人教版七年级数学下册导学案
人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
人教版七年级数学下册导学案

导学案姓名:______________ 班级_____________时间_______________实际问题与二元一次方程组学习目标:1.能够找出实际问题中的已知量和未知量,分析它们之间的数量关系,列出方程组。
2.会列方程组解决与行程有关的问题。
学习重点:以方程组为工具分析,解决含有多个未知数的实际问题,特别是行程问题。
学习难点:确定解题策略,比较估算与精算计算。
准备工作:1.路程、时间、速度之间的关系2.顺水速、水速、静水速之间的关系3.逆水速、水速、静水速之间的关系导---------创设情境导入新课养牛场原有30只大牛和15只小牛,一天约需用饲料675千克,一周后又购进12只大牛和5只小牛,这时一天约需用饲料940千克。
饲料员李大叔估计平均每只大牛1天约需用饲料18~20千克,每只小牛1天约需用饲料7~8千克。
你能否通过计算检验他的估计。
学---------探究学习某传在一河流中顺流航行28千米用了2小时,逆水航行24千米用了3小时,则水流速度和船在静水中的速度各是多少?题中有哪些已知量和未知量?题中存在哪些等量关系?展---------展示提升小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进。
已知两人在上午8时同时出发,到上午10时两人还相距36千米,到中午12时,两人又相距36千米,求AB两地之间的路程是多少?题中有哪些已知量和未知量?题中存在哪些等量关系?讲---------讲解方法归纳步骤某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟。
如果他以每小时75千米高速行驶,则可提前24分钟到达乙地。
求甲乙两地之间的距离?题中涉及几个未知量?题中存在哪些等量关系?列方程组解应用题的一般步骤是什么?练---------巩固练习,应用新知1.一只船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为每小时x千米,水流速为每小时y千米,则如何列方程组。
新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)第九章导学案第九章不等式与不等式组课题 9.1.1不等式及其解集【学习目标】了解不等式的解、解集的概念,会在数轴上表示出不等式的解集.【学习重点】不等式的解集的概念及在数轴上表示不等式的解集的方法。
【学习难点】不等式的解集的概念。
【导学指导】一、知识链接1、什么叫等式?2、什么叫方程?什么叫方程的解?3.问题1:一辆匀速行驶的汽车在11:20时距离A地50千米。
(1)要在12:00时刚好驶过A地,车速应为多少?(2)要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?二、自主探究阅读课本114-115页,回答下面的问题1.不等式:_____________________________________2.不等式的解:___________________________________________3.思考:判断下列数中哪些是不等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?4.不等式的解集:_____________________________________5.解不等式:_____________________________________6、不等式的解集在数轴上的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115页练习1、2、32.下列式子中哪些是不等式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不等式的是____________,属于一元一次不等式的是__________(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于3的非负整数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中,正确的是( ) A . 不是负数,则 B . 是大于0的数,则C .不小于-1,则D .是负数,则3、用数轴表示不等式x<34的解集正确的是( )ABCD4.在数轴上表示下列不等式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性质 (1)【学习目标】掌握不等式的性质;会根据“不等式性质”解简单的一元一次不等式,并能在数轴上表示其解集;【学习重点】 理解并掌握不等式的性质并运用它正确地解一元一次不等式。
人教版七年级下册数学全册导学案

第1课时:5.1.1 相交线 导学案【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质。
【学习过程】一、温故知新(5分钟)各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报. 二、自主探索(15分钟)探索一:完成课本P2页的探究,填在课本上. 你能归纳出“邻补角”的定义吗?. “对顶角”的定义呢?.自学检测一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:____ _ ___ __; (2)写出∠COE 的邻补角:__;(3)写出∠BOC 的邻补角:____ _ ___ __; (4)写出∠BOD 的对顶角:_____.2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:. 自学检测二:1.如图,直线a,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____。
三、当堂反馈(25分钟)图1ba 4321第1题FE O DCB A 第2题FEO DC BA第3题预备题:如图,已知直线a 、b 相交。
∠1=40°,求∠2、∠3、∠4的度数 解:∠3=∠1=40°()。
新人教版七年级数学下册全册导学案-

1课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过区分对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确识别对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:〔1〕∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
用量角器量一量这两个角的度数,会发现它们的数量关系是 〔2〕∠AOC 和∠BOD 〔有或没有〕公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。
用量角器量一量这两个角的度数,会发现它们的数量关系是 。
3.用语言概括邻补角、对顶角概念.的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角_O_D_C _B _A2性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【稳固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,标准地写出求解过程.2.练习:完成课本P 3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?〔小组交流,互助解决〕 【达标测评】1.如下图,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,假设∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
最新人教版七年级数学下册全套导学案(精心整理)

