ∆是等腰三角形,因此,ACB ABC ∠=∠,所以只要求出ACB ∠的度数,就可以求出ABC ∠的度数. 根据三角形内角和定理,又可求出A ∠的度数.
解:∵ACB ∠和ABD ∠是邻补角,又︒=∠110ACD ,
∴ ︒=∠70ACB
∵ AC AB =,∴︒=∠=∠70ACB ABC (等边对等角)
∴ ︒=︒-︒-︒=∠407070180A
说明:在等腰三角形中,两个底角相等,内角和为︒180,所以只要知道等腰
三角形的一个内角,就很容易求出它的另外两个角.
例5 证明:∵△ABC中,AB=AC,BD=CD(已知),
∴AD⊥BC(等腰三角形三线合一),
∴AD垂直平分线段BC,
(在具有轴对称的图形中,如能证明和利用轴对称的性质,有时解题会有意想不到的功效)
∴点C和点B关于直线AD对称,
又∵点E在对称轴AD上,
∴BE=CE(轴对称的性质).
说明:本题也可用三角形全等、等腰三角形的性质予以证明,请大家自行完成,并对比哪一种证法更为简洁.
例6分析:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.等腰三角形的“三线合一”是等腰三角形的重要性质.解:因等腰三角形的“三线合一”,
所以AD既是△ABC的顶角平分线又是底边上的高,
∴∠ADC=90°.
∴∠A=180°-30°-30°=120°,
∴
︒
=
︒
=
∠
=
∠60
2
120
2
1
A
.。