最新人教版七年级数学下册全套导学案
(精心整理)
导学案是为学生提供指导和辅助研究的教学资料,本文档为最
新人教版七年级数学下册全套导学案的精心整理。
文档概述:
- 本文档是根据最新人教版七年级数学下册编写的导学案。
- 导学案旨在帮助学生更好地理解和掌握数学知识,提高数学
研究效果。
- 导学案的内容涵盖了七年级数学下册的所有章节,由专业教
师精心整理。
- 导学案以简洁明了的语言和图表形式呈现,便于学生理解和
记忆。
导学案特点:
1. 简洁明了:导学案使用简洁明了的语言和图表,将数学知识
点呈现给学生,方便理解和记忆。
2. 重点明确:每个导学案都明确列出本课的重点知识点和难点,并针对这些知识点进行详细解析。
3. 练丰富:导学案中配有大量的练题,帮助学生巩固和应用所
学知识。
4. 拓展延伸:导学案还提供一些拓展和延伸的问题,供学生进
一步思考和探索。
使用导学案的好处:
- 帮助学生在课前预,掌握基本概念和知识点。
- 引导学生在课堂上更好地理解和消化所学的知识。
- 提供大量的练题,让学生熟练掌握知识并培养解题能力。
- 拓展延伸部分让学生更深入地探索数学的魅力。
总结:
最新人教版七年级数学下册全套导学案是一份精心整理的研究
资料,旨在帮助学生更好地掌握和应用数学知识。
通过使用导学案,学生可以更有针对性地进行研究,提高数学研究效果。
愿本文档能
够对广大学生有所帮助。
以上是对《最新人教版七年级数学下册全套导学案(精心整理)》的简要介绍,希望对您有所帮助。
人教版七年级下册数学全册导学案.doc

第1课时:5.1.1 相交线 导学案【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质. 【学习过程】一、温故知新(5分钟)各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、自主探索(15分钟)探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗? . “对顶角”的定义呢? .自学检测一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:____ _ ___ __; (2)写出∠COE 的邻补角: __; (3)写出∠BOC 的邻补角:____ _ ___ __;(4)写出∠BOD 的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由. 请归纳“对顶角的性质”: . 自学检测二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈(25分钟) 预备题: 如图,已知直线a 、b 相交。
∠1=40°,求∠2、∠3、∠4的度数 解:∠3=∠1=40°( )。
∠2=180°-∠1=180°-40°=140°( )。
七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下数学全册导学案第五章 相交线与平行线 课题:5.1.1 相交线学习目标:1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算.3.通过辨别对顶角与邻补角,培养识图的能力. 学习重点:邻补角和对顶角的概念及对顶角相等的性质. 学习难点:在较复杂的图形中准确辨认对顶角和邻补角.学习过程:一.自主学习(5-7分钟)1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? .2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?二.合作探究(5-8分钟)1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成 几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1). ∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是(2). ∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是 .2.根据观察图形和度量角度完成下表:两直线相交所形成的角有 对顶角有 邻补角有 数量关系式有 4321ODC BA3.用语言概括邻补角、对顶角概念.的两个角叫邻补角. 的两个角叫对顶角.OA BC D4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 三.巩固运用(人人完成,分组展示10-15分钟)1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解关键过程,并写明理由.2.练习:完成课本P 3练习. 四.反思总结(1-3分钟)本节课你学到了什么?重点是什么?难点是什么?困惑是什么?(小组交流,互助解决) 五.达标检测(5-8分钟)1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OFE D CB A3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数. OE D CBA4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba3412六.布置下一课时预习任务 P3-5垂线(1)134ba212121221OD CB A课题:5.1.2 垂线(1)学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线. 2.掌握点到直线的距离的概念,并会度量点到直线的距离. 3.掌握垂线的性质,并会利用所学知识进行简单的推理. 学习重点:垂线的定义及性质. 学习难点:垂线的画法学具准备相交线模型,三角尺,量角器 学习过程: 一.自主学习1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ 2.改变上图中∠1的大小,若∠1=90°,请画出这种图形, 并求出此时∠2、∠3、∠4的大小. 二.合作探究1.阅读课本P 3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况.2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____. 3.垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB 垂直于直线CD , 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图. 4.垂直的推理应用:(1)∵∠AOD=90° ( )∴AB ⊥CD ( ) (2)∵ AB ⊥CD ( )∴ ∠AOD=90°( ) 5.垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例? 三.巩固运用1.用三角尺或量角器画已知直线L 的垂线.(1)已知直线L ,画出直线L 的垂线,能画几条? L小组内交流,明确直线L 的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L 的垂线位置呢?在直线L 上取一点A,过点A 画L 的垂线, 能画几条?再经过直线L 外一点B 画直线L 的垂线,这样E(3)O D CBA (2)O D CBA (1)ODCBA 的垂线能画出几条?B .A . L L从中你能得出什么结论? ____________________________________________ 2.变式训练,请完成课本P 5练习第2题的画图.画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 四.反思总结本节课你有那些收获?还有什么疑难需要帮助解决? 五.达标检测 (一)判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题.1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.(三)解答题.1.已知钝角∠AOB,点D 在射线OB 上.(1)画直线DE ⊥OB (2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.六.布置下一课时预习任务 P5-6垂线(2)E ODC BA课题:5.1.2 垂线(2)学习目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力.2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离.自制学具:硬纸板上和木条,在硬纸板上固定木条L,L外有一点P,另一根可以绕点P转动的木条m. 学习过程:一.自主学习1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? .2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?二.合作探究1.问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点.那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?)2.学具感受自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以绕点P转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3.画图验证(1)画直线L,在L外取一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段最小。
4.归纳结论.连接直线外一点与直线上各点的所有线段中, .简单说成: .5.知识类比(1)垂线段与垂线有何区别联系?(2)垂线段与线段有何区别与联系?6.解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7.探究“点到直线的距离”?定义:(1) 学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。
........ED CBA(2)对照课本P 5图5.1-9,回答线段PO 、PA 1、PA 2、PA 3、……中,哪一条或几条线段的长度是点P 到直线L 的距离?(3) 如果课本P 5图5.1-8中比例尺为1:100000,试计算农田P 到小河的距离有多远? 三.巩固运用例1:判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如图,线段AE 是点A 到直线BC 的距离. (3)如图,线段CD 的长是点C 到直线AB 的距离.例:2:已知直线a 、b,过点a 上一点A 作AB ⊥a,交b 于点B,过B 作BC ⊥b 交a 于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.完成P6练习题 四.反思总结本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下. 五.达标检测1.如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6, 那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.2.如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?3.用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?OlPA3A2A1DCBAbaCBAFE D C B A六.布置下一课时预习任务P6-7同位角、内错角、同旁内角课题:5.1.3同位角、内错角、同旁内角学习目标:1. 理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.毛2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.学习重点:同位角、内错角、同旁内角的识别.学习难点:较复杂图形中同位角、内错角、同旁内角的识别.学具准备:用三根木条自制三线八角用具.学习过程:一.自主学习1.指出右图中所有的邻补角和对顶角?2. 右图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?若都不是,请自学课本P6内容后回答它们各是什么关系的角?二.合作探究1.如图(1),将木条a,b与木条c钉在一起,若把它们看成三条直线则该图可说成“直线和直线与直线相交”也可以说成“两条直线,被第三条直线所截”.构成了小于平角的角共有个,通常将这种图形称作为“三线八角”.其中直线,称为两被截线,直线称为截线.2. 如图(3)是“直线,被直线所截”形成的图形(1)∠1与∠5这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫同位角.(2)∠3与∠5这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫内错角.(3)∠3与∠6这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫同旁内角.3.找出图(3)中所有的同位角、内错角、同旁内角.4.讨论与交流:(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?(2)归纳总结同位角、内错角、同旁内角的特征:同位角:“F”字型,“同旁同侧”“三线八角”内错角:“Z”字型,“之间两侧”同旁内角:“U”字型,“之间同侧”三.巩固运用例1.如图(2)中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?例2.课本P7的例2练习:课本P7练习1,2四. 反思总结在复杂图形中如何辨认同位角、内错角、同旁?五. 达标检测1.如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2.如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3.如图(6), 直线DE截AB, AC, 构成八个角:①指出图中所有的同位角、内错角、同旁内角.②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4.如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)六.布置下一课时预习任务P11-12平行线课题:5.2.1平行线学习目标:a CB1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线. 学习重点:探索和掌握平行公理及其推论. 学习难点:对平行线本质属性的理解,用几何语言描述图形的性质.学前准备:分别将木条a 、b 与木条c 钉在一起,做成图示的教具.学习过程: 一.自主学习1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2.在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3.把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性? 4.自我演示.顺时针转动木条b 两圈,然后思考:把a 、b 想像成两端可以无限延伸的两条直线,顺时针转动b 时,直线b 与直线a 的交点位置将发生什么变化?在这个过程中, 有没有直线b 与a 不相交的位置? 5.同学交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的右边又转动A点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都 如下图cba6.平行线定义、表示法结合演示的结论,用自己的语言描述平行线的认识: ①平行线是同一 的两条直线 ②平行线是 交点的两条直线7.尝试用数学语言描述平行定义 特别注意:直线a 与b 是平行线,记作“ ”,这里“ ”是平行符号. 思考: 如何确定两条直线的位置关系?. 二.合作探究1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 3.观察画图、归纳平行公理及推论.(1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质.共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的.不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,也可在直线 .c b aBAc ba4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相 .(2)从直线b、c产生的过程说明直线b∥直线c.(3)用三角尺与直尺用平推方法验证b∥c.(4)用数学语言表达这个结论用符号语言表达为:如果那么三.巩固运用将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由.四. 反思总结你学到了什么?还有什么疑惑?还想知道什么?五.达标检测一、填空题.1.在同一平面内,两条直线的位置关系有_________2.两条直线L1与L2相交点A,如果L1//L,那么L2与L(),这是因为().3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.二、判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )3.过一点有且只有一条直线平行于已知直线.( )三、解答题.1.读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.六.布置下一课时预习任务P12-13平行线的判定课题:5.2.2平行线的判定学习目标:1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。